Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RNA ; 26(11): 1575-1588, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32660984

RESUMEN

miR-140 is selectively expressed in cartilage. Deletion of the entire Mir140 locus in mice results in growth retardation and early-onset osteoarthritis-like pathology; however, the relative contribution of miR-140-5p or miR-140-3p to the phenotype remains to be determined. An unbiased small RNA sequencing approach identified miR-140-3p as significantly more abundant (>10-fold) than miR-140-5p in human cartilage. Analysis of these data identified multiple miR-140-3p isomiRs differing from the miRBase annotation at both the 5' and 3' end, with >99% having one of two seed sequences (5' bases 2-8). Canonical (miR-140-3p.2) and shifted (miR-140-3p.1) seed isomiRs were overexpressed in chondrocytes and transcriptomics performed to identify targets. miR-140-3p.1 and miR-140-3p.2 significantly down-regulated 694 and 238 genes, respectively, of which only 162 genes were commonly down-regulated. IsomiR targets were validated using 3'UTR luciferase assays. miR-140-3p.1 targets were enriched within up-regulated genes in rib chondrocytes of Mir140-null mice and within down-regulated genes during human chondrogenesis. Finally, through imputing the expression of miR-140 from the expression of the host gene WWP2 in 124 previously published data sets, an inverse correlation with miR-140-3p.1 predicted targets was identified. Together these data suggest the novel seed containing isomiR miR-140-3p.1 is more functional than original consensus miR-140-3p seed containing isomiR.


Asunto(s)
Cartílago/química , MicroARNs/genética , Análisis de Secuencia de ARN/métodos , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Condrogénesis , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones , Anotación de Secuencia Molecular , Especificidad de Órganos , Regulación hacia Arriba
2.
Development ; 144(24): 4510-4521, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29084806

RESUMEN

Long non-coding RNAs (lncRNAs) are expressed in a highly tissue-specific manner and function in various aspects of cell biology, often as key regulators of gene expression. In this study, we established a role for lncRNAs in chondrocyte differentiation. Using RNA sequencing we identified a human articular chondrocyte repertoire of lncRNAs from normal hip cartilage donated by neck of femur fracture patients. Of particular interest are lncRNAs upstream of the master chondrocyte transcription factor SOX9 locus. SOX9 is an HMG-box transcription factor that plays an essential role in chondrocyte development by directing the expression of chondrocyte-specific genes. Two of these lncRNAs are upregulated during chondrogenic differentiation of mesenchymal stem cells (MSCs). Depletion of one of these lncRNAs, LOC102723505, which we termed ROCR (regulator of chondrogenesis RNA), by RNA interference disrupted MSC chondrogenesis, concomitant with reduced cartilage-specific gene expression and incomplete matrix component production, indicating an important role in chondrocyte biology. Specifically, SOX9 induction was significantly ablated in the absence of ROCR, and overexpression of SOX9 rescued the differentiation of MSCs into chondrocytes. Our work sheds further light on chondrocyte-specific SOX9 expression and highlights a novel method of chondrocyte gene regulation involving a lncRNA.


Asunto(s)
Cartílago Articular/crecimiento & desarrollo , Diferenciación Celular/genética , Condrogénesis/genética , Células Madre Mesenquimatosas/citología , ARN Largo no Codificante/genética , Factor de Transcripción SOX9/biosíntesis , Anciano , Secuencia de Bases , Cartílago Articular/citología , Células Cultivadas , Condrocitos/citología , Femenino , Cadera/fisiología , Humanos , ARN Largo no Codificante/biosíntesis , Análisis de Secuencia de ARN
3.
Sci Rep ; 11(1): 10452, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001919

RESUMEN

MicroRNAs are non-coding RNAs that act to downregulate the expression of target genes by translational repression and degradation of messenger RNA molecules. Individual microRNAs have the ability to specifically target a wide array of gene transcripts, therefore allowing each microRNA to play key roles in multiple biological pathways. miR-324 is a microRNA predicted to target thousands of RNA transcripts and is expressed far more highly in the brain than in any other tissue, suggesting that it may play a role in one or multiple neurological pathways. Here we present data from the first global miR-324-null mice, in which increased excitability and interictal discharges were identified in vitro in the hippocampus. RNA sequencing was used to identify differentially expressed genes in miR-324-null mice which may contribute to this increased hippocampal excitability, and 3'UTR luciferase assays and western blotting revealed that two of these, Suox and Cd300lf, are novel direct targets of miR-324. Characterisation of microRNAs that produce an effect on neurological activity, such as miR-324, and identification of the pathways they regulate will allow a better understanding of the processes involved in normal neurological function and in turn may present novel pharmaceutical targets in treating neurological disease.


Asunto(s)
Excitabilidad Cortical/genética , Hipocampo/fisiología , MicroARNs/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Receptores Inmunológicos/genética , Animales , Línea Celular , Femenino , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Neocórtex/fisiología , RNA-Seq , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA