Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.685
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(12): 3039-3055.e14, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848677

RESUMEN

In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.


Asunto(s)
Mucosa Intestinal , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Células Madre/metabolismo , Células Madre/citología , Linaje de la Célula , Regeneración , Proliferación Celular , Células Epiteliales/metabolismo , Células Epiteliales/citología , Ratones Endogámicos C57BL , Homeostasis
2.
Nat Immunol ; 22(4): 423-433, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33767427

RESUMEN

Individuals infected with human immunodeficiency virus type-1 (HIV-1) show metabolic alterations of CD4+ T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4+ T cells from patients with HIV-1 and revealed that the elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the US Food and Drug Administration-approved drug metformin, which targets mitochondrial respiratory chain complex-I, suppresses HIV-1 replication in human CD4+ T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4+ T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein FASTKD5 to promote expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4+ T cells as a target for HIV-1 therapy.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Genómica , Infecciones por VIH/virología , VIH-1/crecimiento & desarrollo , Metaboloma , Metabolómica , Fosforilación Oxidativa , Proteoma , Transcriptoma , Replicación Viral , Animales , Antivirales/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/inmunología , VIH-1/metabolismo , Interacciones Huésped-Patógeno , Humanos , Células Jurkat , Masculino , Metformina/farmacología , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteómica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Carga Viral , Replicación Viral/efectos de los fármacos
3.
Trends Immunol ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38910097

RESUMEN

Owing to its remarkable ease of use, ultrasound has recently been explored for stimulating or amplifying immune responses during cancer therapy, termed 'sono-immunotherapy'. Ultrasound can cause immunogenic cell death in cancer cells via thermal and nonthermal effects to regulate the tumor microenvironment, thereby priming anticancer immunity; by integrating well-designed biomaterials, novel sono-immunotherapy approaches with augmented efficacy can also be developed. Here, we review the advances in sono-immunotherapy for cancer treatment and summarize existing limitations along with potential trends. We offer emerging insights into this realm, which might prompt breakthroughs and expand its potential applications to other diseases.

4.
Nature ; 596(7873): 525-530, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433941

RESUMEN

Lithium-ion batteries (LIBs) are widely used in applications ranging from electric vehicles to wearable devices. Before the invention of secondary LIBs, the primary lithium-thionyl chloride (Li-SOCl2) battery was developed in the 1970s using SOCl2 as the catholyte, lithium metal as the anode and amorphous carbon as the cathode1-7. This battery discharges by lithium oxidation and catholyte reduction to sulfur, sulfur dioxide and lithium chloride, is well known for its high energy density and is widely used in real-world applications; however, it has not been made rechargeable since its invention8-13. Here we show that with a highly microporous carbon positive electrode, a starting electrolyte composed of aluminium chloride in SOCl2 with fluoride-based additives, and either sodium or lithium as the negative electrode, we can produce a rechargeable Na/Cl2 or Li/Cl2 battery operating via redox between mainly Cl2/Cl- in the micropores of carbon and Na/Na+ or Li/Li+ redox on the sodium or lithium metal. The reversible Cl2/NaCl or Cl2/LiCl redox in the microporous carbon affords rechargeability at the positive electrode side and the thin alkali-fluoride-doped alkali-chloride solid electrolyte interface stabilizes the negative electrode, both are critical to secondary alkali-metal/Cl2 batteries.

5.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38811359

RESUMEN

The development of deep learning models plays a crucial role in advancing precision medicine. These models enable personalized medical treatments and interventions based on the unique genetic, environmental and lifestyle factors of individual patients, and the promotion of precision medicine is achieved mainly through genomic data analysis, variant annotation and interpretation, pharmacogenomics research, biomarker discovery, disease typing, clinical decision support and disease mechanism interpretation. Extensive research has been conducted to address precision medicine challenges using attention mechanism models such as SAN, GAT and transformers. Especially, the recent popularity of ChatGPT has significantly propelled the application of this model type to a new height. Therefore, I propose a Special Issue for Briefings in Bioinformatics about the topic 'Attention Mechanism Models for Precision Medicine'. This Special Issue aims to provide a comprehensive overview and presentation of innovative researches on the application of graph attention mechanism models in precision medicine.


Asunto(s)
Medicina de Precisión , Medicina de Precisión/métodos , Humanos , Aprendizaje Profundo , Biología Computacional/métodos , Genómica/métodos
6.
Proc Natl Acad Sci U S A ; 120(39): e2310903120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729201

RESUMEN

Advancing new ideas of rechargeable batteries represents an important path to meeting the ever-increasing energy storage needs. Recently, we showed rechargeable sodium/chlorine (Na/Cl2) (or lithium/chlorine Li/Cl2) batteries that used a Na (or Li) metal negative electrode, a microporous amorphous carbon nanosphere (aCNS) positive electrode, and an electrolyte containing dissolved aluminum chloride and fluoride additives in thionyl chloride [G. Zhu et al., Nature 596, 525-530 (2021) and G. Zhu et al., J. Am. Chem. Soc. 144, 22505-22513 (2022)]. The main battery redox reaction involved conversion between NaCl and Cl2 trapped in the carbon positive electrode, delivering a cyclable capacity of up to 1,200 mAh g-1 (based on positive electrode mass) at a ~3.5 V discharge voltage [G. Zhu et al., Nature 596, 525-530 (2021) and G. Zhu et al., J. Am. Chem. Soc. 144, 22505-22513 (2022)]. Here, we identified by X-ray photoelectron spectroscopy (XPS) that upon charging a Na/Cl2 battery, chlorination of carbon in the positive electrode occurred to form carbon-chlorine (C-Cl) accompanied by molecular Cl2 infiltrating the porous aCNS, consistent with Cl2 probed by mass spectrometry. Synchrotron X-ray diffraction observed the development of graphitic ordering in the initially amorphous aCNS under battery charging when the carbon matrix was oxidized/chlorinated and infiltrated with Cl2. The C-Cl, Cl2 species and graphitic ordering were reversible upon discharge, accompanied by NaCl formation. The results revealed redox conversion between NaCl and Cl2, reversible graphitic ordering/amorphourization of carbon through battery charge/discharge, and probed trapped Cl2 in porous carbon by XPS.

7.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36864591

RESUMEN

Interactions between Tumor microenvironment (TME) cells shape the unique growth environment, sustaining tumor growth and causing the immune escape of tumor cells. Nonetheless, no studies have reported a systematic analysis of cellular interactions in the identification of cancer-related TME cells. Here, we proposed a novel network-based computational method, named as iATMEcell, to identify the abnormal TME cells associated with the biological outcome of interest based on a cell-cell crosstalk network. In the method, iATMEcell first manually collected TME cell types from multiple published studies and obtained their corresponding gene signatures. Then, a weighted cell-cell crosstalk network was constructed in the context of a specific cancer bulk tissue transcriptome data, where the weight between cells reflects both their biological function similarity and the transcriptional dysregulated activities of gene signatures shared by them. Finally, it used a network propagation algorithm to identify significantly dysregulated TME cells. Using the cancer genome atlas (TCGA) Bladder Urothelial Carcinoma training set and two independent validation sets, we illustrated that iATMEcell could identify significant abnormal cells associated with patient survival and immunotherapy response. iATMEcell was further applied to a pan-cancer analysis, which revealed that four common abnormal immune cells play important roles in the patient prognosis across multiple cancer types. Collectively, we demonstrated that iATMEcell could identify potentially abnormal TME cells based on a cell-cell crosstalk network, which provided a new insight into understanding the effect of TME cells in cancer. iATMEcell is developed as an R package, which is freely available on GitHub (https://github.com/hanjunwei-lab/iATMEcell).


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Microambiente Tumoral , Fenómenos Fisiológicos Celulares , Comunicación Celular
8.
Nucleic Acids Res ; 51(D1): D717-D722, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36215029

RESUMEN

Gut microbiota plays a significant role in maintaining host health, and conversely, disorders potentially lead to dysbiosis, an imbalance in the composition of the gut microbial community. Intervention approaches, such as medications, diets, and several others, also alter the gut microbiota in either a beneficial or harmful direction. In 2020, the gutMDisorder was developed to facilitate researchers in the investigation of dysbiosis of gut microbes as occurs in various disorders as well as with therapeutic interventions. The database has been updated this year, following revision of previous publications and newly published reports to manually integrate confirmed associations under multitudinous conditions. Additionally, the microbial contents of downloaded gut microbial raw sequencing data were annotated, the metadata of the corresponding hosts were manually curated, and the interactive charts were developed to enhance visualization. The improvements have assembled into gutMDisorder v2.0, a more advanced search engine and an upgraded web interface, which can be freely accessed via http://bio-annotation.cn/gutMDisorder/.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Disbiosis , Bases de Datos Factuales , Fenotipo
9.
Nucleic Acids Res ; 51(D1): D1345-D1352, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36189892

RESUMEN

microbioTA (http://bio-annotation.cn/microbiota) was constructed to provide a comprehensive, user-friendly resource for the application of microbiome data from diseased tissues, helping users improve their general knowledge and deep understanding of tissue-derived microbes. Various microbes have been found to colonize cancer tissues and play important roles in cancer diagnoses and outcomes, with many studies focusing on developing better cancer-related microbiome data. However, there are currently no independent, comprehensive open resources cataloguing cancer-related microbiome data, which limits the exploration of the relationship between these microbes and cancer progression. Given this, we propose a new strategy to re-align the existing next-generation sequencing data to facilitate the mining of hidden sequence data describing the microbiome to maximize available resources. To this end, we collected 417 publicly available datasets from 25 human and 14 mouse tissues from the Gene Expression Omnibus database and use these to develop a novel pipeline to re-align microbiome sequences facilitating in-depth analyses designed to reveal the microbial profile of various cancer tissues and their healthy controls. microbioTA is a user-friendly online platform which allows users to browse, search, visualize, and download microbial abundance data from various tissues along with corresponding analysis results, aimimg at providing a reference for cancer-related microbiome research.


Asunto(s)
Microbiota , Neoplasias , Animales , Humanos , Ratones , Bases de Datos Genéticas , Microbiota/genética , Neoplasias/genética , Neoplasias/microbiología , Filogenia , Especificidad de Órganos
10.
Gastroenterology ; 165(6): 1458-1474, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37597632

RESUMEN

BACKGROUND & AIMS: Although depletion of neuronal nitric oxide synthase (NOS1)-expressing neurons contributes to gastroparesis, stimulating nitrergic signaling is not an effective therapy. We investigated whether hypoxia-inducible factor 1α (HIF1A), which is activated by high O2 consumption in central neurons, is a Nos1 transcription factor in enteric neurons and whether stabilizing HIF1A reverses gastroparesis. METHODS: Mice with streptozotocin-induced diabetes, human and mouse tissues, NOS1+ mouse neuroblastoma cells, and isolated nitrergic neurons were studied. Gastric emptying of solids and volumes were determined by breath test and single-photon emission computed tomography, respectively. Gene expression was analyzed by RNA-sequencing, microarrays, immunoblotting, and immunofluorescence. Epigenetic assays included chromatin immunoprecipitation sequencing (13 targets), chromosome conformation capture sequencing, and reporter assays. Mechanistic studies used Cre-mediated recombination, RNA interference, and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated epigenome editing. RESULTS: HIF1A signaling from physiological intracellular hypoxia was active in mouse and human NOS1+ myenteric neurons but reduced in diabetes. Deleting Hif1a in Nos1-expressing neurons reduced NOS1 protein by 50% to 92% and delayed gastric emptying of solids in female but not male mice. Stabilizing HIF1A with roxadustat (FG-4592), which is approved for human use, restored NOS1 and reversed gastroparesis in female diabetic mice. In nitrergic neurons, HIF1A up-regulated Nos1 transcription by binding and activating proximal and distal cis-regulatory elements, including newly discovered super-enhancers, facilitating RNA polymerase loading and pause-release, and by recruiting cohesin to loop anchors to alter chromosome topology. CONCLUSIONS: Pharmacologic HIF1A stabilization is a novel, translatable approach to restoring nitrergic signaling and treating diabetic gastroparesis. The newly recognized effects of HIF1A on chromosome topology may provide insights into physioxia- and ischemia-related organ function.


Asunto(s)
Diabetes Mellitus Experimental , Gastroparesia , Animales , Femenino , Humanos , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Epigénesis Genética , Gastroparesia/genética , Neuronas , Óxido Nítrico Sintasa de Tipo I
11.
Small ; : e2311584, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566551

RESUMEN

2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.

12.
Small ; : e2401673, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721983

RESUMEN

One of the biggest challenges in biotechnology and medical diagnostics is finding extremely sensitive and adaptable biosensors. Since metal-based enzyme-mimetic biocatalysts may lead to biosafety concerns on accumulative toxicity, it is essential to synthesize metal-free enzyme-mimics with optimal biocatalytic activity and superior selectivity. Here, the pyridine-bridged covalent organic frameworks (COFs) with specific oxidase-like (OXD-like) activities as intelligent artificial enzymes for light-augmented biocatalytic sensing of biomarkers are disclosed. Because of the adjustable bandgaps of pyridine structures on the photocatalytic properties of the pristine COF structures, the pyridine-bridged COF exhibit efficient, selective, and light-responsive OXD-like biocatalytic activity. Moreover, the pyridine-bridged COF structures show tunable and light-augmented biocatalytic detection capabilities, which outperform the recently reported state-of-the-art OXD-mimics regarding biosensing efficiency. Notably, the pyridine-bridged COF exhibits efficient and multifaceted diagnostic activity, including the extremely low limit of detection (LOD), which enables visual assays for abundant reducibility biomarkers. It is believed that this design will offer unique metal-free biocatalysts for high-sensitive and low-cost colorimetric detection and also provide new insights to create highly efficient enzyme-like COF materials via linkage-modulation strategies for future biocatalytic applications.

13.
Small ; 20(9): e2306166, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37847895

RESUMEN

This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1 or NDI-T2), or an isoindigo (IID)-based conjugated polymer (IID-T2), with single-walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) to provide the nanocomposite with n-type thermoelectric properties. Experiments in which the concentrations of the N-DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p-type to n-type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N-DMBI-doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI-T1/SWCNT exhibits the highest n-type Seebeck coefficient and power factor of -57.7 µV K-1 and 240.6 µW m-1 K-2 , respectively. However, because the undoped NDI-T2/SWCNT exhibits a slightly higher p-type performance, an integral p-n thermoelectric generator is fabricated using the doped and undoped NDI-T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.

14.
Small ; 20(24): e2311811, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38372500

RESUMEN

Amid growing interest in using body heat for electricity in wearables, creating stretchable devices poses a major challenge. Herein, a hydrogel composed of two core constituents, namely the negatively-charged 2-acrylamido-2-methylpropanesulfonic acid and the zwitterionic (ZI) sulfobetaine acrylamide, is engineered into a double-network hydrogel. This results in a significant enhancement in mechanical properties, with tensile stress and strain of up to 470.3 kPa and 106.6%, respectively. Moreover, the ZI nature of the polymer enables the fabrication of a device with polar thermoelectric properties by modulating the pH. Thus, the ionic Seebeck coefficient (Si) of the ZI hydrogel ranges from -32.6 to 31.7 mV K-1 as the pH is varied from 1 to 14, giving substantial figure of merit (ZTi) values of 3.8 and 3.6, respectively. Moreover, a prototype stretchable ionic thermoelectric supercapacitor incorporating the ZI hydrogel exhibits notable power densities of 1.8 and 0.9 mW m-2 at pH 1 and 14, respectively. Thus, the present work paves the way for the utilization of pH-sensitive, stretchable ZI hydrogels for thermoelectric applications, with a specific focus on harvesting low-grade waste heat within the temperature range of 25-40 °C.

15.
Small ; : e2401966, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733223

RESUMEN

While research on organic thermoelectric polymers is making significant progress in recent years, realization of a single polymer material possessing both thermoelectric properties and stretchability for the next generation of self-powered wearable electronics is a challenging task and remains an area yet to be explored. A new molecular engineering concept of "conjugated breaker" is employed to impart stretchability to a highly crystalline diketopyrrolepyrrole (DPP)-based polymer. A hexacyclic diindenothieno[2,3-b]thiophene (DITT) unit, with two 4-octyloxyphenyl groups substituted at the tetrahedral sp3-carbon bridges, is selected to function as the conjugated breaker that can sterically hinder intermolecular packing to reduce polymers' crystallinity. A series of donor-acceptor random copolymers is thus developed via polymerizing the crystalline DPP units with the DITT conjugated breakers. By controlling the monomeric DPP/DITT ratios, DITT30 reaches the optimal balance of crystalline/amorphous regions, exhibiting an exceptional power factor (PF) value up to 12.5 µW m-1 K-2 after FeCl3-doping; while, simultaneously displaying the capability to withstand strains exceeding 100%. More significantly, the doped DITT30 film possesses excellent mechanical endurance, retaining 80% of its initial PF value after 200 cycles of stretching/releasing at a strain of 50%. This research marks a pioneering achievement in creating intrinsically stretchable polymers with exceptional thermoelectric properties.

16.
Chembiochem ; : e202400361, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767267

RESUMEN

RNA modifications play crucial roles in regulating gene expression and cellular homeostasis. Modulating RNA modifications, particularly by targeting the enzymes responsible for their catalysis, has emerged as a promising therapeutic strategy. However, limitations, such as the lack of identified modifying enzymes and compensatory mechanisms, hinder targeted interventions. Chemical approaches independent of enzymatic activity offer an alternative strategy for RNA modification modulation. Here, we present the identification of 2-chloro-3,5-dinitrobenzoic acid as a highly effective photochemical deprenylase of i6A RNA. This method demonstrates exceptional selectivity towards i6A, converting its substituent into a "N-doped" ozonide, which upon hydrolysis releases natural adenine. We believe that this chemical approach will pave the way for a better understanding of RNA modification biology and the development of novel therapeutic modalities.

17.
Mod Pathol ; 37(2): 100396, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043790

RESUMEN

Sarcomatoid transformation occurs in ∼8% of chromophobe renal cell carcinoma (chRCC) and is associated with aggressive clinical behavior. In recent years, several studies have identified genomic, transcriptomic, and epigenomic correlates of aggressive behavior in chRCC; however, the molecular mechanisms associated with sarcomatoid transformation remain incompletely understood. In this study, we analyzed paired conventional and sarcomatoid histologic components of individual chRCC to elucidate the genomic alterations that underlie sarcomatoid transformation in this tumor type. Massively parallel sequencing was performed on paired (conventional and sarcomatoid) components from 8 chRCCs. All cases harbored TP53 variants (87.5% showing TP53 variants in both components and 12.5% only in the sarcomatoid component). Intratumor comparisons revealed that TP53 variants were concordant in 71% and discordant in 29% of cases. Additional recurrent single-nucleotide variants were found in RB1 (37.5% of cases) and PTEN (25% of cases), with the remaining single-nucleotide variants detected in these tumors (PBRM1, NF1, and ASXL1) being nonrecurrent. Copy number variant analysis showed the characteristic pattern of chromosomal losses associated with chRCC (1, 2, 6, 10, 13, 17, and 21) in the conventional histologic components only. Interestingly, the sarcomatoid components of these tumors demonstrated widespread loss of heterozygosity but lacked the above chromosomal losses, likely as a consequence of whole-genome duplication/imbalanced chromosomal duplication events. Overall, the findings suggest that TP53 variants followed by whole-genome duplication/imbalanced chromosomal duplication events underlie sarcomatoid transformation in chRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Sarcoma , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Duplicación Cromosómica , Sarcoma/genética , Aberraciones Cromosómicas , Pérdida de Heterocigocidad , Nucleótidos
18.
Mod Pathol ; 37(3): 100424, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219954

RESUMEN

The micropapillary subtype of urothelial carcinoma (MPUC) of the bladder is a very aggressive histological variant of urothelial bladder cancer (UBC). A high frequency of MPUC contains activating mutations in the extracellular domain (ECD) of ERBB2. We sought to further characterize ERBB2 ECD-mutated MPUC to identify additional genomic alterations that have been associated with tumor progression and therapeutic response. In total, 5,485 cases of archived formalin-fixed, paraffin-embedded UBC underwent comprehensive genomic profiling to identify ERBB2 ECD-mutated MPUC and evaluate the frequencies of genomic co-alterations. We identified 219 cases of UBC with ERBB2 ECD mutations (74% S310F and 26% S310Y), of which 63 (28.8%) were MPUC. Genomic analysis revealed that TERT, TP53, and ARID1A were the most common co-altered genes in ERBB2-mutant MPUC (82.5%, 58.7%, and 39.7%, respectively) and did not differ from ERBB2-mutant non-MPUC (86.5%, 51.9%, and 35.3%). The main differences between ERBB2 ECD-mutated MPUC compared with non-MPUC were KMT2D, RB1, and MTAP alterations. KMT2D and RB1 are tumor-suppressor genes. KMT2D frequency was significantly decreased in ERBB2 ECD-mutated MPUC (6.3%) in contrast to non-MPUC (27.6%; P < .001). RB1 mutations were more frequent in ERBB2 ECD-mutated MPUC (33.3%) than in non-MPUC (17.3%; P = .012). Finally, MTAP loss, an emerging biomarker for new synthetic lethality-based anticancer drugs, was less frequent in ERBB2 ECD-mutated MPUC (11.1%) than in non-MPUC (26.9%; P = .018). Characterizing the genomic landscape of MPUC may not only improve our fundamental knowledge about this aggressive morphological variant of UBC but also has the potential to identify possible prognostic and predictive biomarkers that may drive tumor progression and dictate treatment response to therapeutic approaches.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/patología , Vejiga Urinaria/patología , Mutación , Genómica , Biomarcadores de Tumor/genética , Receptor ErbB-2/genética
19.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34718395

RESUMEN

Since the first report of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, over 100 million people have been infected by COVID-19, millions of whom have died. In the latest year, a large number of omics data have sprung up and helped researchers broadly study the sequence, chemical structure and function of SARS-CoV-2, as well as molecular abnormal mechanisms of COVID-19 patients. Though some successes have been achieved in these areas, it is necessary to analyze and mine omics data for comprehensively understanding SARS-CoV-2 and COVID-19. Hence, we reviewed the current advantages and limitations of the integration of omics data herein. Firstly, we sorted out the sequence resources and database resources of SARS-CoV-2, including protein chemical structure, potential drug information and research literature resources. Next, we collected omics data of the COVID-19 hosts, including genomics, transcriptomics, microbiology and potential drug information data. And subsequently, based on the integration of omics data, we summarized the existing data analysis methods and the related research results of COVID-19 multi-omics data in recent years. Finally, we put forward SARS-CoV-2 (COVID-19) multi-omics data integration research direction and gave a case study to mine deeper for the disease mechanisms of COVID-19.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Genómica , SARS-CoV-2 , Antivirales/química , Antivirales/uso terapéutico , COVID-19/epidemiología , COVID-19/genética , Humanos , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
20.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35325048

RESUMEN

We propose TWO-SIGMA-G, a competitive gene set test for scRNA-seq data. TWO-SIGMA-G uses a mixed-effects regression model based on our previously published TWO-SIGMA to test for differential expression at the gene-level. This regression-based model provides flexibility and rigor at the gene-level in (1) handling complex experimental designs, (2) accounting for the correlation between biological replicates and (3) accommodating the distribution of scRNA-seq data to improve statistical inference. Moreover, TWO-SIGMA-G uses a novel approach to adjust for inter-gene-correlation (IGC) at the set-level to control the set-level false positive rate. Simulations demonstrate that TWO-SIGMA-G preserves type-I error and increases power in the presence of IGC compared with other methods. Application to two datasets identified HIV-associated interferon pathways in xenograft mice and pathways associated with Alzheimer's disease progression in humans.


Asunto(s)
Pruebas Genéticas , Análisis de la Célula Individual , Animales , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA