Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 23(6): e54069, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35466531

RESUMEN

Human coronaviruses have been recently implicated in neurological sequelae by insufficiently understood mechanisms. We here identify an amino acid sequence within the HCoV-OC43 p65-like protein homologous to the evolutionarily conserved motif of myelin basic protein (MBP). Because MBP-derived peptide exposure in the sciatic nerve produces pronociceptive activity in female rodents, we examined whether a synthetic peptide derived from the homologous region of HCoV-OC43 (OC43p) acts by molecular mimicry to promote neuropathic pain. OC43p, but not scrambled peptides, induces mechanical hypersensitivity in rats following intrasciatic injections. Transcriptome analyses of the corresponding spinal cords reveal upregulation of genes and signaling pathways with known nociception-, immune-, and cellular energy-related activities. Affinity capture shows the association of OC43p with an Na+ /K+ -transporting ATPase, providing a potential direct target and mechanistic insight into virus-induced effects on energy homeostasis and the sensory neuraxis. We propose that HCoV-OC43 polypeptides released during infection dysregulate normal nervous system functions through molecular mimicry of MBP, leading to mechanical hypersensitivity. Our findings might provide a new paradigm for virus-induced neuropathic pain.


Asunto(s)
Coronavirus Humano OC43 , Neuralgia , Secuencia de Aminoácidos , Animales , Coronavirus Humano OC43/fisiología , Femenino , Humanos , Péptidos , Ratas , Médula Espinal
2.
J Biol Chem ; 295(31): 10807-10821, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32532796

RESUMEN

In the peripheral nerve, mechanosensitive axons are insulated by myelin, a multilamellar membrane formed by Schwann cells. Here, we offer first evidence that a myelin degradation product induces mechanical hypersensitivity and global transcriptomics changes in a sex-specific manner. Focusing on downstream signaling events of the functionally active 84-104 myelin basic protein (MBP(84-104)) fragment released after nerve injury, we demonstrate that exposing the sciatic nerve to MBP(84-104) via endoneurial injection produces robust mechanical hypersensitivity in female, but not in male, mice. RNA-seq and systems biology analysis revealed a striking sexual dimorphism in molecular signatures of the dorsal root ganglia (DRG) and spinal cord response, not observed at the nerve injection site. Mechanistically, intra-sciatic MBP(84-104) induced phospholipase C (PLC)-driven (females) and phosphoinositide 3-kinase-driven (males) phospholipid metabolism (tier 1). PLC/inositol trisphosphate receptor (IP3R) and estrogen receptor co-regulation in spinal cord yielded Ca2+-dependent nociceptive signaling induction in females that was suppressed in males (tier 2). IP3R inactivation by intrathecal xestospongin C attenuated the female-specific hypersensitivity induced by MBP(84-104). According to sustained sensitization in tiers 1 and 2, T cell-related signaling spreads to the DRG and spinal cord in females, but remains localized to the sciatic nerve in males (tier 3). These results are consistent with our previous finding that MBP(84-104)-induced pain is T cell-dependent. In summary, an autoantigenic peptide endogenously released in nerve injury triggers multisite, sex-specific transcriptome changes, leading to neuropathic pain only in female mice. MBP(84-104) acts through sustained co-activation of metabolic, estrogen receptor-mediated nociceptive, and autoimmune signaling programs.


Asunto(s)
Señalización del Calcio , Ganglios Espinales/metabolismo , Neuralgia/metabolismo , RNA-Seq , Nervio Ciático/metabolismo , Caracteres Sexuales , Transcriptoma , Animales , Femenino , Ganglios Espinales/patología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones , Proteína Básica de Mielina/toxicidad , Neuralgia/inducido químicamente , Neuralgia/patología , Fragmentos de Péptidos/toxicidad , Nervio Ciático/patología , Fosfolipasas de Tipo C/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(50): E11681-E11690, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478057

RESUMEN

The dramatic reorganization of chromatin during mitosis is perhaps one of the most fundamental of all cell processes. It remains unclear how epigenetic histone modifications, despite their crucial roles in regulating chromatin architectures, are dynamically coordinated with chromatin reorganization in controlling this process. We have developed and characterized biosensors with high sensitivity and specificity based on fluorescence resonance energy transfer (FRET). These biosensors were incorporated into nucleosomes to visualize histone H3 Lys-9 trimethylation (H3K9me3) and histone H3 Ser-10 phosphorylation (H3S10p) simultaneously in the same live cell. We observed an anticorrelated coupling in time between H3K9me3 and H3S10p in a single live cell during mitosis. A transient increase of H3S10p during mitosis is accompanied by a decrease of H3K9me3 that recovers before the restoration of H3S10p upon mitotic exit. We further showed that H3S10p is causatively critical for the decrease of H3K9me3 and the consequent reduction of heterochromatin structure, leading to the subsequent global chromatin reorganization and nuclear envelope dissolution as a cell enters mitosis. These results suggest a tight coupling of H3S10p and H3K9me3 dynamics in the regulation of heterochromatin dissolution before a global chromatin reorganization during mitosis.


Asunto(s)
Técnicas Biosensibles/métodos , Ensamble y Desensamble de Cromatina , Código de Histonas , Proteínas Bacterianas , Ensamble y Desensamble de Cromatina/genética , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Fluorescentes Verdes , Células HEK293 , Heterocromatina/genética , Heterocromatina/metabolismo , Código de Histonas/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Luminiscentes , Mitosis , Modelos Biológicos , Análisis de la Célula Individual/métodos
4.
Biochem J ; 475(14): 2355-2376, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29954845

RESUMEN

In demyelinating nervous system disorders, myelin basic protein (MBP), a major component of the myelin sheath, is proteolyzed and its fragments are released in the neural environment. Here, we demonstrated that, in contrast with MBP, the cellular uptake of the cryptic 84-104 epitope (MBP84-104) did not involve the low-density lipoprotein receptor-related protein-1, a scavenger receptor. Our pull-down assay, mass spectrometry and molecular modeling studies suggested that, similar with many other unfolded and aberrant proteins and peptides, the internalized MBP84-104 was capable of binding to the voltage-dependent anion-selective channel-1 (VDAC-1), a mitochondrial porin. Molecular modeling suggested that MBP84-104 directly binds to the N-terminal α-helix located midway inside the 19 ß-blade barrel of VDAC-1. These interactions may have affected the mitochondrial functions and energy metabolism in multiple cell types. Notably, MBP84-104 caused neither cell apoptosis nor affected the total cellular ATP levels, but repressed the aerobic glycolysis (lactic acid fermentation) and decreased the l-lactate/d-glucose ratio (also termed as the Warburg effect) in normal and cancer cells. Overall, our findings implied that because of its interactions with VDAC-1, the cryptic MBP84-104 peptide invoked reprogramming of the cellular energy metabolism that favored enhanced cellular activity, rather than apoptotic cell death. We concluded that the released MBP84-104 peptide, internalized by the cells, contributes to the reprogramming of the energy-generating pathways in multiple cell types.


Asunto(s)
Adenosina Trifosfato/metabolismo , Metabolismo Energético/efectos de los fármacos , Mitocondrias/metabolismo , Proteína Básica de Mielina/farmacología , Fragmentos de Péptidos/farmacología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Adenosina Trifosfato/química , Animales , Línea Celular Tumoral , Glucólisis/efectos de los fármacos , Humanos , Ratones , Mitocondrias/química , Proteína Básica de Mielina/química , Fragmentos de Péptidos/química , Dominios Proteicos , Estructura Secundaria de Proteína , Ratas , Canal Aniónico 1 Dependiente del Voltaje/química
5.
J Neuroinflammation ; 15(1): 89, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558999

RESUMEN

BACKGROUND: In the peripheral nerve, pro-inflammatory matrix metalloproteinase (MMP)-9 performs essential functions in the acute response to injury. Whether MMP-9 activity contributes to late-phase injury or whether MMP-9 expression or activity after nerve injury is sexually dimorphic remains unknown. METHODS: Patterns of MMP-9 expression, activity and excretion were assessed in a model of painful peripheral neuropathy, sciatic nerve chronic constriction injury (CCI), in female and male rats. Real-time Taqman RT-PCR for MMP-9 and its endogenous inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1) of nerve samples over a 2-month time course of CCI was followed by gelatin zymography of crude nerve extracts and purified MMP-9 from the extracts using gelatin Sepharose-beads. MMP excretion was determined using protease activity assay of urine in female and male rats with CCI. RESULTS: The initial upsurge in nerve MMP-9 expression at day 1 post-CCI was superseded more than 100-fold at day 28 post-CCI. The high level of MMP-9 expression in late-phase nerve injury was accompanied by the reduction in TIMP-1 level. The absence of MMP-9 in the normal nerve and the presence of multiple MMP-9 species (the proenzyme, mature enzyme, homodimers, and heterodimers) was observed at day 1 and day 28 post-CCI. The MMP-9 proenzyme and mature enzyme species dominated in the early- and late-phase nerve injury, consistent with the high and low level of TIMP-1 expression, respectively. The elevated nerve MMP-9 levels corresponded to the elevated urinary MMP excretion post-CCI. All of these findings were comparable in female and male rodents. CONCLUSION: The present study offers the first evidence for the excessive, uninhibited proteolytic MMP-9 activity during late-phase painful peripheral neuropathy and suggests that the pattern of MMP-9 expression, activity, and excretion after peripheral nerve injury is universal in both sexes.


Asunto(s)
Metaloproteinasa 9 de la Matriz/metabolismo , Neuropatía Ciática/enzimología , Caracteres Sexuales , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/orina , ARN Mensajero/metabolismo , Ratas , Proteínas S100/metabolismo , Factores de Tiempo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/orina
6.
J Biol Chem ; 290(6): 3693-707, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25488667

RESUMEN

Neuronal glial antigen 2 (NG2) is an integral membrane chondroitin sulfate proteoglycan expressed by vascular pericytes, macrophages (NG2-Mφ), and progenitor glia of the nervous system. Herein, we revealed that NG2 shedding and axonal growth, either independently or jointly, depended on the pericellular remodeling events executed by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). Using purified NG2 ectodomain constructs, individual MMPs, and primary NG2-Mφ cultures, we demonstrated for the first time that MMP-14 performed as an efficient and unconventional NG2 sheddase and that NG2-Mφ infiltrated into the damaged peripheral nervous system. We then characterized the spatiotemporal relationships among MMP-14, MMP-2, and tissue inhibitor of metalloproteinases-2 in sciatic nerve. Tissue inhibitor of metalloproteinases-2-free MMP-14 was observed in the primary Schwann cell cultures using the inhibitory hydroxamate warhead-based MP-3653 fluorescent reporter. In teased nerve fibers, MMP-14 translocated postinjury toward the nodes of Ranvier and its substrates, laminin and NG2. Inhibition of MMP-14 activity using the selective, function-blocking DX2400 human monoclonal antibody increased the levels of regeneration-associated factors, including laminin, growth-associated protein 43, and cAMP-dependent transcription factor 3, thereby promoting sensory axon regeneration after nerve crush. Concomitantly, DX2400 therapy attenuated mechanical hypersensitivity associated with nerve crush in rats. Together, our findings describe a new model in which MMP-14 proteolysis regulates the extracellular milieu and presents a novel therapeutic target in the damaged peripheral nervous system and neuropathic pain.


Asunto(s)
Antígenos/metabolismo , Macrófagos/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Proteoglicanos/metabolismo , Animales , Axones/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Espacio Extracelular/metabolismo , Femenino , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Células HEK293 , Humanos , Laminina/genética , Laminina/metabolismo , Células MCF-7 , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/fisiopatología , Proteolisis , Ratas , Ratas Sprague-Dawley , Células de Schwann/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/fisiología
7.
J Biol Chem ; 290(18): 11771-84, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25792748

RESUMEN

To shed light on the early immune response processes in severed peripheral nerves, we performed genome-wide transcriptional profiling and bioinformatics analyses of the proximal (P, regenerating) and distal (D, degenerating) nerve stumps on day 1 in the sciatic nerve axotomy model in rats. Multiple cell death-related pathways were activated in the degenerating D stump, whereas activation of the cytoskeletal motility and gluconeogenesis/glycolysis pathways was most prominent in the P stump of the axotomized nerve. Our bioinformatics analyses also identified the specific immunomodulatory genes of the chemokine, IL, TNF, MHC, immunoglobulin-binding Fc receptor, calcium-binding S100, matrix metalloproteinase, tissue inhibitor of metalloproteinase, and ion channel families affected in both the P and D segments. S100a8 and S100a9 were the top up-regulated genes in both the P and D segments. Stimulation of cultured Schwann cells using the purified S100A8/A9 heterodimer recapitulated activation of the myeloid cell and phagocyte chemotactic genes and pathways, which we initially observed in injured nerves. S100A8/A9 heterodimer injection into the intact nerve stimulated macrophage infiltration. We conclude that, following peripheral nerve injury, an immediate acute immune response occurs both distal and proximal to the lesion site and that the rapid transcriptional activation of the S100a8 and S100a9 genes results in S100A8/A9 hetero- and homodimers, which stimulate the release of chemokines and cytokines by activated Schwann cells and generate the initial chemotactic gradient that guides the transmigration of hematogenous immune cells into the injured nerve.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/farmacología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Animales , Quimiocinas/metabolismo , Quimiotaxis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Ratones , Proteínas Quinasas/metabolismo , Ratas , Células de Schwann/citología , Células de Schwann/efectos de los fármacos , Células de Schwann/inmunología , Células de Schwann/metabolismo , Nervio Ciático/inmunología , Nervio Ciático/patología , Regulación hacia Arriba/efectos de los fármacos
8.
Brain Behav Immun ; 56: 378-89, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26970355

RESUMEN

Mechanosensory fibers are enveloped by myelin, a unique multilamellar membrane permitting saltatory neuronal conduction. Damage to myelin is thought to contribute to severe pain evoked by innocuous tactile stimulation (i.e., mechanical allodynia). Our earlier (Liu et al., 2012) and present data demonstrate that a single injection of a myelin basic protein-derived peptide (MBP84-104) into an intact sciatic nerve produces a robust and long-lasting (>30days) mechanical allodynia in female rats. The MBP84-104 peptide represents the immunodominant epitope and requires T cells to maintain allodynia. Surprisingly, only systemic gabapentin (a ligand of voltage-gated calcium channel α2δ1), but not ketorolac (COX inhibitor), lidocaine (sodium channel blocker) or MK801 (NMDA antagonist) reverse allodynia induced by the intrasciatic MBP84-104. The genome-wide transcriptional profiling of the sciatic nerve followed by the bioinformatics analyses of the expression changes identified interleukin (IL)-6 as the major cytokine induced by MBP84-104 in both the control and athymic T cell-deficient nude rats. The intrasciatic MBP84-104 injection resulted in both unilateral allodynia and unilateral IL-6 increase the segmental spinal cord (neurons and astrocytes). An intrathecal delivery of a function-blocking IL-6 antibody reduced the allodynia in part by the transcriptional effects in large-diameter primary afferents in DRG. Our data suggest that MBP regulates IL-6 expression in the nervous system and that the spinal IL-6 activity mediates nociceptive processing stimulated by the MBP epitopes released after damage or disease of the somatosensory nervous system.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Interleucina-6/metabolismo , Proteína Básica de Mielina/farmacología , Fragmentos de Péptidos/farmacología , Nervio Ciático/efectos de los fármacos , Médula Espinal/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Aminas/farmacología , Animales , Ácidos Ciclohexanocarboxílicos/farmacología , Maleato de Dizocilpina/farmacología , Femenino , Gabapentina , Genómica , Interleucina-6/inmunología , Ketorolaco/farmacología , Lidocaína/farmacología , Proteína Básica de Mielina/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Ratas , Ratas Desnudas , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/farmacología
9.
J Neuroinflammation ; 12: 158, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26337825

RESUMEN

BACKGROUND: Mechanical pain hypersensitivity associated with physical trauma to peripheral nerve depends on T-helper (Th) cells expressing the algesic cytokine, interleukin (IL)-17A. Fibronectin (FN) isoform alternatively spliced within the IIICS region encoding the 25-residue-long connecting segment 1 (CS1) regulates T cell recruitment to the sites of inflammation. Herein, we analyzed the role of CS1-containing FN (FN-CS1) in IL-17A expression and pain after peripheral nerve damage. METHODS: Mass spectrometry, immunoblotting, and FN-CS1-specific immunofluorescence analyses were employed to examine FN expression after chronic constriction injury (CCI) in rat sciatic nerves. The acute intra-sciatic nerve injection of the synthetic CS1 peptide (a competitive inhibitor of the FN-CS1/α4 integrin binding) was used to elucidate the functional significance of FN-CS1 in mechanical and thermal pain hypersensitivity and IL-17A expression (by quantitative Taqman RT-PCR) after CCI. The CS1 peptide effects were analyzed in cultured primary Schwann cells, the major source of FN-CS1 in CCI nerves. RESULTS: Following CCI, FN expression in sciatic nerve increased with the dominant FN-CS1 deposition in endothelial cells, Schwann cells, and macrophages. Acute CS1 therapy attenuated mechanical allodynia (pain from innocuous stimulation) but not thermal hyperalgesia and reduced the levels of IL-17A expression in the injured nerve. CS1 peptide inhibited the LPS- or starvation-stimulated activation of the stress ERK/MAPK pathway in cultured Schwann cells. CONCLUSIONS: After physical trauma to the peripheral nerve, FN-CS1 contributes to mechanical pain hypersensitivity by increasing the number of IL-17A-expressing (presumably, Th17) cells. CS1 peptide therapy can be developed for pharmacological control of neuropathic pain.


Asunto(s)
Hiperalgesia/etiología , Hiperalgesia/metabolismo , Interleucina-17/metabolismo , Péptidos/metabolismo , Neuropatía Ciática/complicaciones , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Hiperalgesia/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular , Interleucina-17/genética , Dimensión del Dolor , Péptidos/uso terapéutico , Ratas , Ratas Sprague-Dawley , Células de Schwann/metabolismo , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Neuropatía Ciática/patología , Factores de Tiempo
10.
J Biol Chem ; 288(48): 34956-67, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24145028

RESUMEN

Enterotoxigenic anaerobic Bacteroides fragilis is a significant source of inflammatory diarrheal disease and a risk factor for colorectal cancer. Two distinct metalloproteinase types (the homologous 1, 2, and 3 isoforms of fragilysin (FRA1, FRA2, and FRA3, respectively) and metalloproteinase II (MPII)) are encoded by the B. fragilis pathogenicity island. FRA was demonstrated to be important to pathogenesis, whereas MPII, also a potential virulence protein, remained completely uncharacterized. Here, we, for the first time, extensively characterized MPII in comparison with FRA3, a representative of the FRA isoforms. We employed a series of multiplexed peptide cleavage assays to determine substrate specificity and proteolytic characteristics of MPII and FRA. These results enabled implementation of an efficient assay of MPII activity using a fluorescence-quenched peptide and contributed to structural evidence for the distinct substrate cleavage preferences of MPII and FRA. Our data imply that MPII specificity mimics the dibasic Arg↓Arg cleavage motif of furin-like proprotein convertases, whereas the cleavage motif of FRA (Pro-X-X-Leu-(Arg/Ala/Leu)↓) resembles that of human matrix metalloproteinases. To the best of our knowledge, MPII is the first zinc metalloproteinase with the dibasic cleavage preferences, suggesting a high level of versatility of metalloproteinase proteolysis. Based on these data, we now suggest that the combined (rather than individual) activity of MPII and FRA is required for the overall B. fragilis virulence in vivo.


Asunto(s)
Bacteroides fragilis/genética , Inflamación/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloendopeptidasas/metabolismo , Secuencia de Aminoácidos , Bacteroides fragilis/patogenicidad , Islas Genómicas/genética , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloendopeptidasas/genética , Microbiota , Neoplasias/genética , Neoplasias/patología , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , Proteolisis , Especificidad por Sustrato
11.
Brain Behav Immun Health ; 38: 100757, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38590761

RESUMEN

Background: A bioactive myelin basic protein (MBP) fragment, comprising MBP84-104, is released in sciatic nerve after chronic constriction injury (CCI). Intraneural injection (IN) of MBP84-104 in an intact sciatic nerve is sufficient to induce persistent neuropathic pain-like behavior via robust transcriptional remodeling at the injection site and ipsilateral dorsal root ganglia (DRG) and spinal cord. The sex (female)-specific pronociceptive activity of MBP84-104 associates with sex-specific changes in cholesterol metabolism and activation of estrogen receptor (ESR)1 signaling. Methods: In male and female normal and post-CCI rat sciatic nerves, we assessed: (i) cholesterol precursor and metabolite levels by lipidomics; (ii) MBP84-104 interactors by mass spectrometry of MBP84-104 pull-down; and (iii) liver X receptor (LXR)α protein expression by immunoblotting. To test the effect of LXRα stimulation on IN MBP84-104-induced mechanical hypersensitivity, the LXRα expression was confirmed along the segmental neuraxis, in DRG and spinal cord, followed by von Frey testing of the effect of intrathecally administered synthetic LXR agonist, GW3965. In cultured male and female rat DRGs exposed to MBP84-104 and/or estrogen treatments, transcriptional effect of LXR stimulation by GW3965 was assessed on downstream cholesterol transporter Abc, interleukin (IL)-6, and pronociceptive Cacna2d1 gene expression. Results: CCI regulated LXRα ligand and receptor levels in nerves of both sexes, with cholesterol precursors, desmosterol and 7-DHC, and oxysterol elevated in females relative to males. MBP84-104 interacted with nuclear receptor coactivator (Ncoa)1, known to activate LXRα, injury-specific in nerves of both sexes. LXR stimulation suppressed ESR1-induced IL-6 and Cacna2d1 expression in cultured DRGs of both sexes and attenuated MBP84-104-induced pain in females. Conclusion: The injury-released bioactive MBP fragments induce pronociceptive changes by selective inactivation of nuclear transcription factors, including LXRα. By Ncoa1 sequestration, bioactive MBP fragments render LXRα function to counteract pronociceptive activity of estrogen/ESR1 in sensory neurons. This effect of MBP fragments is prevalent in females due to high circulating estrogen levels in females relative to males. Restoring LXR activity presents a promising therapeutic strategy in management of neuropathic pain induced by bioactive MBP.

12.
J Biol Chem ; 286(39): 34215-23, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21832072

RESUMEN

Invasive cancers use pericellular proteolysis to breach the extracellular matrix and basement membrane barriers and invade the surrounding tissue. Proinvasive membrane type-1 matrix metalloproteinase (MT1-MMP) is the primary mediator of proteolytic events on the cancer cell surface. MT1-MMP is synthesized as a zymogen. The latency of MT1-MMP is maintained by its N-terminal inhibitory prodomain. In the course of MT1-MMP activation, the R(108)RKR(111) ↓ Y(112) prodomain sequence is processed by furin. The intact prodomain released by furin alone, however, is a potent inhibitor of the emerging MT1-MMP enzyme. Evidence suggests that the prodomain undergoes intradomain cleavage at the PGD ↓ L(50) site followed by the release of the degraded prodomain by furin cleavage that finalizes the two-step activation event. These cleavages, only if combined, cause the activation of MT1-MMP. The significance of the intradomain cleavage in the protumorigenic program of MT1-MMP, however, remained unidentified. To identify this important parameter, in our current study, we used the cells that expressed the wild-type prodomain-based fluorescent biosensor and the mutant biosensor with the inactivated PGD↓L(50) cleavage site (L50D mutant) and also the cells with the enforced expression of the wild-type and L50D mutant MT1-MMP. Using cell-based tests, orthotopic breast cancer xenografts in mice, and genome-wide transcriptional profiling of cultured cells and tumor xenografts, we demonstrated that the intradomain cleavage of the PGD ↓ L(50) sequence of the prodomain is essential for the protumorigenic function of MT1-MMP. Our results emphasize the importance of the intradomain cleavages resulting in the inactivation of the respective inhibitory prodomains not only for MT1-MMP but also for other MMP family members.


Asunto(s)
Neoplasias de la Mama/enzimología , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Sustitución de Aminoácidos , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Activación Enzimática/genética , Femenino , Furina/genética , Furina/metabolismo , Humanos , Metaloproteinasa 14 de la Matriz/genética , Ratones , Ratones Desnudos , Mutación Missense , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Trasplante Heterólogo
13.
J Neuroinflammation ; 9: 119, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22676642

RESUMEN

BACKGROUND: The myelin sheath provides electrical insulation of mechanosensory Aß-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aß-fibers is believed to activate the nociceptive circuitry in Aß-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI), are not well understood. METHODS AND RESULTS: Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. CONCLUSIONS: These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1 day post-injury is critical to the generation of tactile allodynia, neuroinflammation, and the immunodominant MBP digest peptides in nerve. These MBP peptides initiate mechanical allodynia in both a T cell-dependent and -independent manner. In the course of Wallerian degeneration, the repeated exposure of the cryptic MBP epitopes, which are normally sheltered from immunosurveillance, may induce the MBP-specific T cell clones and a self-sustaining immune reaction, which may together contribute to the transition of acute pain into a chronic neuropathic pain state.


Asunto(s)
Epítopos de Linfocito T/efectos adversos , Epítopos Inmunodominantes/efectos adversos , Proteína Básica de Mielina/fisiología , Dolor/inmunología , Subgrupos de Linfocitos T/inmunología , Secuencia de Aminoácidos , Animales , Epítopos de Linfocito T/fisiología , Femenino , Células HEK293 , Humanos , Epítopos Inmunodominantes/fisiología , Datos de Secuencia Molecular , Monitorización Inmunológica/efectos adversos , Dolor/etiología , Dolor/patología , Dimensión del Dolor/métodos , Ratas , Ratas Desnudas , Ratas Sprague-Dawley , Subgrupos de Linfocitos T/patología
14.
Front Mol Neurosci ; 15: 958568, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35983069

RESUMEN

The convergence of transcriptional and epigenetic changes in the peripheral nervous system (PNS) reshapes the spatiotemporal gene expression landscape in response to nerve transection. The control of these molecular programs exhibits sexually dimorphic characteristics that remain not sufficiently characterized. In the present study, we recorded genome-wide and sex-dependent early-phase transcriptional changes in regenerating (proximal) sciatic nerve 24 h after axotomy. Male nerves exhibited more extensive transcriptional changes with male-dominant upregulation of cytoskeletal binding and structural protein genes. Regulation of mRNAs encoding ion and ionotropic neurotransmitter channels displayed prominent sexual dimorphism consistent with sex-specific mRNA axonal transport in an early-phase regenerative response. Protein kinases and axonal transport genes showed sexually dimorphic regulation. Genes encoding components of synaptic vesicles were at high baseline expression in females and showed post-injury induction selectively in males. Predictive bioinformatic analyses established patterns of sexually dimorphic regulation of neurotrophic and immune genes, including activation of glial cell line-derived neurotrophic factor Gfra1 receptor and immune checkpoint cyclin D1 (Ccnd1) potentially linked to X-chromosome encoded tissue inhibitor of matrix metallo proteinases 1 (Timp1). Regulatory networks involving Olig1, Pou3f3/Oct6, Myrf, and Myt1l transcription factors were linked to sex-dependent reprogramming in regenerating nerves. Differential expression patterns of non-coding RNAs motivate a model of sexually dimorphic nerve regenerative responses to injury determined by epigenetic factors. Combined with our findings in the corresponding dorsal root ganglia (DRG), unique early-phase sex-specific molecular triggers could enrich the mechanistic understanding of peripheral neuropathies.

15.
Front Mol Neurosci ; 15: 1029278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36385770

RESUMEN

Sexual dimorphism is a powerful yet understudied factor that influences the timing and efficiency of gene regulation in axonal injury and repair processes in the peripheral nervous system. Here, we identified common and distinct biological processes in female and male degenerating (distal) nerve stumps based on a snapshot of transcriptional reprogramming 24 h after axotomy reflecting the onset of early phase Wallerian degeneration (WD). Females exhibited transcriptional downregulation of a larger number of genes than males. RhoGDI, ERBB, and ERK5 signaling pathways increased activity in both sexes. Males upregulated genes and canonical pathways that exhibited robust baseline expression in females in both axotomized and sham nerves, including signaling pathways controlled by neuregulin and nerve growth factors. Cholesterol biosynthesis, reelin signaling, and synaptogenesis signaling pathways were downregulated in females. Signaling by Rho Family GTPases, cAMP-mediated signaling, and sulfated glycosaminoglycan biosynthesis were downregulated in both sexes. Estrogens potentially influenced sex-dependent injury response due to distinct regulation of estrogen receptor expression. A crosstalk of cytokines and growth hormones could promote sexually dimorphic transcriptional responses. We highlighted prospective regulatory activities due to protein phosphorylation, extracellular proteolysis, sex chromosome-specific expression, major urinary proteins (MUPs), and genes involved in thyroid hormone metabolism. Combined with our earlier findings in the corresponding dorsal root ganglia (DRG) and regenerating (proximal) nerve stumps, sex-specific and universal early phase molecular triggers of WD enrich our knowledge of transcriptional regulation in peripheral nerve injury and repair.

16.
Front Cell Neurosci ; 16: 835800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496906

RESUMEN

Immunotherapy holds promise as a non-addictive treatment of refractory chronic pain states. Increasingly, sex is recognized to impact immune regulation of pain states, including mechanical allodynia (pain from non-painful stimulation) that follows peripheral nerve trauma. This study aims to assess the role of B cells in sex-specific responses to peripheral nerve trauma. Using a rat model of sciatic nerve chronic constriction injury (CCI), we analyzed sex differences in (i) the release of the immunodominant neural epitopes of myelin basic protein (MBP); (ii) the levels of serum immunoglobulin M (IgM)/immunoglobulin G (IgG) autoantibodies against the MBP epitopes; (iii) endoneurial B cell/CD20 levels; and (iv) mechanical sensitivity behavior after B cell/CD20 targeting with intravenous (IV) Rituximab (RTX) and control, IV immunoglobulin (IVIG), therapy. The persistent MBP epitope release in CCI nerves of both sexes was accompanied by the serum anti-MBP IgM autoantibody in female CCI rats alone. IV RTX therapy during CD20-reactive cell infiltration of nerves of both sexes reduced mechanical allodynia in females but not in males. IVIG and vehicle treatments had no effect in either sex. These findings provide strong evidence for sexual dimorphism in B-cell function after peripheral nervous system (PNS) trauma and autoimmune pathogenesis of neuropathic pain, potentially amenable to immunotherapeutic intervention, particularly in females. A myelin-targeted serum autoantibody may serve as a biomarker of such painful states. This insight into the biological basis of sex-specific response to neuraxial injury will help personalize regenerative and analgesic therapies.

17.
J Biol Chem ; 285(25): 19647-59, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20404328

RESUMEN

Epigenetic parameters (DNA methylation, histone modifications, and miRNAs) play a significant role in cancer. To identify the common epigenetic signatures of both the individual matrix metalloproteinases (MMPs) and the additional genes, the function of which is also linked to proteolysis, migration, and tumorigenesis, we performed epigenetic profiling of 486 selected genes in unrelated non-migratory MCF-7 breast carcinoma and highly migratory U251 glioma cells. Genome-wide transcriptional profiling, quantitative reverse transcription-PCR, and microRNA analyses were used to support the results of our epigenetic studies. Transcriptional silencing in both glioma and breast carcinoma cells predominantly involved the repressive histone H3 Lys-27 trimethylation (H3K27me3) mark. In turn, epigenetic stimulation was primarily performed through a gain in the histone H3 Lys-4 dimethylation (H3K4me2) and H3 hyperacetylation and by a global reduction of H3K27me3. Inactive pro-invasive genes in MCF-7 cells but not in U251 cells frequently exhibited a stem cell-like bivalent mark (enrichment in both H3K27me3 and H3K4me2), a characteristic of developmental genes. In contrast with other MMPs, MMP-8 was epigenetically silenced in both cell types, thus providing evidence for the strict epigenetic control of this anti-tumorigenic proteinase in cancer. Epigenetic stimulation of multiple collagen genes observed in cultured glioma cells was then directly confirmed using orthotopic xenografts and tumor specimens. We suggest that the epigenetic mechanisms allow gliomas to deposit an invasion-promoting collagen-enriched matrix and then to use this matrix to accomplish their rapid migration through the brain tissue.


Asunto(s)
Epigénesis Genética , Regulación Enzimológica de la Expresión Génica , Metaloproteinasas de la Matriz/metabolismo , Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Línea Celular Tumoral , Metilación de ADN , Dimerización , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Trasplante de Neoplasias
18.
J Biol Chem ; 285(46): 35740-9, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20837484

RESUMEN

PTK7 is an essential component of the Wnt/planar cell polarity (PCP) pathway. We provide evidence that the Wnt/PCP pathway converges with pericellular proteolysis in both normal development and cancer. Here, we demonstrate that membrane type-1 matrix metalloproteinase (MT1-MMP), a key proinvasive proteinase, functions as a principal sheddase of PTK7. MT1-MMP directly cleaves the exposed PKP(621)↓LI sequence of the seventh Ig-like domain of the full-length membrane PTK7 and generates, as a result, an N-terminal, soluble PTK7 fragment (sPTK7). The enforced expression of membrane PTK7 in cancer cells leads to the actin cytoskeleton reorganization and the inhibition of cell invasion. MT1-MMP silencing and the analysis of the uncleavable L622D PTK7 mutant confirm the significance of MT1-MMP proteolysis of PTK7 in cell functions. Our data also demonstrate that a fine balance between the metalloproteinase activity and PTK7 levels is required for normal development of zebrafish (Danio rerio). Aberration of this balance by the proteinase inhibition or PTK7 silencing results in the PCP-dependent convergent extension defects in the zebrafish. Overall, our data suggest that the MT1-MMP-PTK7 axis plays an important role in both cancer cell invasion and normal embryogenesis in vertebrates. Further insight into these novel mechanisms may promote understanding of directional cell motility and lead to the identification of therapeutics to treat PCP-related developmental disorders and malignancy.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Embrión no Mamífero/embriología , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Sitios de Unión/genética , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Polaridad Celular , Citoesqueleto/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Hibridación in Situ , Metaloproteinasa 14 de la Matriz/genética , Datos de Secuencia Molecular , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transfección , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Arch Virol ; 156(2): 313-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20978807

RESUMEN

In flaviviruses and hepatitis C virus (HCV), the NS3 gene encodes the N-terminal protease (NS3pro) and the C-terminal helicase (NS3hel). In HCV, the downstream NS4A is required for the NS3pro activity and exhibits a conserved EFDEMEE motif. To identify the role of this motif, we compared the ATPase and helicase activities of NS3 alone with those of the NS3-NS4A constructs. Our results suggest that the EFDEMEE motif is essential for regulating the ATPase activity of NS3hel. It is likely that this motif interferes with the ATP-binding site of NS3hel. It is becoming clear that NS4A functions as a cofactor of both proteinase and helicase in HCV.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Proteínas Portadoras/química , Cartilla de ADN/genética , Genes Virales , Humanos , Hidrólisis , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Proteínas no Estructurales Virales/química
20.
Front Mol Neurosci ; 14: 779024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966260

RESUMEN

Peripheral nerve injury induces genome-wide transcriptional reprogramming of first-order neurons and auxiliary cells of dorsal root ganglia (DRG). Accumulating experimental evidence suggests that onset and mechanistic principles of post-nerve injury processes are sexually dimorphic. We examined largely understudied aspects of early transcriptional events in DRG within 24 h after sciatic nerve axotomy in mice of both sexes. Using high-depth RNA sequencing (>50 million reads/sample) to pinpoint sexually dimorphic changes related to regeneration, immune response, bioenergy, and sensory functions, we identified a higher number of transcriptional changes in male relative to female DRG. In males, the decline in ion channel transcripts was accompanied by the induction of innate immune cascades via TLR, chemokine, and Csf1-receptor axis and robust regenerative programs driven by Sox, Twist1/2, and Pax5/9 transcription factors. Females demonstrated nerve injury-specific transcriptional co-activation of the actinin 2 network. The predicted upstream regulators and interactive networks highlighted the role of novel epigenetic factors and genetic linkage to sex chromosomes as hallmarks of gene regulation post-axotomy. We implicated epigenetic X chromosome inactivation in the regulation of immune response activity uniquely in females. Sexually dimorphic regulation of MMP/ADAMTS metalloproteinases and their intrinsic X-linked regulator Timp1 contributes to extracellular matrix remodeling integrated with pro-regenerative and immune functions. Lexis1 non-coding RNA involved in LXR-mediated lipid metabolism was identified as a novel nerve injury marker. Together, our data identified unique early response triggers of sex-specific peripheral nerve injury regulation to gain mechanistic insights into the origin of female- and male-prevalent sensory neuropathies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA