Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Psychiatry ; 26(12): 7363-7371, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385597

RESUMEN

Aberrant topological organization of whole-brain networks has been inconsistently reported in studies of patients with major depressive disorder (MDD), reflecting limited sample sizes. To address this issue, we utilized a big data sample of MDD patients from the REST-meta-MDD Project, including 821 MDD patients and 765 normal controls (NCs) from 16 sites. Using the Dosenbach 160 node atlas, we examined whole-brain functional networks and extracted topological features (e.g., global and local efficiency, nodal efficiency, and degree) using graph theory-based methods. Linear mixed-effect models were used for group comparisons to control for site variability; robustness of results was confirmed (e.g., multiple topological parameters, different node definitions, and several head motion control strategies were applied). We found decreased global and local efficiency in patients with MDD compared to NCs. At the nodal level, patients with MDD were characterized by decreased nodal degrees in the somatomotor network (SMN), dorsal attention network (DAN) and visual network (VN) and decreased nodal efficiency in the default mode network (DMN), SMN, DAN, and VN. These topological differences were mostly driven by recurrent MDD patients, rather than first-episode drug naive (FEDN) patients with MDD. In this highly powered multisite study, we observed disrupted topological architecture of functional brain networks in MDD, suggesting both locally and globally decreased efficiency in brain networks.


Asunto(s)
Trastorno Depresivo Mayor , Encéfalo , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Tamaño de la Muestra
2.
Proc Natl Acad Sci U S A ; 116(18): 9078-9083, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30979801

RESUMEN

Major depressive disorder (MDD) is common and disabling, but its neuropathophysiology remains unclear. Most studies of functional brain networks in MDD have had limited statistical power and data analysis approaches have varied widely. The REST-meta-MDD Project of resting-state fMRI (R-fMRI) addresses these issues. Twenty-five research groups in China established the REST-meta-MDD Consortium by contributing R-fMRI data from 1,300 patients with MDD and 1,128 normal controls (NCs). Data were preprocessed locally with a standardized protocol before aggregated group analyses. We focused on functional connectivity (FC) within the default mode network (DMN), frequently reported to be increased in MDD. Instead, we found decreased DMN FC when we compared 848 patients with MDD to 794 NCs from 17 sites after data exclusion. We found FC reduction only in recurrent MDD, not in first-episode drug-naïve MDD. Decreased DMN FC was associated with medication usage but not with MDD duration. DMN FC was also positively related to symptom severity but only in recurrent MDD. Exploratory analyses also revealed alterations in FC of visual, sensory-motor, and dorsal attention networks in MDD. We confirmed the key role of DMN in MDD but found reduced rather than increased FC within the DMN. Future studies should test whether decreased DMN FC mediates response to treatment. All R-fMRI indices of data contributed by the REST-meta-MDD consortium are being shared publicly via the R-fMRI Maps Project.


Asunto(s)
Encéfalo/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Mapeo Encefálico/métodos , China , Conectoma/métodos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/fisiopatología , Descanso/fisiología
3.
J Chromatogr A ; 1731: 465179, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39047447

RESUMEN

Conjugated microporous polymers (CMPs) have unique characteristics and have been used in a range of fascinating applications in separation sciences. In this study, a CMP, designated as CMP-1, was synthesized via the Sonogashira-Hagihara coupling reaction using 1,3,5-triphenylbenzene and 1,4-dibromobenzene as building blocks. CMP-1 features a large surface area, abundant micropore structures, and excellent stability, making it a promising solid-phase extraction adsorbent for the efficient enrichment of neonicotinoid insecticides (NEOs). Under the optimized conditions, CMP-1 was combined with high-performance liquid chromatography and diode array detection to enable the detection of NEOs with a wide linear range (0.5-200 µg·L-1), a low detection limit (0.26-0.58 µg·L-1), and acceptable precision. The developed method was applied to determine spiked NEOs in three types of environmental water samples, with recoveries of 73.7%-112.0% and relative standard deviations of 0.6%-9.4%.


Asunto(s)
Insecticidas , Límite de Detección , Neonicotinoides , Polímeros , Extracción en Fase Sólida , Contaminantes Químicos del Agua , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Insecticidas/análisis , Insecticidas/aislamiento & purificación , Insecticidas/química , Cromatografía Líquida de Alta Presión/métodos , Neonicotinoides/análisis , Neonicotinoides/aislamiento & purificación , Neonicotinoides/química , Polímeros/química , Porosidad , Adsorción
4.
World J Gastroenterol ; 30(10): 1405-1419, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38596488

RESUMEN

BACKGROUND: Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology. Alkaline sphingomyelinase (alk-SMase) is specifically expressed by intestinal epithelial cells, and has been reported to play an anti-inflammatory role. However, the underlying mechanism is still unclear. AIM: To explore the mechanism of alk-SMase anti-inflammatory effects on intestinal barrier function and oxidative stress in dextran sulfate sodium (DSS)-induced colitis. METHODS: Mice were administered 3% DSS drinking water, and disease activity index was determined to evaluate the status of colitis. Intestinal permeability was evaluated by gavage administration of fluorescein isothiocyanate dextran, and bacterial translocation was evaluated by measuring serum lipopolysaccharide. Intestinal epithelial cell ultrastructure was observed by electron microscopy. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction were used to detect the expression of intestinal barrier proteins and mRNA, respectively. Serum oxidant and antioxidant marker levels were analyzed using commercial kits to assess oxidative stress levels. RESULTS: Compared to wild-type (WT) mice, inflammation and intestinal permeability in alk-SMase knockout (KO) mice were more severe beginning 4 d after DSS induction. The mRNA and protein levels of intestinal barrier proteins, including zonula occludens-1, occludin, claudin-3, claudin-5, claudin-8, mucin 2, and secretory immunoglobulin A, were significantly reduced on 4 d after DSS treatment. Ultrastructural observations revealed progressive damage to the tight junctions of intestinal epithelial cells. Furthermore, by day 4, mitochondria appeared swollen and degenerated. Additionally, compared to WT mice, serum malondialdehyde levels in KO mice were higher, and the antioxidant capacity was significantly lower. The expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosal tissue of KO mice was significantly decreased after DSS treatment. mRNA levels of Nrf2-regulated downstream antioxidant enzymes were also decreased. Finally, colitis in KO mice could be effectively relieved by the injection of tertiary butylhydroquinone, which is an Nrf2 activator. CONCLUSION: Alk-SMase regulates the stability of the intestinal mucosal barrier and enhances antioxidant activity through the Nrf2 signaling pathway.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedad de Niemann-Pick Tipo A , Animales , Ratones , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Colitis/tratamiento farmacológico , Colitis Ulcerosa/tratamiento farmacológico , Colon , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Mucosa Intestinal , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Niemann-Pick Tipo A/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , ARN Mensajero/metabolismo
5.
Commun Biol ; 7(1): 960, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117859

RESUMEN

Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.


Asunto(s)
Trastorno Depresivo Mayor , Transcriptoma , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/fisiopatología , Femenino , Masculino , Adulto , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Persona de Mediana Edad , Imagen por Resonancia Magnética , Perfilación de la Expresión Génica
6.
Brain Imaging Behav ; 17(1): 90-99, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36417126

RESUMEN

To explore the relationship between cognitive function and blood-brain barrier leakage in non-brain metastasis lung cancer and healthy controls. 75 lung cancers without brain metastasis and 29 healthy controls matched with age, sex, and education were evaluated by cognitive assessment, and the Patlak pharmacokinetic model was used to calculate the average leakage in each brain region according to the automated anatomical labeling atlas. After that, the relationships between cognitive and blood-brain barrier leakage were evaluated. Compared with healthy controls, the leakage of bilateral temporal gyrus and whole brain gyrus were higher in patients with lung cancers (P < 0.05), mainly in patients with advanced lung cancer (P < 0.05), but not in patients with early lung cancer (P > 0.05). The cognitive impairment of advanced lung cancers was mainly reflected in the damage of visuospatial/executive, and delayed recall. The left temporal gyrus with increased blood-brain barrier leakage showed negative correlations with delayed recall (r = -0.201, P = 0.042). An increase in blood-brain barrier leakage was found in non-brain metastases advanced lung cancers that corresponded to decreased delayed recall. With progression in lung cancer staging, blood-brain barrier shows higher leakage and may lead to brain metastases and lower cognitive development.


Asunto(s)
Disfunción Cognitiva , Neoplasias Pulmonares , Humanos , Barrera Hematoencefálica , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Cognición , Neoplasias Pulmonares/diagnóstico por imagen
7.
Front Oncol ; 12: 1015011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330467

RESUMEN

Purpose: To explore the relationship between blood-brain barrier (BBB) leakage and brain structure in non-brain metastasis lung cancer (LC) by magnetic resonance imaging (MRI) as well as to indicate the possibility of brain metastasis (BM) occurrence. Patients and methods: MRI were performed in 75 LC patients and 29 counterpart healthy peoples (HCs). We used the Patlak pharmacokinetic model to calculate the average leakage in each brain region according to the automated anatomical labeling (AAL) atlas. The thickness of the cortex and the volumes of subcortical structures were calculated using the FreeSurfer base on Destrieux atlas. We compared the thickness of the cerebral cortex, the volumes of subcortical structures, and the leakage rates of BBB, and evaluated the relationships between these parameters. Results: Compared with HCs, the leakage rates of seven brain regions were higher in patients with advanced LC (aLC). In contrast to patients with early LC (eLC), the cortical thickness of two regions was decreased in aLCs. The volumes of twelve regions were also reduced in aLCs. Brain regions with increased BBB penetration showed negative correlations with thinner cortices and reduced subcortical structure volumes (P<0.05, R=-0.2 to -0.50). BBB penetration was positively correlated with tumor size and with levels of the tumor marker CYFRA21-1 (P<0.05, R=0.2-0.70). Conclusion: We found an increase in BBB permeability in non-BM aLCs that corresponded to a thinner cortical thickness and smaller subcortical structure volumes. With progression in LC staging, BBB shows higher permeability and may be more likely to develop into BM.

8.
Neural Regen Res ; 17(4): 812-818, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34472480

RESUMEN

Circular RNAs (circRNAs) are a new and large group of non-coding RNA molecules that are abundantly expressed in the central nervous system. However, very little is known about their roles in traumatic brain injury. In this study, we firstly screened differentially expressed circRNAs in normal and injured brain tissues of mice after traumatic brain injury. We found that the expression of circLphn3 was substantially decreased in mouse models of traumatic brain injury and in hemin-treated bEnd.3 (mouse brain cell line) cells. After overexpressing circLphn3 in bEnd.3 cells, the expression of the tight junction proteins, ZO-1, ZO-2, and occludin, was upregulated, and the expression of miR-185-5p was decreased. In bEnd.3 cells transfected with miR-185-5p mimics, the expression of ZO-1 was decreased. Dual-luciferase reporter assays showed that circLphn3 bound to miR-185-5p, and that miR-185-5p bound to ZO-1. Additionally, circLphn3 overexpression attenuated the hemin-induced high permeability of the in vitro bEnd.3 cell model of the blood-brain barrier, while miR-185-5p transfection increased the permeability. These findings suggest that circLphn3, as a molecular sponge of miR-185-5p, regulates tight junction proteins' expression after traumatic brain injury, and it thereby improves the permeability of the blood-brain barrier. This study was approved by the Animal Care and Use Committee of Chongqing Medical University of China (approval No. 2021-177) on March 22, 2021.

9.
Psychoradiology ; 2(4): 146-155, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38665276

RESUMEN

Alcohol use disorder (AUD) is a worldwide problem and the most common substance use disorder. Chronic alcohol consumption may have negative effects on the body, the mind, the family, and even society. With the progress of current neuroimaging methods, an increasing number of imaging techniques are being used to objectively detect brain impairment induced by alcoholism and serve a vital role in the diagnosis, prognosis, and treatment assessment of AUD. This article organizes and analyzes the research on alcohol dependence concerning the main noninvasive neuroimaging methods, structural magnetic resonance imaging, functional magnetic resonance imaging, and electroencephalography, as well as the most common noninvasive brain stimulation - transcranial magnetic stimulation, and intersperses the article with joint intra- and intergroup studies, providing an outlook on future research directions.

10.
Transl Psychiatry ; 12(1): 236, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668086

RESUMEN

The nucleus accumbens (NAc) is considered a hub of reward processing and a growing body of evidence has suggested its crucial role in the pathophysiology of major depressive disorder (MDD). However, inconsistent results have been reported by studies on reward network-focused resting-state functional MRI (rs-fMRI). In this study, we examined functional alterations of the NAc-based reward circuits in patients with MDD via meta- and mega-analysis. First, we performed a coordinated-based meta-analysis with a new SDM-PSI method for all up-to-date rs-fMRI studies that focused on the reward circuits of patients with MDD. Then, we tested the meta-analysis results in the REST-meta-MDD database which provided anonymous rs-fMRI data from 186 recurrent MDDs and 465 healthy controls. Decreased functional connectivity (FC) within the reward system in patients with recurrent MDD was the most robust finding in this study. We also found disrupted NAc FCs in the DMN in patients with recurrent MDD compared with healthy controls. Specifically, the combination of disrupted NAc FCs within the reward network could discriminate patients with recurrent MDD from healthy controls with an optimal accuracy of 74.7%. This study confirmed the critical role of decreased FC in the reward network in the neuropathology of MDD. Disrupted inter-network connectivity between the reward network and DMN may also have contributed to the neural mechanisms of MDD. These abnormalities have potential to serve as brain-based biomarkers for individual diagnosis to differentiate patients with recurrent MDD from healthy controls.


Asunto(s)
Trastorno Depresivo Mayor , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Red en Modo Predeterminado , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Núcleo Accumbens/diagnóstico por imagen , Recompensa
11.
Psychoradiology ; 2(1): 32-42, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38665141

RESUMEN

Despite a growing neuroimaging literature on the pathophysiology of major depressive disorder (MDD), reproducible findings are lacking, probably reflecting mostly small sample sizes and heterogeneity in analytic approaches. To address these issues, the Depression Imaging REsearch ConsorTium (DIRECT) was launched. The REST-meta-MDD project, pooling 2428 functional brain images processed with a standardized pipeline across all participating sites, has been the first effort from DIRECT. In this review, we present an overview of the motivations, rationale, and principal findings of the studies so far from the REST-meta-MDD project. Findings from the first round of analyses of the pooled repository have included alterations in functional connectivity within the default mode network, in whole-brain topological properties, in dynamic features, and in functional lateralization. These well-powered exploratory observations have also provided the basis for future longitudinal hypothesis-driven research. Following these fruitful explorations, DIRECT has proceeded to its second stage of data sharing that seeks to examine ethnicity in brain alterations in MDD by extending the exclusive Chinese original sample to other ethnic groups through international collaborations. A state-of-the-art, surface-based preprocessing pipeline has also been introduced to improve sensitivity. Functional images from patients with bipolar disorder and schizophrenia will be included to identify shared and unique abnormalities across diagnosis boundaries. In addition, large-scale longitudinal studies targeting brain network alterations following antidepressant treatment, aggregation of diffusion tensor images, and the development of functional magnetic resonance imaging-guided neuromodulation approaches are underway. Through these endeavours, we hope to accelerate the translation of functional neuroimaging findings to clinical use, such as evaluating longitudinal effects of antidepressant medications and developing individualized neuromodulation targets, while building an open repository for the scientific community.

12.
Artículo en Inglés | MEDLINE | ID: mdl-34119573

RESUMEN

OBJECTIVE: While gastrointestinal (GI) symptoms are very common in patients with major depressive disorder (MDD), few studies have investigated the neural basis behind these symptoms. In this study, we sought to elucidate the neural basis of GI symptoms in MDD patients by analyzing the changes in regional gray matter volume (GMV) and gray matter density (GMD) in brain structure. METHOD: Subjects were recruited from 13 clinical centers and categorized into three groups, each of which is based on the presence or absence of GI symptoms: the GI symptoms group (MDD patients with at least one GI symptom), the non-GI symptoms group (MDD patients without any GI symptoms), and the healthy control group (HCs). Structural magnetic resonance images (MRI) were collected of 335 patients in the GI symptoms group, 149 patients in the non-GI symptoms group, and 446 patients in the healthy control group. The 17-item Hamilton Depression Rating Scale (HAMD-17) was administered to all patients. Correlation analysis and logistic regression analysis were used to determine if there was a correlation between the altered brain regions and the clinical symptoms. RESULTS: There were significantly higher HAMD-17 scores in the GI symptoms group than that of the non-GI symptoms group (P < 0.001). Both GMV and GMD were significant different among the three groups for the bilateral superior temporal gyrus, bilateral middle temporal gyrus, left lingual gyrus, bilateral caudate nucleus, right Fusiform gyrus and bilateral Thalamus (GRF correction, cluster-P < 0.01, voxel-P < 0.001). Compared to the HC group, the GI symptoms group demonstrated increased GMV and GMD in the bilateral superior temporal gyrus, and the non-GI symptoms group demonstrated an increased GMV and GMD in the right superior temporal gyrus, right fusiform gyrus and decreased GMV in the right Caudate nucleus (GRF correction, cluster-P < 0.01, voxel-P < 0.001). Compared to the non-GI symptoms group, the GI symptoms group demonstrated significantly increased GMV and GMD in the bilateral thalamus, as well as decreased GMV in the bilateral superior temporal gyrus and bilateral insula lobe (GRF correction, cluster-P < 0.01, voxel-P < 0.001). While these changed brain areas had significantly association with GI symptoms (P < 0.001), they were not correlated with depressive symptoms (P > 0.05). Risk factors for gastrointestinal symptoms in MDD patients (p < 0.05) included age, increased GMD in the right thalamus, and decreased GMV in the bilateral superior temporal gyrus and left Insula lobe. CONCLUSION: MDD patients with GI symptoms have more severe depressive symptoms. MDD patients with GI symptoms exhibited larger GMV and GMD in the bilateral thalamus, and smaller GMV in the bilateral superior temporal gyrus and bilateral insula lobe that were correlated with GI symptoms, and some of them and age may contribute to the presence of GI symptoms in MDD patients.


Asunto(s)
Trastorno Depresivo Mayor/patología , Sustancia Gris/patología , Dolor Abdominal/etiología , Dolor Abdominal/psicología , Adulto , Encéfalo/patología , Escalas de Valoración Psiquiátrica Breve , Núcleo Caudado/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Lóbulo Temporal/patología , Tálamo/patología
13.
J Affect Disord ; 284: 217-228, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33609956

RESUMEN

BACKGROUND: Functional specialization is a feature of human brain for understanding the pathophysiology of major depressive disorder (MDD). The degree of human specialization refers to within and cross hemispheric interactions. However, most previous studies only focused on interhemispheric connectivity in MDD, and the results varied across studies. Hence, brain functional connectivity asymmetry in MDD should be further studied. METHODS: Resting-state fMRI data of 753 patients with MDD and 451 healthy controls were provided by REST-meta-MDD Project. Twenty-five project contributors preprocessed their data locally with the Data Processing Assistant State fMRI software and shared final indices. The parameter of asymmetry (PAS), a novel voxel-based whole-brain quantitative measure that reflects inter- and intrahemispheric asymmetry, was reported. We also examined the effects of age, sex and clinical variables (including symptom severity, illness duration and three depressive phenotypes). RESULTS: Compared with healthy controls, patients with MDD showed increased PAS scores (decreased hemispheric specialization) in most of the areas of default mode network, control network, attention network and some regions in the cerebellum and visual cortex. Demographic characteristics and clinical variables have significant effects on these abnormalities. LIMITATIONS: Although a large sample size could improve statistical power, future independent efforts are needed to confirm our results. CONCLUSIONS: Our results highlight the idea that many brain networks contribute to broad clinical pathophysiology of MDD, and indicate that a lateralized, efficient and economical brain information processing system is disrupted in MDD. These findings may help comprehensively clarify the pathophysiology of MDD in a new hemispheric specialization perspective.


Asunto(s)
Trastorno Depresivo Mayor , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Trastorno Depresivo Mayor/diagnóstico por imagen , Dominancia Cerebral , Humanos , Imagen por Resonancia Magnética
14.
Schizophr Res ; 222: 354-361, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32507372

RESUMEN

The pattern of decreased prefronto-thalamic connectivity and increased sensorimotor-thalamic connectivity has been consistently documented in schizophrenia. However, whether this thalamo-cortical abnormality pattern is of genetic predisposition remains unknown. The present study for the first time aimed to investigate the common and distinct characteristics of this circuit in schizophrenia patients and their unaffected siblings who share half of the patient's genotype. Totally 293 participants were recruited into this study including 94 patients with schizophrenia, 96 their healthy siblings, and 103 healthy controls scanned using gradient-echo echo-planar imaging at rest. By using a fine-grained atlas of thalamus with 16 sub-regions, we mapped the thalamocortical network in three groups. Decreased thalamo-prefronto-cerebellar connectivity was shared between schizophrenia and their healthy siblings, but increased sensorimotor-thalamic connectivity was only found in schizophrenia. The shared thalamo-prefronto-cerebellar dysconnectivity showed an impressively gradient reduction pattern in patients and siblings comparing to controls: higher in the controls, lower in the patients and intermediate in the siblings. Anatomically, the decreased thalamic connectivity mostly centered on the pre-frontal thalamic subregions locating at the mediodorsal nucleus, while the increased functional connectivity with sensorimotor cortices was only observed in the caudal temporal thalamic subregion anchoring at the dorsal and ventral lateral nuclei. Moreover, both decreased thalamo-prefronto-cerebellar connectivity and increased sensorimotor-thalamic connectivity were related to clinical symptoms in patients. Our findings extend the evidence that the decreased thalamo-prefronto-cerebellar connectivity may be related to the high genetic risk in schizophrenia, while increased sensorimotor-thalamic connectivity potentially represents a neural biomarker for this severe mental disorder.


Asunto(s)
Esquizofrenia , Corteza Cerebral , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Hermanos , Tálamo/diagnóstico por imagen
15.
Neuroimage Clin ; 28: 102514, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33396001

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is heterogeneous disorder associated with aberrant functional connectivity within the default mode network (DMN). This study focused on data-driven identification and validation of potential DMN-pattern-based MDD subtypes to parse heterogeneity of the disorder. METHODS: The sample comprised 1397 participants including 690 patients with MDD and 707 healthy controls (HC) registered from multiple sites based on the REST-meta-MDD Project in China. Baseline resting-state functional magnetic resonance imaging (rs-fMRI) data was recorded for each participant. Discriminative features were selected from DMN between patients and HC. Patient subgroups were defined by K-means and principle component analysis in the multi-site datasets and validated in an independent single-site dataset. Statistical significance of resultant clustering were confirmed. Demographic and clinical variables were compared between identified patient subgroups. RESULTS: Two MDD subgroups with differing functional connectivity profiles of DMN were identified in the multi-site datasets, and relatively stable in different validation samples. The predominant dysfunctional connectivity profiles were detected among superior frontal cortex, ventral medial prefrontal cortex, posterior cingulate cortex and precuneus, whereas one subgroup exhibited increases of connectivity (hyperDMN MDD) and another subgroup showed decreases of connectivity (hypoDMN MDD). The hyperDMN subgroup in the discovery dataset had age-related severity of depressive symptoms. Patient subgroups had comparable demographic and clinical symptom variables. CONCLUSIONS: Findings suggest the existence of two neural subtypes of MDD associated with different dysfunctional DMN connectivity patterns, which may provide useful evidence for parsing heterogeneity of depression and be valuable to inform the search for personalized treatment strategies.


Asunto(s)
Trastorno Depresivo Mayor , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , China , Red en Modo Predeterminado , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Neuroimagen
16.
Asia Pac Psychiatry ; 11(4): e12368, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31353828

RESUMEN

INTRODUCTION: Mindfulness-based cognitive therapy (MBCT) may be effective for generalized anxiety disorder (GAD); however, the neural mechanism is poorly understood. In this study, we examined the potential neural mechanisms through which MBCT may reduce anxiety in patients with mild-to-moderate GAD. METHODS: Eight weekly group MBCT sessions (2 h each) were conducted with 32 GAD patients. Resting-state functional magnetic resonance imaging (fMRI) was used, along with clinical and mindfulness profiles. A regional homogeneity (ReHo) approach was applied, and resting-state functional connectivity in the default mode network (DMN) using the posterior cingulate cortex (PCC) seed was examined. RESULTS: MBCT reduced the anxiety and increased the mindfulness abilities of patients. After MBCT, patients had reduced ReHo in broad regions of the limbic system, along with increased DMN functional connectivity in the anterior cingulate cortex (ACC) and bilateral insula. Overlapping regions of reduced ReHo and increased DMN functional connectivity were observed in the mid-cingulate cortex (MCC) and bilateral insula. The increased PCC-ACC and PCC-insula functional connectivity following MBCT were related to anxiety improvements, suggesting a potential therapeutic mechanism for mindfulness-based therapies. DISCUSSION: Group MBCT treatment appears to have effectively reduced anxiety symptoms in patients with mild-to-moderate GAD. Activation and functional connectivity appeared significantly different across some limbic regions after MBCT treatment. The salience network showed reduced ReHo and increased connectivity to the PCC. The DMN functional connectivity of the MCC may indicate reduced anxiety and improved mindfulness in GAD patients.


Asunto(s)
Trastornos de Ansiedad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Terapia Cognitivo-Conductual/métodos , Red Nerviosa/diagnóstico por imagen , Descanso/fisiología , Adulto , Trastornos de Ansiedad/psicología , Trastornos de Ansiedad/terapia , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Atención Plena , Resultado del Tratamiento
17.
Neurosci Lett ; 480(1): 30-4, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20594947

RESUMEN

Structural brain abnormalities have been widely reported in major depressive disorder (MDD). However, many previous results cannot exclude the interferences of medication or multiple recurrent episodes. In this study, we examined structural brain abnormalities by comparing 68 drug-naïve first-episode adult-onset MDD and 68 healthy controls (HCs). Structural magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) methods were used. The mean values of grey matter volume/white matter volume (GMV/WMV) were calculated, then the differences between MDD and HCs were analyzed, and the associations of the differences with clinical characteristics of depression were discussed. The whole brain GMV/WMV did not differ between MDD patients and HCs; however, the regional GMV of the right pre-supplementary motor area (pre-SMA) was smaller in MDD patients. The GMV of both hippocampi was positively correlated with symptom severity and lower in patients with long durations. These results indicate the GMV reduction of the pre-SMA at an early stage of depression, whereas the GMV of the hippocampus is associated with depressive characteristics. Moreover, the whole brain GMV/WMV was negatively related to the duration of depression, supporting that volume loss could become progressive during the development of disease. These results may suggest the importance of identifying and intervening depression at an early stage, especially the first year after onset, to prevent volume loss in the brain.


Asunto(s)
Encéfalo/patología , Trastorno Depresivo Mayor/patología , Trastorno Depresivo Mayor/fisiopatología , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA