Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2211538119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191233

RESUMEN

Efficient molecular selection is a prerequisite for generating molecular tools used in diagnosis, pathology, vaccinology, and therapeutics. Selection efficiency is thermodynamically highly dependent on the dissociation equilibrium that can be reached in a single round. Extreme shifting of equilibrium towards dissociation favors the retention of high-affinity ligands over those with lower affinity, thus improving the selection efficiency. We propose to synergize dual effects by deterministic lateral-displacement microfluidics, including the collision-based force effect and the two-dimensional (2D) separation-based concentration effect, to greatly shift the equilibrium. Compared with previous approaches, this system can remove more low- or moderate-affinity ligands and maintain most high-affinity ligands, thereby improving affinity discrimination in selection. This strategy is demonstrated on phage display in both experiment and simulation, and two peptides against tumor markers ephrin type-A receptor 2 (EphA2) and CD71 were obtained with high affinity and specificity within a single round of selection, which offers a promising direction for discovery of robust binding ligands for a wide range of biomedical applications.


Asunto(s)
Microfluídica , Péptidos , Biomarcadores de Tumor , Efrinas , Ligandos , Péptidos/química
2.
Angew Chem Int Ed Engl ; 62(21): e202215337, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36959092

RESUMEN

Isolation and analysis of tumor-derived extracellular vesicles (T-EVs) are important for clinical cancer management. Here, we develop a fluid multivalent magnetic interface (FluidmagFace) in a microfluidic chip for high-performance isolation, release, and protein profiling of T-EVs. The FluidmagFace increases affinity by 105-fold with fluidity-enhanced multivalent binding to improve isolation efficiency by 13.9 % compared with a non-fluid interface. Its anti-adsorption property and microfluidic hydrodynamic shear minimize contamination, increasing detection sensitivity by two orders of magnitude. Moreover, its reversibility and expandability allow high-throughput recovery of T-EVs for mass spectrometric protein analysis. With the chip, T-EVs were detected in all tested cancer samples with identification of differentially expressed proteins compared with healthy controls. The FluidmagFace opens a new avenue to isolation and release of targets for cancer diagnosis and biomarker discovery.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Proteómica , Vesículas Extracelulares/química , Neoplasias/metabolismo , Microfluídica , Fenómenos Magnéticos
3.
Phys Chem Chem Phys ; 24(23): 14339-14347, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35642694

RESUMEN

Protein-ligand interactions are crucial in many biochemical processes and biomedical applications, yet accurately calculating the binding free energy of the interactions still remains challenging. In this work, we systematically investigate the performance of a generic force field GFN-FF and some semi-empirical quantum mechanical (SQM) methods (GFNn, n = 0, 1, 2) in terms of the accuracy of the calculated binding free energy. It is found that the performance of the GFN-FF method is quite good in a neutral-ligand system since the Pearson correlation coefficient (rp) is 0.70 and the mean absolute error (MAE) is 5.49 kcal mol-1. However, it may fail in a charged-ligand system (the MAE is 18.98 kcal mol-1). Moreover, we also propose a cluster model (i.e., truncating the protein at a given cutoff) along with the SQM method in the GFN family. Importantly, the GFN2-xTB shows the best performance among the SQM methods (the MAE is 4.91 kcal mol-1 and 10.25 kcal mol-1 in the neutral-ligand and charged-ligand systems, respectively), much better than GFN-FF in the charged-ligand system. Notably, the computing cost of the GFN2-xTB in the appropriate cluster model is even lower than that of the GFN-FF (in the entire complex). The present study sheds some light on the potential power of the GFN family in the efficient calculation of the binding free energy in bio-systems.


Asunto(s)
Proteínas , Entropía , Ligandos , Unión Proteica , Termodinámica
4.
Langmuir ; 37(40): 11707-11715, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34570511

RESUMEN

The unconjugated bilirubin (BR) may penetrate through the cell membrane and cause a severe cytotoxicity. However, the molecular mechanism underlying the penetration of BR into the cell membrane is still largely unknown. In this work, we systematically investigate the interaction of BR and a lipid bilayer under different conditions by using all-atom molecular dynamics simulations. It is found that BR at the Z,Z conformation can easily enter into the interior of the lipid bilayer due to its hydrophobicity. However, when BR transforms from the Z,Z conformation to the E,E conformation (after the blue-light emission), its penetration ability is greatly reduced (especially at its ionized state). This study may offer useful physical insights into the effect of phototherapy on the penetration behavior and the cytotoxicity of the unconjugated BR.


Asunto(s)
Bilirrubina , Membrana Dobles de Lípidos , Membrana Celular , Conformación Molecular , Simulación de Dinámica Molecular
5.
ACS Nano ; 18(8): 6463-6476, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38346263

RESUMEN

The cellular uptake of nanoparticles (NPs) by biological cells is an important and fundamental process in drug delivery. Previous studies reveal that the physicochemical properties of nanoparticles as well as those of functionalized ligands can both critically affect the uptake behaviors. However, the effect of the conjugation strategy (i.e., the "bond" between the ligand and the NP) on the cellular uptake is overlooked and remains largely elusive. Here, by taking the broadly employed gold nanoparticle as an example, we comprehensively assessed the relationship between the conjugation strategy and uptake behaviors by introducing three ligands with the same functional terminal but different anchoring sites. As revealed by in vitro cell experiments and multiscale molecular simulations, the uptake efficiency of gold NPs was positively correlated with the strength of the "bond" and more specifically the ligand mobility on the NP surface. Moreover, we validated the results presented above by proposing a thermodynamic theory for the wrapping of NPs with mobile ligands. Further, we also showed that the endocytic pathway of NPs was highly dependent on ligand mobility. Overall, this study uncovered a vital role of conjugation strategy in the cellular uptake and may provide useful guidelines for tailoring the biobehaviors of nanoparticles.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Ligandos , Oro/metabolismo , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Membrana Celular/metabolismo
6.
ACS Nano ; 18(3): 2162-2183, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38198577

RESUMEN

Neutral nanomaterials functionalized with PEG or similar molecules have been popularly employed as nanomedicines. Compared to positive counterparts that are capable of harnessing the well-known proton sponge effect to facilitate their escape from lysosomes, it is yet unclear how neutral substances got their entry into the cytosol. In this study, by taking PEGylated, neutral Au nanospheres as an example, we systematically investigated their time-dependent translocation postuptake. Specifically, we harnessed dissipative particle dynamics simulations to uncover how nanospheres bypass lysosomal entrapment, wherein a mechanism termed as "squeezing-out" mode was discovered. We next conducted a comprehensive investigation on how nanomaterials implicate lysosomes in terms of integrity and functionality. By using single-molecule imaging, specific preservation of PEG-terminated with targeting moieties in lysosomes supports the "squeezing-out" mode as the mechanism underlying the lysosomal escape of nanomaterials. All evidence points out that such a process is benign to lysosomes, wherein the escape of nanomaterials proceeds at the expense of targeting moieties loss. Furthermore, we proved that by fine-tuning of the efficacy of nanomaterials escaping from lysosomes, modulation of distinct pathways and metabolic machinery can be achieved readily, thereby offering us a simple and robust tool to implicate cells.


Asunto(s)
Nanopartículas , Nanoestructuras , Ligandos , Separación de Fases , Lisosomas/metabolismo
7.
ACS Nano ; 17(20): 19625-19639, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37819135

RESUMEN

For lithium metal batteries (LMBs), the elevated operating temperature results in severe capacity fading and safety issues due to unstable electrode-electrolyte interphases and electrolyte solvation structures. Therefore, it is crucial to construct advanced electrolytes capable of tolerating harsh environments to ensure stable LMBs. Here, we proposed a stable localized high-concentration electrolyte (LHCE) by introducing the highly solvating power solvent diethylene glycol dimethyl ether (DGDME). Computational and experimental evidence discloses that the original DGDME-LHCE shows favorable features for high-temperature LMBs, including high Li+-binding stability, electro-oxidation resistance, thermal stability, and nonflammability. The tailored solvated sheath structure achieves the preferred decomposition of anions, inducing the stable (cathode and Li anode)/interphases simultaneously, which enables a homogeneous Li plating-stripping behavior on the anode side and a high-voltage tolerance on the cathode side. For the Li||Li cells coupled with DGDME-LHCE, they showcase outstanding reversibility (a long lifespan of exceeding 1900 h). We demonstrate exceptional cyclic stability (∼95.59%, 250 cycles), high Coulombic efficiency (>99.88%), and impressive high-voltage (4.5 V) and high-temperature (60 °C) performances in Li||NCM523 cells using DGDME-LHCE. Our advances shed light on an encouraging ether electrolyte tactic for the Li-metal batteries confronted with stringent high-temperature challenges.

8.
Biosens Bioelectron ; 110: 89-96, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29602035

RESUMEN

Flexible and implantable glucose biosensors are emerging technologies for continuous monitoring of blood-glucose of diabetes. Developing a flexible conductive substrates with high active surface area is critical for advancing the technology. Here, we successfully fabricate a flexible and highly sensitive nonenzymatic glucose by using DVD-laser scribed graphene (LSG) as a flexible conductively substrate. Copper nanoparticles (Cu-NPs) are electrodeposited as the catalyst. The LSG/Cu-NPs sensor demonstrates excellent catalytic activity toward glucose oxidation and exhibits a linear glucose detection range from 1 µM to 4.54 mM with high sensitivity (1.518 mA mM-1 cm-2) and low limit of detection (0.35 µM). Moreover, the LSG/Cu-NPs sensor shows excellent reproducibility and long-term stability. It is also highly selective toward glucose oxidation under the presence of various interfering species. Excellent flexing stability is also demonstrated by the LSG/Cu-NPs sensor, which is capable of maintaining 83.9% of its initial current after being bent against a 4-mm diameter rod for 180 times. The LSG/Cu-NPs sensor shows great potential for practical application as a nonenzymatic glucose biosensor. Meanwhile, the LSG conductive substrate provides a platform for the developing next-generation flexible and potentially implantable bioelectronics and biosensors.


Asunto(s)
Técnicas Biosensibles/instrumentación , Glucemia/análisis , Cobre/química , Grafito/química , Nanopartículas del Metal/química , Catálisis , Elasticidad , Técnicas Electroquímicas/instrumentación , Galvanoplastia , Diseño de Equipo , Humanos , Rayos Láser , Límite de Detección , Nanopartículas del Metal/ultraestructura , Reproducibilidad de los Resultados
9.
ACS Appl Mater Interfaces ; 8(8): 5251-60, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26842681

RESUMEN

Flexible solid-state supercapacitors provide a promising energy-storage alternative for the rapidly growing flexible and wearable electronic industry. Further improving device energy density and developing a cheap flexible current collector are two major challenges in pushing the technology forward. In this work, we synthesize a nitrogen-doped graphene/MnO2 nanosheet (NGMn) composite by a simple hydrothermal method. Nitrogen-doped graphene acts as a template to induce the growth of layered δ-MnO2 and improves the electronic conductivity of the composite. The NGMn composite exhibits a large specific capacitance of about 305 F g(-1) at a scan rate of 5 mV s(-1). We also create a cheap and highly conductive flexible current collector using Scotch tape. Flexible solid-state asymmetric supercapacitors are fabricated with NGMn cathode, activated carbon anode, and PVA-LiCl gel electrolyte. The device can achieve a high operation voltage of 1.8 V and exhibits a maximum energy density of 3.5 mWh cm(-3) at a power density of 0.019 W cm(-3). Moreover, it retains >90% of its initial capacitance after 1500 cycles. Because of its flexibility, high energy density, and good cycle life, NGMn-based flexible solid state asymmetric supercapacitors have great potential for application in next-generation portable and wearable electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA