Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 621(7978): 324-329, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648851

RESUMEN

Marine heatwaves have been linked to negative ecological effects in recent decades1,2. If marine heatwaves regularly induce community reorganization and biomass collapses in fishes, the consequences could be catastrophic for ecosystems, fisheries and human communities3,4. However, the extent to which marine heatwaves have negative impacts on fish biomass or community composition, or even whether their effects can be distinguished from natural and sampling variability, remains unclear. We investigated the effects of 248 sea-bottom heatwaves from 1993 to 2019 on marine fishes by analysing 82,322 hauls (samples) from long-term scientific surveys of continental shelf ecosystems in North America and Europe spanning the subtropics to the Arctic. Here we show that the effects of marine heatwaves on fish biomass were often minimal and could not be distinguished from natural and sampling variability. Furthermore, marine heatwaves were not consistently associated with tropicalization (gain of warm-affiliated species) or deborealization (loss of cold-affiliated species) in these ecosystems. Although steep declines in biomass occasionally occurred after marine heatwaves, these were the exception, not the rule. Against the highly variable backdrop of ocean ecosystems, marine heatwaves have not driven biomass change or community turnover in fish communities that support many of the world's largest and most productive fisheries.


Asunto(s)
Biomasa , Calor Extremo , Peces , Animales , Europa (Continente) , Explotaciones Pesqueras/estadística & datos numéricos , Peces/clasificación , Peces/fisiología , Calor Extremo/efectos adversos , América del Norte , Biodiversidad
2.
Nature ; 616(7955): 104-112, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813964

RESUMEN

Blue foods, sourced in aquatic environments, are important for the economies, livelihoods, nutritional security and cultures of people in many nations. They are often nutrient rich1, generate lower emissions and impacts on land and water than many terrestrial meats2, and contribute to the health3, wellbeing and livelihoods of many rural communities4. The Blue Food Assessment recently evaluated nutritional, environmental, economic and justice dimensions of blue foods globally. Here we integrate these findings and translate them into four policy objectives to help realize the contributions that blue foods can make to national food systems around the world: ensuring supplies of critical nutrients, providing healthy alternatives to terrestrial meat, reducing dietary environmental footprints and safeguarding blue food contributions to nutrition, just economies and livelihoods under a changing climate. To account for how context-specific environmental, socio-economic and cultural aspects affect this contribution, we assess the relevance of each policy objective for individual countries, and examine associated co-benefits and trade-offs at national and international scales. We find that in many African and South American nations, facilitating consumption of culturally relevant blue food, especially among nutritionally vulnerable population segments, could address vitamin B12 and omega-3 deficiencies. Meanwhile, in many global North nations, cardiovascular disease rates and large greenhouse gas footprints from ruminant meat intake could be lowered through moderate consumption of seafood with low environmental impact. The analytical framework we provide also identifies countries with high future risk, for whom climate adaptation of blue food systems will be particularly important. Overall the framework helps decision makers to assess the blue food policy objectives most relevant to their geographies, and to compare and contrast the benefits and trade-offs associated with pursuing these objectives.


Asunto(s)
Organismos Acuáticos , Seguridad Alimentaria , Internacionalidad , Alimentos Marinos , Desarrollo Sostenible , Humanos , Dieta/métodos , Dieta/estadística & datos numéricos , Dieta/tendencias , Ambiente , Carne , Estado Nutricional , Internacionalidad/legislación & jurisprudencia , Alimentos Marinos/economía , Alimentos Marinos/estadística & datos numéricos , Alimentos Marinos/provisión & distribución , Desarrollo Sostenible/economía , Desarrollo Sostenible/legislación & jurisprudencia , Desarrollo Sostenible/tendencias , Seguridad Alimentaria/economía , Seguridad Alimentaria/legislación & jurisprudencia , Seguridad Alimentaria/métodos , Cambio Climático , Política de Salud , Política Ambiental , Factores Socioeconómicos , Características Culturales , Ácidos Grasos Omega-3 , Huella de Carbono , Enfermedades Cardiovasculares/epidemiología
3.
Nature ; 591(7850): 396-401, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33731948

RESUMEN

The future of the global ocean economy is currently envisioned as advancing towards a 'blue economy'-socially equitable, environmentally sustainable and economically viable ocean industries1,2. However, tensions exist within sustainable development approaches, arising from differing perspectives framed around natural capital or social equity. Here we show that there are stark differences in outlook on the capacity for establishing a blue economy, and on its potential outcomes, when social conditions and governance capacity-not just resource availability-are considered, and we highlight limits to establishing multiple overlapping industries. This is reflected by an analysis using a fuzzy logic model to integrate indicators from multiple disciplines and to evaluate their current capacity to contribute to establishing equitable, sustainable and viable ocean sectors consistent with a blue economy approach. We find that the key differences in the capacity of regions to achieve a blue economy are not due to available natural resources, but include factors such as national stability, corruption and infrastructure, which can be improved through targeted investments and cross-scale cooperation. Knowledge gaps can be addressed by integrating historical natural and social science information on the drivers and outcomes of resource use and management, thus identifying equitable pathways to establishing or transforming ocean sectors1,3,4. Our results suggest that policymakers must engage researchers and stakeholders to promote evidence-based, collaborative planning that ensures that sectors are chosen carefully, that local benefits are prioritized, and that the blue economy delivers on its social, environmental and economic goals.


Asunto(s)
Política Ambiental , Modelos Económicos , Océanos y Mares , Desarrollo Sostenible/economía , Lógica Difusa , Objetivos
4.
Glob Chang Biol ; 28(7): 2312-2326, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35040239

RESUMEN

Climate change is shifting the distribution of shared fish stocks between neighboring countries' Exclusive Economic Zones (EEZs) and the high seas. The timescale of these transboundary shifts determines how climate change will affect international fisheries governance. Here, we explore this timescale by coupling a large ensemble simulation of an Earth system model under a high emission climate change scenario to a dynamic population model. We show that by 2030, 23% of transboundary stocks will have shifted and 78% of the world's EEZs will have experienced at least one shifting stock. By the end of this century, projections show a total of 45% of stocks shifting globally and 81% of EEZs waters with at least one shifting stock. The magnitude of such shifts is reflected in changes in catch proportion between EEZs sharing a transboundary stock. By 2030, global EEZs are projected to experience an average change of 59% in catch proportion of transboundary stocks. Many countries that are highly dependent on fisheries for livelihood and food security emerge as hotspots for transboundary shifts. These hotspots are characterized by early shifts in the distribution of an important number of transboundary stocks. Existing international fisheries agreements need to be assessed for their capacity to address the social-ecological implications of climate-change-driven transboundary shifts. Some of these agreements will need to be adjusted to limit potential conflict between the parties of interest. Meanwhile, new agreements will need to be anticipatory and consider these concerns and their associated uncertainties to be resilient to global change.


El cambio climático está afectando la distribución de las poblaciones de fauna marina compartidas por Zonas Económicas Exclusivas (ZEEs) de países vecinos y en el alta mar. Los efectos del cambio climático en el manejo pesquero internacional estarán determinados por la escala temporal de dichos desplazamientos transfronterizos. Para determinar esa escala temporal, el presente estudio combinó un modelo dinámico poblacional, con una serie de simulaciones de un modelo del sistema terrestre, bajo un escenario de cambio climático de altas emisiones. Los resultados siguieren que para 2030, el 23% de las poblaciones transfronterizas se habrán desplazado y en el 78% de las ZEEs del mundo habrán experimentado cambios en la distribución de al menos una población transfronteriza. Para fines de este siglo, las proyecciones muestran que el 81% de las ZEEs tendrán al menos una población en movimiento y 45% de las poblaciones transfronterizas globales habrán cambiado su distribución. La magnitud de tal desplazamiento se reflejará en un cambio promedio del 59% de la proporción de captura de poblaciones transfronterizas entre ZEEs vecinas para el 2030. Muchos países que dependen de la pesca para sustento económico y seguridad alimentaria emergen como zonas críticas de cambios transfronterizos. Estas zonas se caracterizan por cambios tempranos en la distribución de un número importante de poblaciones transfronterizas. Por lo tanto, los acuerdos pesqueros internacionales deben evaluarse por su capacidad para responder a los impactos socio-ecológicos del desplazamiento de poblaciones transfronterizas debido al cambio climático. Dichos acuerdos deberán de ser ajustados para limitar los posibles conflictos entre las partes de interés y evitar amenazar la sustentabilidad del recurso. Así mismo, los nuevos acuerdos que vayan a establecerse deberán considerar los posibles cambios en la distribución de poblaciones compartidas (y la incertidumbre asociada) para anticiparse a dichos conflictos y aumentar la resiliencia frente al cambio climático.


Le changement climatique altère la distribution des stocks de poissons exploités posant de sérieux problèmes de juridiction et gestion des espèces partagées entre pays voisins, et/ou avec la haute mer. C'est en analysant l'échelle de temps de ces migrations transfrontalières que l'impact du changement climatique sur la gouvernance mondiale des pêches peut être évalué. Dans cette étude, nous explorons cette échelle de temps à l'aide d'un modèle de dynamique des populations marines exploitées couplé à des simulations dérivées d'un ensemble de modèles globaux océan-atmosphère. Les résultats montrent que d'ici 2030, pour le scénario à hautes émissions, 23% des stocks transfrontaliers auront changé de distribution et que 78% des zones économiques exclusives (ZEE) expérimenteront au moins une nouvelle espèce transfrontalière. A la fin du siècle, et pour ce même scénario, 81% des ZEE auront au moins une espèce transfrontalière et 45% des stocks transfrontaliers auront changé de distribution. La magnitude de tels changements de distribution est ici quantifiée par la variation dans la proportion de capture entre ZEE partageant ce stock transfrontalier. D'ici 2030, de tels changements entre ZEE seront de l'ordre de 59% à l'échelle globale, avec de nombreux pays dont la qualité de vie et la sécurité alimentaire dépendent de la pêche émergeant comme zones à haut risque. Ces zones se caractérisent par le déplacement précoce d'un grand nombre de stocks transfrontaliers. A la lumière de ces résultats, les traités et accords de pêche internationaux doivent être évalués pour leur capacité à répondre aux implications socio-écologiques du changement climatique et renégocier afin d'éviter tout conflit entre pays voisins. En anticipant des changements potentiels de distribution entre stocks transfrontaliers, tout nouvel accord de pêche se voudra plus résilient aux effets du changement climatique.


As mudanças climáticas vêm promovendo alterações na distribuição dos estoques de peixes compartilhados por países vizinhos, tanto nas suas Zonas Econômicas Exclusivas (ZEE) como em águas oceânicas internacionais. A escala de tempo desse deslocamento transfronteiriço vai determinar como as mudanças climáticas afetarão o manejo pesqueiro internacional. Diante disso, o presente trabalho teve por objetivo analisar essa escala de tempo, combinando um amplo conjunto de simulações de um modelo do sistema terrestre sob um cenário de mudanças climáticas de altas emissões a um modelo de dinâmica populacional. Foi observado que, para 2030, 23% dos estoques transfronteiriços terão suas distribuições alteradas e 78% das ZEEs do mundo terão experimentado deslocamentos em pelo menos um estoque transfronteiriço. No final deste século, as projeções mostram que 45% dos estoques transfronteiriços do mundo sofrerão alterações e que 81% das ZEEs apresentarão alterações em pelo menos um estoque. A magnitude de tal deslocamento será refletida por uma mudança média de 59% na proporção de capturas de estoques transfronteiriços entre ZEEs vizinhas no ano de 2030. Muitos países que são altamente dependentes da pesca para subsistência e segurança alimentar surgem como pontos críticos para mudanças transfronteiriças. Estes são caracterizados por mudanças iniciais na distribuição de um número importante de estoques transfronteiriços. Os acordos internacionais de pesca precisam ser avaliados quanto à sua capacidade de abordar as implicações sócio-ecológicas de deslocamentos transfronteiriços impulsionados pelas mudanças climáticas e ajustados para limitar um possível conflito entre as partes de interesse. Da mesma forma, novos acordos devem considerar possíveis mudanças na distribuição de populações transfronteiriças a fim de antecipar tais conflitos e construir resiliência em face das mudanças climáticas e das incertezas que as acompanha.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Cambio Climático , Ecosistema , Peces , Océanos y Mares
5.
Glob Chang Biol ; 28(4): 1315-1331, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34902203

RESUMEN

The sustainability of global seafood supply to meet increasing demand is facing several challenges, including increasing consumption levels due to a growing human population, fisheries resources over-exploitation and climate change. Whilst growth in seafood production from capture fisheries is limited, global mariculture production is expanding. However, climate change poses risks to the potential seafood production from mariculture. Here, we apply a global mariculture production model that accounts for changing ocean conditions, suitable marine area for farming, fishmeal and fish oil production, farmed species dietary demand, farmed fish price and global seafood demand to project mariculture production under two climate and socio-economic scenarios. We include 85 farmed marine fish and mollusc species, representing about 70% of all mariculture production in 2015. Results show positive global mariculture production changes by the mid and end of the 21st century relative to the 2000s under the SSP1-2.6 scenario with an increase of 17%±5 and 33%±6, respectively. However, under the SSP5-8.5 scenario, an increase of 8%±5 is projected, with production peaking by mid-century and declining by 16%±5 towards the end of the 21st century. More than 25% of mariculture-producing nations are projected to lose 40%-90% of their current mariculture production potential under SSP5-8.5 by mid-century. Projected impacts are mainly due to the direct ocean warming effects on farmed species and suitable marine areas, and the indirect impacts of changing availability of forage fishes supplies to produce aquafeed. Fishmeal replacement with alternative protein can lower climate impacts on a subset of finfish production. However, such adaptation measures do not apply to regions dominated by non-feed-based farming (i.e. molluscs) and regions losing substantial marine areas suitable for mariculture. Our study highlights the importance of strong mitigation efforts and the need for different climate adaptation options tailored to the diversity of mariculture systems, to support climate-resilient mariculture development.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras , Aclimatación , Animales , Dieta , Peces , Humanos
6.
Glob Chang Biol ; 28(21): 6254-6267, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36047439

RESUMEN

Rebuilding overexploited marine populations is an important step to achieve the United Nations' Sustainable Development Goal 14-Life Below Water. Mitigating major human pressures is required to achieve rebuilding goals. Climate change is one such key pressure, impacting fish and invertebrate populations by changing their biomass and biogeography. Here, combining projection from a dynamic bioclimate envelope model with published estimates of status of exploited populations from a catch-based analysis, we analyze the effects of different global warming and fishing levels on biomass rebuilding for the exploited species in 226 marine ecoregions of the world. Fifty three percent (121) of the marine ecoregions have significant (at 5% level) relationship between biomass and global warming level. Without climate change and under a target fishing mortality rate relative to the level required for maximum sustainable yield of 0.75, we project biomass rebuilding of 1.7-2.7 times (interquartile range) of current (average 2014-2018) levels across marine ecoregions. When global warming level is at 1.5 and 2.6°C, respectively, such biomass rebuilding drops to 1.4-2.0 and 1.1-1.5 times of current levels, with 10% and 25% of the ecoregions showing no biomass rebuilding, respectively. Marine ecoregions where biomass rebuilding is largely impacted by climate change are in West Africa, the Indo-Pacific, the central and south Pacific, and the Eastern Tropical Pacific. Coastal communities in these ecoregions are highly dependent on fisheries for livelihoods and nutrition security. Lowering the targeted fishing level and keeping global warming below 1.5°C are projected to enable more climate-sensitive ecoregions to rebuild biomass. However, our findings also underscore the need to resolve trade-offs between climate-resilient biomass rebuilding and the high near-term demand for seafood to support the well-being of coastal communities across the tropics.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biomasa , Explotaciones Pesqueras , Peces , Humanos , Agua
7.
Proc Natl Acad Sci U S A ; 116(26): 12907-12912, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186360

RESUMEN

While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.


Asunto(s)
Biomasa , Cambio Climático , Océanos y Mares , Animales , Organismos Acuáticos/fisiología , Explotaciones Pesqueras/estadística & datos numéricos , Peces/fisiología , Cadena Alimentaria , Modelos Teóricos
8.
Ecol Lett ; 24(12): 2563-2575, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34469020

RESUMEN

Arctic sea ice loss has direct consequences for predators. Climate-driven distribution shifts of native and invasive prey species may exacerbate these consequences. We assessed potential changes by modelling the prey base of a widely distributed Arctic predator (ringed seal; Pusa hispida) in a sentinel area for change (Hudson Bay) under high- and low-greenhouse gas emission scenarios from 1950 to 2100. All changes were relatively negligible under the low-emission scenario, but under the high-emission scenario, we projected a 50% decline in the abundance of the well-distributed, ice-adapted and energy-rich Arctic cod (Boreogadus saida) and an increase in the abundance of smaller temperate-associated fish in southern and coastal areas. Furthermore, our model predicted that all fish species declined in mean body size, but a 29% increase in total prey biomass. Declines in energy-rich prey and restrictions in their spatial range are likely to have cascading effects on Arctic predators.


Asunto(s)
Cambio Climático , Phocidae , Animales , Regiones Árticas , Peces , Cubierta de Hielo
9.
Glob Chang Biol ; 27(11): 2608-2622, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33660891

RESUMEN

Climate change impacts on marine life in the world ocean are expected to accelerate over the 21st century, affecting the structure and functioning of food webs. We analyzed a key aspect of this issue, focusing on the impact of changes in biomass flow within marine food webs and the resulting effects on ecosystem biomass and production. We used a modeling framework based on a parsimonious quasi-physical representation of biomass flow through the food web, to explore the future of marine consumer biomass and production at the global scale over the 21st century. Biomass flow is determined by three climate-related factors: primary production entering the food web, trophic transfer efficiency describing losses in biomass transfers from one trophic level (TL) to the next, and flow kinetic measuring the speed of biomass transfers within the food web. Using climate projections of three earth system models, we calculated biomass and production at each TL on a 1° latitude ×1° longitude grid of the global ocean under two greenhouse gas emission scenarios. We show that the alterations of the trophic functioning of marine ecosystems, mainly driven by faster and less efficient biomass transfers and decreasing primary production, would lead to a projected decline in total consumer biomass by 18.5% by 2090-2099 relative to 1986-2005 under the "no mitigation policy" scenario. The projected decrease in transfer efficiency is expected to amplify impacts at higher TLs, leading to a 21.3% decrease in abundance of predators and thus to a change in the overall trophic structure of marine ecosystems. Marine animal production is also projected to decline but to a lesser extent than biomass. Our study highlights that the temporal and spatial projected changes in biomass and production would imply direct repercussions on the future of world fisheries and beyond all services provided by Ocean.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biomasa , Cambio Climático , Explotaciones Pesqueras
10.
Glob Chang Biol ; 27(7): 1457-1469, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33347684

RESUMEN

We explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a "no mitigation" scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine-protected areas in a changing ocean.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Océano Atlántico , Humanos , Paris , Estaciones del Año
11.
Glob Chang Biol ; 26(3): 1306-1318, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31802576

RESUMEN

Sea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life-history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the 'no effective mitigation' representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Animales , Biomasa , Ecosistema , Explotaciones Pesqueras , Peces , Océanos y Mares
12.
Glob Chang Biol ; 26(4): 2134-2148, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32037631

RESUMEN

Previous studies have focused on changes in the geographical distribution of terrestrial biomes and species targeted by marine capture fisheries due to climate change impacts. Given mariculture's substantial contribution to global seafood production and its growing significance in recent decades, it is essential to evaluate the effects of climate change on mariculture and their socio-economic consequences. Here, we projected climate change impacts on the marine aquaculture diversity for 85 of the currently most commonly farmed fish and invertebrate species in the world's coastal and/or open ocean areas. Results of ensemble projections from three Earth system models and three species distribution models show that climate change may lead to a substantial redistribution of mariculture species richness potential, with an average of 10%-40% decline in the number of species being potentially suitable to be farmed in tropical to subtropical regions. In contrast, mariculture species richness potential is projected to increase by about 40% at higher latitudes under the 'no mitigation policy' scenario (RCP 8.5) by the mid-21st century. In Exclusive Economic Zones where mariculture is currently undertaken, we projected an average future decline of 1.3% and 5% in mariculture species richness potential under RCP 2.6 ('strong mitigation') and RCP 8.5 scenarios, respectively, by the 2050s relative to the 2000s. Our findings highlight the opportunities and challenges for climate adaptation in the mariculture sector through the redistribution of farmed species and expansion of mariculture locations. Our results can help inform adaptation planning and governance mechanisms to minimize local environmental impacts and potential conflicts with other marine and coastal sectors in the future.

13.
Glob Chang Biol ; 26(7): 3891-3905, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32378286

RESUMEN

Large-scale and long-term changes in fish abundance and distribution in response to climate change have been simulated using both statistical and process-based models. However, national and regional fisheries management requires also shorter term projections on smaller spatial scales, and these need to be validated against fisheries data. A 26-year time series of fish surveys with high spatial resolution in the North-East Atlantic provides a unique opportunity to assess the ability of models to correctly simulate the changes in fish distribution and abundance that occurred in response to climate variability and change. We use a dynamic bioclimate envelope model forced by physical-biogeochemical output from eight ocean models to simulate changes in fish abundance and distribution at scales down to a spatial resolution of 0.5°. When comparing with these simulations with annual fish survey data, we found the largest differences at the 0.5° scale. Differences between fishery model runs driven by different biogeochemical models decrease dramatically when results are aggregated to larger scales (e.g. the whole North Sea), to total catches rather than individual species or when the ensemble mean instead of individual simulations are used. Recent improvements in the fidelity of biogeochemical models translate into lower error rates in the fisheries simulations. However, predictions based on different biogeochemical models are often more similar to each other than they are to the survey data, except for some pelagic species. We conclude that model results can be used to guide fisheries management at larger spatial scales, but more caution is needed at smaller scales.


Asunto(s)
Explotaciones Pesqueras , Peces , Animales , Cambio Climático , Ecosistema , Mar del Norte
14.
Glob Chang Biol ; 26(11): 6168-6179, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32970390

RESUMEN

Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assumptions regarding the biological cycling of iron, which is the main limiting resource for NPP over large parts of the ocean. In this study, we show that the climate change trends in NPP and the biomass of upper trophic levels are strongly affected by modifying assumptions associated with phytoplankton iron uptake. Using a suite of model experiments, we find 21st century climate change impacts on regional NPP range from -12.3% to +2.4% under a high emissions climate change scenario. This wide range arises from variations in the efficiency of iron retention in the upper ocean in the eastern equatorial Pacific across different scenarios of biological iron uptake, which affect the strength of regional iron limitation. Those scenarios where nitrogen limitation replaced iron limitation showed the largest projected NPP declines, while those where iron limitation was more resilient displayed little future change. All model scenarios have similar skill in reproducing past inter-annual variations in regional ocean NPP, largely due to limited change in the historical period. Ultimately, projections of end of century upper trophic level biomass change are altered by 50%-80% across all plausible scenarios. Overall, we find that uncertainties in the biological iron cycle cascade through open ocean pelagic ecosystems, from plankton to fish, affecting their evolution under climate change. This highlights additional challenges to developing effective conservation and fisheries management policies under climate change.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biomasa , Explotaciones Pesqueras , Hierro
15.
Glob Chang Biol ; 26(9): 4664-4678, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32531093

RESUMEN

Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep-ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep-sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep-seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full-cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth-System Model projections of climate-change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep-seabed mining. Models that combine climate-induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep-seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral-related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep-ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.


Asunto(s)
Cambio Climático , Ecosistema , Biodiversidad , Humanos , Minerales , Minería , Océanos y Mares
16.
Proc Natl Acad Sci U S A ; 114(8): E1441-E1449, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28115722

RESUMEN

Photosynthesis fuels marine food webs, yet differences in fish catch across globally distributed marine ecosystems far exceed differences in net primary production (NPP). We consider the hypothesis that ecosystem-level variations in pelagic and benthic energy flows from phytoplankton to fish, trophic transfer efficiencies, and fishing effort can quantitatively reconcile this contrast in an energetically consistent manner. To test this hypothesis, we enlist global fish catch data that include previously neglected contributions from small-scale fisheries, a synthesis of global fishing effort, and plankton food web energy flux estimates from a prototype high-resolution global earth system model (ESM). After removing a small number of lightly fished ecosystems, stark interregional differences in fish catch per unit area can be explained (r = 0.79) with an energy-based model that (i) considers dynamic interregional differences in benthic and pelagic energy pathways connecting phytoplankton and fish, (ii) depresses trophic transfer efficiencies in the tropics and, less critically, (iii) associates elevated trophic transfer efficiencies with benthic-predominant systems. Model catch estimates are generally within a factor of 2 of values spanning two orders of magnitude. Climate change projections show that the same macroecological patterns explaining dramatic regional catch differences in the contemporary ocean amplify catch trends, producing changes that may exceed 50% in some regions by the end of the 21st century under high-emissions scenarios. Models failing to resolve these trophodynamic patterns may significantly underestimate regional fisheries catch trends and hinder adaptation to climate change.


Asunto(s)
Explotaciones Pesqueras/estadística & datos numéricos , Adaptación Fisiológica/fisiología , Animales , Cambio Climático/estadística & datos numéricos , Ecosistema , Peces/fisiología , Cadena Alimentaria , Modelos Biológicos , Océanos y Mares , Plancton/fisiología
17.
Glob Chang Biol ; 25(2): 459-472, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30408274

RESUMEN

Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio-economic impacts on ecosystem services, marine fisheries, and fishery-dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%-30% (±12%-17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%-80% (±35%-200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size-classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.


Asunto(s)
Organismos Acuáticos/fisiología , Biomasa , Cambio Climático , Ecosistema , Océanos y Mares , Animales , Tamaño Corporal , Modelos Biológicos
18.
Nature ; 497(7449): 365-8, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23676754

RESUMEN

Marine fishes and invertebrates respond to ocean warming through distribution shifts, generally to higher latitudes and deeper waters. Consequently, fisheries should be affected by 'tropicalization' of catch (increasing dominance of warm-water species). However, a signature of such climate-change effects on global fisheries catch has so far not been detected. Here we report such an index, the mean temperature of the catch (MTC), that is calculated from the average inferred temperature preference of exploited species weighted by their annual catch. Our results show that, after accounting for the effects of fishing and large-scale oceanographic variability, global MTC increased at a rate of 0.19 degrees Celsius per decade between 1970 and 2006, and non-tropical MTC increased at a rate of 0.23 degrees Celsius per decade. In tropical areas, MTC increased initially because of the reduction in the proportion of subtropical species catches, but subsequently stabilized as scope for further tropicalization of communities became limited. Changes in MTC in 52 large marine ecosystems, covering the majority of the world's coastal and shelf areas, are significantly and positively related to regional changes in sea surface temperature. This study shows that ocean warming has already affected global fisheries in the past four decades, highlighting the immediate need to develop adaptation plans to minimize the effect of such warming on the economy and food security of coastal communities, particularly in tropical regions.


Asunto(s)
Ecosistema , Explotaciones Pesqueras/estadística & datos numéricos , Peces/clasificación , Peces/fisiología , Calentamiento Global/estadística & datos numéricos , Agua de Mar , Temperatura , Adaptación Fisiológica/fisiología , Animales , Conservación de los Recursos Naturales/estadística & datos numéricos , Explotaciones Pesqueras/economía , Explotaciones Pesqueras/historia , Abastecimiento de Alimentos/estadística & datos numéricos , Mapeo Geográfico , Calentamiento Global/economía , Calentamiento Global/historia , Calentamiento Global/prevención & control , Historia del Siglo XX , Historia del Siglo XXI , Internacionalidad , Océanos y Mares , Dinámica Poblacional , Especificidad de la Especie , Clima Tropical
19.
Glob Chang Biol ; 24(2): e719-e731, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28948655

RESUMEN

Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. As climate change is already impacting marine biodiversity and fisheries, there is an urgent need to expand vulnerability assessment to cover a large number of species and areas. Here, we develop a modelling approach to synthesize data on species-specific estimates of exposure, and ecological and biological traits to undertake an assessment of vulnerability (sensitivity and adaptive capacity) and risk of impacts (combining exposure to hazards and vulnerability) of climate change (including ocean acidification) for global marine fishes and invertebrates. We use a fuzzy logic approach to accommodate the variability in data availability and uncertainties associated with inferring vulnerability levels from climate projections and species' traits. Applying the approach to estimate the relative vulnerability and risk of impacts of climate change in 1074 exploited marine species globally, we estimated their index of vulnerability and risk of impacts to be on average 52 ± 19 SD and 66 ± 11 SD, scaling from 1 to 100, with 100 being the most vulnerable and highest risk, respectively, under the 'business-as-usual' greenhouse gas emission scenario (Representative Concentration Pathway 8.5). We identified 157 species to be highly vulnerable while 294 species are identified as being at high risk of impacts. Species that are most vulnerable tend to be large-bodied endemic species. This study suggests that the fuzzy logic framework can help estimate climate vulnerabilities and risks of exploited marine species using publicly and readily available information.


Asunto(s)
Cambio Climático , Lógica Difusa , Modelos Biológicos , Animales , Biodiversidad , Explotaciones Pesqueras , Concentración de Iones de Hidrógeno , Invertebrados , Especificidad de la Especie
20.
Glob Chang Biol ; 24(1): e15-e26, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28833977

RESUMEN

One of the main expected responses of marine fishes to ocean warming is decrease in body size, as supported by evidence from empirical data and theoretical modeling. The theoretical underpinning for fish shrinking is that the oxygen supply to large fish size cannot be met by their gills, whose surface area cannot keep up with the oxygen demand by their three-dimensional bodies. However, Lefevre et al. (Global Change Biology, 2017, 23, 3449-3459) argue against such theory. Here, we re-assert, with the Gill-Oxygen Limitation Theory (GOLT), that gills, which must retain the properties of open surfaces because their growth, even while hyperallometric, cannot keep up with the demand of growing three-dimensional bodies. Also, we show that a wide range of biological features of fish and other water-breathing organisms can be understood when gill area limitation is used as an explanation. We also note that an alternative to GOLT, offering a more parsimonious explanation for these features of water-breathers has not been proposed. Available empirical evidence corroborates predictions of decrease in body sizes under ocean warming based on GOLT, with the magnitude of the predicted change increases when using more species-specific parameter values of metabolic scaling.


Asunto(s)
Tamaño Corporal/fisiología , Cambio Climático , Peces/fisiología , Animales , Peces/anatomía & histología , Modelos Biológicos , Consumo de Oxígeno , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA