Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(45): 11980-11985, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078343

RESUMEN

Most of the enteric nervous system derives from the "vagal" neural crest, lying at the level of somites 1-7, which invades the digestive tract rostro-caudally from the foregut to the hindgut. Little is known about the initial phase of this colonization, which brings enteric precursors into the foregut. Here we show that the "vagal crest" subsumes two populations of enteric precursors with contrasted origins, initial modes of migration, and destinations. Crest cells adjacent to somites 1 and 2 produce Schwann cell precursors that colonize the vagus nerve, which in turn guides them into the esophagus and stomach. Crest cells adjacent to somites 3-7 belong to the crest streams contributing to sympathetic chains: they migrate ventrally, seed the sympathetic chains, and colonize the entire digestive tract thence. Accordingly, enteric ganglia, like sympathetic ones, are atrophic when deprived of signaling through the tyrosine kinase receptor ErbB3, while half of the esophageal ganglia require, like parasympathetic ones, the nerve-associated form of the ErbB3 ligand, Neuregulin-1. These dependencies might bear relevance to Hirschsprung disease, with which alleles of Neuregulin-1 are associated.


Asunto(s)
Sistema Nervioso Entérico/citología , Ganglios Simpáticos/citología , Tracto Gastrointestinal/embriología , Cresta Neural/citología , Neurregulina-1/genética , Receptor ErbB-3/genética , Células de Schwann/citología , Animales , Embrión de Pollo , Tracto Gastrointestinal/inervación , Enfermedad de Hirschsprung/genética , Ratones , Neurregulina-1/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Receptor ErbB-3/metabolismo , Nervio Vago/citología
2.
BMC Biol ; 11: 53, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23631531

RESUMEN

BACKGROUND: A key to understanding the evolution of the nervous system on a large phylogenetic scale is the identification of homologous neuronal types. Here, we focus this search on the sensory and motor neurons of bilaterians, exploiting their well-defined molecular signatures in vertebrates. Sensorimotor circuits in vertebrates are of two types: somatic (that sense the environment and respond by shaping bodily motions) and visceral (that sense the interior milieu and respond by regulating vital functions). These circuits differ by a small set of largely dedicated transcriptional determinants: Brn3 is expressed in many somatic sensory neurons, first and second order (among which mechanoreceptors are uniquely marked by the Brn3+/Islet1+/Drgx+ signature), somatic motoneurons uniquely co-express Lhx3/4 and Mnx1, while the vast majority of neurons, sensory and motor, involved in respiration, blood circulation or digestion are molecularly defined by their expression and dependence on the pan-visceral determinant Phox2b. RESULTS: We explore the status of the sensorimotor transcriptional code of vertebrates in mollusks, a lophotrochozoa clade that provides a rich repertoire of physiologically identified neurons. In the gastropods Lymnaea stagnalis and Aplysia californica, we show that homologues of Brn3, Drgx, Islet1, Mnx1, Lhx3/4 and Phox2b differentially mark neurons with mechanoreceptive, locomotory and cardiorespiratory functions. Moreover, in the cephalopod Sepia officinalis, we show that Phox2 marks the stellate ganglion (in line with the respiratory--that is, visceral--ancestral role of the mantle, its target organ), while the anterior pedal ganglion, which controls the prehensile and locomotory arms, expresses Mnx. CONCLUSIONS: Despite considerable divergence in overall neural architecture, a molecular underpinning for the functional allocation of neurons to interactions with the environment or to homeostasis was inherited from the urbilaterian ancestor by contemporary protostomes and deuterostomes.


Asunto(s)
Evolución Biológica , Neuronas/citología , Vertebrados/metabolismo , Vísceras/inervación , Animales , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/metabolismo , Lymnaea/citología , Lymnaea/metabolismo , Mecanorreceptores/metabolismo , Ratones , Neuronas/metabolismo , Ratas , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Sepia/citología , Sepia/metabolismo , Transcripción Genética
3.
Elife ; 122024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488657

RESUMEN

The pelvic organs (bladder, rectum, and sex organs) have been represented for a century as receiving autonomic innervation from two pathways - lumbar sympathetic and sacral parasympathetic - by way of a shared relay, the pelvic ganglion, conceived as an assemblage of sympathetic and parasympathetic neurons. Using single-cell RNA sequencing, we find that the mouse pelvic ganglion is made of four classes of neurons, distinct from both sympathetic and parasympathetic ones, albeit with a kinship to the former, but not the latter, through a complex genetic signature. We also show that spinal lumbar preganglionic neurons synapse in the pelvic ganglion onto equal numbers of noradrenergic and cholinergic cells, both of which therefore serve as sympathetic relays. Thus, the pelvic viscera receive no innervation from parasympathetic or typical sympathetic neurons, but instead from a divergent tail end of the sympathetic chains, in charge of its idiosyncratic functions.


Asunto(s)
Neuronas , Vísceras , Ratones , Animales , Neuronas/fisiología , Sistema Nervioso Autónomo , Sistema Nervioso Simpático/metabolismo , Pelvis
4.
Nat Commun ; 12(1): 6307, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728601

RESUMEN

It has long been known that orofacial movements for feeding can be triggered, coordinated, and often rhythmically organized at the level of the brainstem, without input from higher centers. We uncover two nuclei that can organize the movements for ingesting fluids in mice. These neuronal groups, IRtPhox2b and Peri5Atoh1, are marked by expression of the pan-autonomic homeobox gene Phox2b and are located, respectively, in the intermediate reticular formation of the medulla and around the motor nucleus of the trigeminal nerve. They are premotor to all jaw-opening and tongue muscles. Stimulation of either, in awake animals, opens the jaw, while IRtPhox2b alone also protracts the tongue. Moreover, stationary stimulation of IRtPhox2b entrains a rhythmic alternation of tongue protraction and retraction, synchronized with jaw opening and closing, that mimics lapping. Finally, fiber photometric recordings show that IRtPhox2b is active during volitional lapping. Our study identifies one of the subcortical nuclei underpinning a stereotyped feeding behavior.


Asunto(s)
Tronco Encefálico/metabolismo , Conducta Alimentaria/fisiología , Proteínas de Homeodominio/metabolismo , Maxilares/fisiología , Bulbo Raquídeo/metabolismo , Neuronas Motoras/metabolismo , Lengua/fisiología , Factores de Transcripción/metabolismo , Potenciales de Acción , Animales , Femenino , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Noqueados , Formación Reticular/metabolismo , Factores de Transcripción/genética
5.
Elife ; 82019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31570121

RESUMEN

It has been known for more than a century that, in adult vertebrates, the maintenance of taste buds depends on their afferent nerves. However, the initial formation of taste buds is proposed to be nerve-independent in amphibians, and evidence to the contrary in mammals has been endlessly debated, mostly due to indirect and incomplete means to impede innervation during the protracted perinatal period of taste bud differentiation. Here, by genetically ablating, in mice, all somatic (i.e. touch) or visceral (i.e. taste) neurons for the oral cavity, we show that the latter but not the former are absolutely required for the proper formation of their target organs, the taste buds.


Asunto(s)
Boca/inervación , Neuronas Aferentes/fisiología , Organogénesis , Papilas Gustativas/crecimiento & desarrollo , Animales , Ratones
6.
Curr Biol ; 19(15): 1264-9, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19559615

RESUMEN

The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages.


Asunto(s)
Evolución Biológica , Sistema Nervioso Central/anatomía & histología , Cordados/anatomía & histología , Invertebrados/anatomía & histología , Anatomía Comparada , Animales , Secuencia de Bases , Clonación Molecular , Hawaii , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Proc Natl Acad Sci U S A ; 103(23): 8727-32, 2006 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-16735475

RESUMEN

The craniate head is innervated by cranial sensory and motor neurons. Cranial sensory neurons stem from the neurogenic placodes and neural crest and are seen as evolutionary innovations crucial in fulfilling the feeding and respiratory needs of the craniate "new head." In contrast, cranial motoneurons that are located in the hindbrain and motorize the head have an unclear phylogenetic status. Here we show that these motoneurons are in fact homologous to the motoneurons of the sessile postmetamorphic form of ascidians. The motoneurons of adult Ciona intestinalis, located in the cerebral ganglion and innervating muscles associated with the huge "branchial basket," express the transcription factors CiPhox2 and CiTbx20, whose vertebrate orthologues collectively define cranial motoneurons of the branchiovisceral class. Moreover, Ciona's postmetamorphic motoneurons arise from a hindbrain set aside during larval life and defined as such by its position (caudal to the prosensephalic sensory vesicle) and coexpression of CiPhox2 and CiHox1, whose orthologues collectively mark the vertebrate hindbrain. These data unveil that the postmetamorphic ascidian brain, assumed to be a derived feature, in fact corresponds to the vertebrate hindbrain and push back the evolutionary origin of cranial nerves to before the origin of craniates.


Asunto(s)
Ciona intestinalis/citología , Cabeza/inervación , Neuronas Motoras/citología , Animales , Ciona intestinalis/embriología , Ciona intestinalis/crecimiento & desarrollo , Embrión no Mamífero/citología , Ganglión/metabolismo , Proteínas de Homeodominio/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica , Ratones , Datos de Secuencia Molecular , Proteínas de Dominio T Box/metabolismo
8.
Biochem Biophys Res Commun ; 305(4): 915-24, 2003 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12767918

RESUMEN

Mental retardation represents the more invalidating pathological aspect of Down syndrome, DS, and has a hard impact in public health. Modifications in DS brain, concerning abnormal size, neuronal differentiation, and cell density, cause changes in the neurophysiology and behavior of DS patients, and could be determined by dosage imbalance of genes localized in the DS critical region, DCR. Among these genes, C21orf5 showed high homology with Caenorhabditis elegans Pad1 involved in cellular differentiation and patterning. To shed light on C21orf5 role in DS, we performed molecular characterization of human and mouse orthologs, their spatio-temporal expression during development and in adult, and overexpression in DS and transgenic mice. C21orf5 was widely expressed early in embryogenesis in the nervous system. Later, its expression became differential and increased in mesencephalon and rhomboencephalon. This developmental expression profile evolves selectively in adult brain with higher signals in hippocampus, cerebellum, perirhinal, and entorhinal cortex, compared to the other cortical regions. Cellular specificity was detected in hippocampus with higher C21orf5 mRNA level in CA3 cells. Our findings appoint C21orf5 as candidate gene for mental retardation: Its overexpression in DS cells may contribute to gene imbalance in DS.Its specific expression in normal and its mirroring pattern in transgenic mice correspond to abnormal regions in DS patients and to neurological phenotype of transgenic mice. Altered cortical lamination in transgenic mice and the Pad1 ortholog function suggest a potential role of C21orf5 in cell differentiation. Its patterned differential expression in the medial temporal-lobe system, including hippocampal formation and perirhinal cortex involved in memory storage, and learning and memory defects in the transgenic mice suggest a specialized role for C21orf5 in cognitive processes. These evidences suggest that C21orf5 is an attractive candidate gene contributing to neurological alterations responsible for mental retardation in DS patients.


Asunto(s)
Síndrome de Down/etiología , Proteínas de la Membrana/fisiología , Lóbulo Temporal/metabolismo , Animales , Encéfalo/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario y Fetal , Femenino , Humanos , Hibridación in Situ , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Distribución Tisular , Transcripción Genética , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA