Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Clin Genet ; 105(5): 581-583, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38379111

RESUMEN

A case of mosaic MTOR-associated hemimegalencephaly and hypomelanosis of Ito, died at 33 probably because of sudden unexpected death in epilepsy. Assessment of the variant allele fraction (VAF) in different tissues postmortem showed high variability not correlated with clinical features, representing the most detailed assessment of VAFs in different tissues to date.


Asunto(s)
Hipopigmentación , Humanos , Hipopigmentación/genética , Alelos , Autopsia , Serina-Treonina Quinasas TOR
2.
J Med Genet ; 61(1): 36-46, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37586840

RESUMEN

PURPOSE: Wide access to clinical exome/genome sequencing (ES/GS) enables the identification of multiple molecular diagnoses (MMDs), being a long-standing but underestimated concept, defined by two or more causal loci implicated in the phenotype of an individual with a rare disease. Only few series report MMDs rates (1.8% to 7.1%). This study highlights the increasing role of MMDs in a large cohort of individuals addressed for congenital anomalies/intellectual disability (CA/ID). METHODS: From 2014 to 2021, our diagnostic laboratory rendered 880/2658 positive ES diagnoses for CA/ID aetiology. Exhaustive search on MMDs from ES data was performed prospectively (January 2019 to December 2021) and retrospectively (March 2014 to December 2018). RESULTS: MMDs were identified in 31/880 individuals (3.5%), responsible for distinct (9/31) or overlapping (22/31) phenotypes, and potential MMDs in 39/880 additional individuals (4.4%). CONCLUSION: MMDs are frequent in CA/ID and remain a strong challenge. Reanalysis of positive ES data appears essential when phenotypes are partially explained by the initial diagnosis or atypically enriched overtime. Up-to-date clinical data, clinical expertise from the referring physician, strong interactions between clinicians and biologists, and increasing gene discoveries and improved ES bioinformatics tools appear all the more fundamental to enhance chances of identifying MMDs. It is essential to provide appropriate patient care and genetic counselling.


Asunto(s)
Discapacidad Intelectual , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Estudios Retrospectivos , Fenotipo , Secuenciación del Exoma , Enfermedades Raras/genética
3.
Genet Med ; 25(7): 100835, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36999555

RESUMEN

PURPOSE: Miller-Dieker syndrome is caused by a multiple gene deletion, including PAFAH1B1 and YWHAE. Although deletion of PAFAH1B1 causes lissencephaly unambiguously, deletion of YWHAE alone has not clearly been linked to a human disorder. METHODS: Cases with YWHAE variants were collected through international data sharing networks. To address the specific impact of YWHAE loss of function, we phenotyped a mouse knockout of Ywhae. RESULTS: We report a series of 10 individuals with heterozygous loss-of-function YWHAE variants (3 single-nucleotide variants and 7 deletions <1 Mb encompassing YWHAE but not PAFAH1B1), including 8 new cases and 2 follow-ups, added with 5 cases (copy number variants) from literature review. Although, until now, only 1 intragenic deletion has been described in YWHAE, we report 4 new variants specifically in YWHAE (3 splice variants and 1 intragenic deletion). The most frequent manifestations are developmental delay, delayed speech, seizures, and brain malformations, including corpus callosum hypoplasia, delayed myelination, and ventricular dilatation. Individuals with variants affecting YWHAE alone have milder features than those with larger deletions. Neuroanatomical studies in Ywhae-/- mice revealed brain structural defects, including thin cerebral cortex, corpus callosum dysgenesis, and hydrocephalus paralleling those seen in humans. CONCLUSION: This study further demonstrates that YWHAE loss-of-function variants cause a neurodevelopmental disease with brain abnormalities.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Discapacidad Intelectual , Lisencefalia , Trastornos del Neurodesarrollo , Humanos , Animales , Ratones , Encéfalo/anomalías , Lisencefalia/genética , Discapacidad Intelectual/genética , Proteínas 14-3-3/genética
4.
Clin Genet ; 104(5): 554-563, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580112

RESUMEN

The PIK3CA-related overgrowth spectrum (PROS) encompasses various conditions caused by mosaic activating PIK3CA variants. PIK3CA somatic variants are also involved in various cancer types. Some generalized overgrowth syndromes are associated with an increased risk of Wilms tumor (WT). In PROS, abdominal ultrasound surveillance has been advocated to detect WT. We aimed to determine the risk of embryonic and other types of tumors in patients with PROS in order to evaluate surveillance relevance. We searched the clinical charts from 267 PROS patients for the diagnosis of cancer, and reviewed the medical literature for the risk of cancer. In our cohort, six patients developed a cancer (2.2%), and Kaplan Meier analyses estimated cumulative probabilities of cancer occurrence at 45 years of age was 5.6% (95% CI = 1.35%-21.8%). The presence of the PIK3CA variant was only confirmed in two out of four tumor samples. In the literature and our cohort, six cases of Wilms tumor/nephrogenic rests (0.12%) and four cases of other cancers have been reported out of 483 proven PIK3CA patients, in particular the p.(His1047Leu/Arg) variant. The risk of WT in PROS being lower than 5%, this is insufficient evidence to recommend routine abdominal imaging. Long-term follow-up studies are needed to evaluate the risk of other cancer types, as well as the relationship with the extent of tissue mosaicism and the presence or not of the variant in the tumor samples.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Mutación , Detección Precoz del Cáncer , Trastornos del Crecimiento/diagnóstico , Tumor de Wilms/diagnóstico , Tumor de Wilms/epidemiología , Tumor de Wilms/genética , Fosfatidilinositol 3-Quinasa Clase I/genética
5.
Genet Med ; 23(8): 1484-1491, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833411

RESUMEN

PURPOSE: Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. METHODS: From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. RESULTS: MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. CONCLUSION: MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex.


Asunto(s)
Hipopigmentación , Megalencefalia , Humanos , Hipopigmentación/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mosaicismo , Fenotipo , Serina-Treonina Quinasas TOR/genética
6.
Genet Med ; 23(10): 1901-1911, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34113008

RESUMEN

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. RESULTS: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. CONCLUSION: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.


Asunto(s)
Epilepsia , Factores de Intercambio de Guanina Nucleótido , Haploinsuficiencia , Discapacidad Intelectual , Epilepsia/genética , Factores de Intercambio de Guanina Nucleótido/genética , Heterocigoto , Humanos , Discapacidad Intelectual/genética
7.
Clin Genet ; 99(3): 407-417, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33277917

RESUMEN

White-Sutton syndrome is a rare developmental disorder characterized by global developmental delay, intellectual disabilities (ID), and neurobehavioral abnormalities secondary to pathogenic pogo transposable element-derived protein with zinc finger domain (POGZ) variants. The purpose of our study was to describe the neurocognitive phenotype of an unbiased national cohort of patients with identified POGZ pathogenic variants. This study is based on a French collaboration through the AnDDI-Rares network, and includes 19 patients from 18 families with POGZ pathogenic variants. All clinical data and neuropsychological tests were collected from medical files. Among the 19 patients, 14 patients exhibited ID (six mild, five moderate and three severe). The five remaining patients had learning disabilities and shared a similar neurocognitive profile, including language difficulties, dysexecutive syndrome, attention disorders, slowness, and social difficulties. One patient evaluated for autism was found to have moderate autism spectrum disorder. This study reveals that the cognitive phenotype of patients with POGZ pathogenic variants can range from learning disabilities to severe ID. It highlights that pathogenic variations in the same genes can be reported in a large spectrum of neurocognitive profiles, and that children with learning disabilities could benefit from next generation sequencing techniques.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo/genética , Variación Genética , Discapacidad Intelectual/genética , Trastornos Neurocognitivos/genética , Transposasas/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Francia , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación , Pruebas Neuropsicológicas , Fenotipo , Adulto Joven
8.
J Med Genet ; 57(7): 466-474, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32277047

RESUMEN

PURPOSE: Marfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan-Fryns syndrome explain no more than 20% of subjects. METHODS: To further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic. RESULTS: We identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, EHMT1, ZEB2 and ATP1A1) met conservative Bonferroni genomewide significance for an excess of the observed de novo point variants. Overall, at least one pathogenic or likely pathogenic variant was identified in 54.7% of subjects (35/64). These variants fell within 27 genes previously associated with Mendelian disorders, including NSD1 and NFIX, which are known to be mutated in overgrowth syndromes. CONCLUSION: We demonstrated that DNVs were enriched in chromatin remodelling (p=2×10-4) and genes regulated by the fragile X mental retardation protein (p=3×10-8), highlighting overlapping genetic mechanisms between MHID and related neurodevelopmental disorders.


Asunto(s)
Anomalías Craneofaciales/genética , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Síndrome de Marfan/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Factores de Transcripción NFI/genética , Adolescente , Adulto , Niño , Ensamble y Desensamble de Cromatina , Anomalías Craneofaciales/patología , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Discapacidad Intelectual/patología , Masculino , Síndrome de Marfan/patología , Discapacidad Intelectual Ligada al Cromosoma X/patología , Persona de Mediana Edad , Mutación/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Secuenciación del Exoma , Adulto Joven
9.
J Med Genet ; 57(12): 808-819, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32409512

RESUMEN

INTRODUCTION: Pigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko's lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 (TFE3) have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions. MATERIALS AND METHODS: Subsequent data sharing allowed the clustering of de novo TFE3 variants identified by exome sequencing on DNA extracted from leucocytes in patients referred for syndromic ID with or without PM. RESULTS: We describe the detailed clinical and molecular data of 17 individuals harbouring a de novo TFE3 variant, including the patients that initially allowed reporting TFE3 as a new disease-causing gene. The 12 females and 5 males presented with pigmentation anomalies on Blaschko's lines, severe ID, epilepsy, storage disorder-like features, growth retardation and recognisable facial dysmorphism. The variant was at a mosaic state in at least two male patients. All variants were missense except one splice variant. Eleven of the 13 variants were localised in exon 4, 2 in exon 3, and 3 were recurrent variants. CONCLUSION: This series further delineates the specific storage disorder-like phenotype with PM ascribed to de novo TFE3 mutation in exons 3 and 4. It confirms the identification of a novel X-linked human condition associated with mosaicism and dysregulation within the mechanistic target of rapamycin (mTOR) pathway, as well as a link between lysosomal signalling and human development.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Trastornos de la Pigmentación/genética , Adolescente , Adulto , Niño , Preescolar , Epilepsia/complicaciones , Epilepsia/patología , Femenino , Genes Ligados a X/genética , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/patología , Masculino , Mosaicismo , Patología Molecular/normas , Trastornos de la Pigmentación/complicaciones , Trastornos de la Pigmentación/patología , Secuenciación del Exoma , Adulto Joven
10.
Am J Med Genet C Semin Med Genet ; 184(1): 129-135, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31965688

RESUMEN

PRDM16 (positive regulatory domain 16) is localized in the critical region for cardiomyopathy in patients with deletions of chromosome 1p36, as defined by Gajecka et al., American Journal of Medical Genetics, 2010, 152A, 3074-3083, and encodes a zinc finger transcription factor. We present the first fetal case of left ventricular non-compaction (LVNC) with a PRDM16 variant. The third-trimester obstetric ultrasound revealed a hydropic fetus with hydramnios and expanded hypokinetic heart. After termination of pregnancy, foetopathology showed a eutrophic fetus with isolated cardiomegaly. Endocardial fibroelastosis was associated with non-compaction of the myocardium of the left ventricle. Exome sequencing (ES) identified a de novo unreported p.(Gln353*) heterozygous nonsense variant in PRDM16. ES also identified two rare variants of unknown significance, according to the American College of Medical Genetics and Genomics guidelines, in the titin gene (TTN): a de novo missense p.(Lys14773Asn) variant and a c.33043+5A>G variant inherited from the mother. Along with the PRDM16 de novo probably pathogenic variant, TTN VOUS variants could possibly contribute to the severity and early onset of the cardiac phenotype. Because of the genetic heterogeneity of cardiomyopathies, large panels or even ES could be considered as the main approaches for the molecular diagnosis, particularly in fetal presentations, where multiple hits seem to be common.


Asunto(s)
Cardiomiopatías/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Factores de Transcripción/genética , Adulto , Cardiomiopatías/diagnóstico , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/patología , Femenino , Genes Modificadores/genética , Heterogeneidad Genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/patología , Humanos , Recién Nacido , Presentación en Trabajo de Parto , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Embarazo , Secuenciación del Exoma
11.
Hum Genet ; 139(11): 1381-1390, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32399599

RESUMEN

Developmental disorders (DD), characterized by malformations/dysmorphism and/or intellectual disability, affecting around 3% of worldwide population, are mostly linked to genetic anomalies. Despite clinical exome sequencing (cES) centered on genes involved in human genetic disorders, the majority of patients affected by DD remain undiagnosed after solo-cES. Trio-based strategy is expected to facilitate variant selection thanks to rapid parental segregation. We performed a second step trio-ES (not only focusing on genes involved in human disorders) analysis in 70 patients with negative results after solo-cES. All candidate variants were shared with a MatchMaking exchange system to identify additional patients carrying variants in the same genes and with similar phenotype. In 18/70 patients (26%), we confirmed causal implication of nine OMIM-morbid genes and identified nine new strong candidate genes (eight de novo and one compound heterozygous variants). These nine new candidate genes were validated through the identification of patients with similar phenotype and genotype thanks to data sharing. Moreover, 11 genes harbored variants of unknown significance in 10/70 patients (14%). In DD, a second step trio-based ES analysis appears an efficient strategy in diagnostic and translational research to identify highly candidate genes and improve diagnostic yield.


Asunto(s)
Discapacidades del Desarrollo/genética , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Discapacidad Intelectual/genética , Femenino , Genómica/métodos , Humanos , Masculino , Fenotipo , Secuenciación del Exoma/métodos
12.
Biochem Biophys Res Commun ; 530(3): 520-526, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32620236

RESUMEN

PIK3CA-related overgrowth spectrum is caused by mosaicism mutations in the PIK3CA gene. These mutations, which are also observed in various types of cancer, lead to a constitutive activation of the PI3K/AKT/mTOR pathway, increasing cell proliferation. Heat shock transcription factor 1 (HSF1) is the major stress-responsive transcription factor. Recent findings indicate that AKT phosphorylates and activates HSF1 independently of heat-shock in breast cancer cells. Here, we aimed to investigate the role of HSF1 in PIK3CA-related overgrowth spectrum. We observed a higher rate of proliferation and increased phosphorylation of AKT and p70S6K in mutant fibroblasts than in control cells. We also found elevated phosphorylation and activation of HSF1, which is directly correlated to AKT activation. Specific AKT inhibitors inhibit HSF1 phosphorylation as well as HSF1-dependent gene transcription. Finally, we demonstrated that targeting HSF1 with specific inhibitors reduced the proliferation of mutant cells. As there is currently no curative treatment for PIK3CA-related overgrowth spectrum, our results identify HSF1 as a new potential therapeutic target.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Descubrimiento de Drogas , Factores de Transcripción del Choque Térmico/antagonistas & inhibidores , Lipoma/metabolismo , Anomalías Musculoesqueléticas/metabolismo , Nevo/metabolismo , Malformaciones Vasculares/metabolismo , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Lipoma/tratamiento farmacológico , Lipoma/genética , Lipoma/patología , Terapia Molecular Dirigida , Anomalías Musculoesqueléticas/tratamiento farmacológico , Anomalías Musculoesqueléticas/genética , Anomalías Musculoesqueléticas/patología , Mutación , Nevo/tratamiento farmacológico , Nevo/genética , Nevo/patología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Malformaciones Vasculares/tratamiento farmacológico , Malformaciones Vasculares/genética , Malformaciones Vasculares/patología
13.
Genet Med ; 21(11): 2504-2511, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31036916

RESUMEN

PURPOSE: Next-generation sequencing has revealed the major impact of de novo variants (DNVs) in developmental disorders (DD) such as intellectual disability, autism, and epilepsy. However, a substantial fraction of these predicted pathogenic DNVs remains challenging to distinguish from background DNVs, notably the missense variants acting via nonhaploinsufficient mechanisms on specific amino acid residues. We hypothesized that the detection of the same missense variation in at least two unrelated individuals presenting with a similar phenotype could be a powerful approach to reveal novel pathogenic variants. METHODS: We looked for variations independently present in both our database of >1200 solo exomes and in denovo-db, a large, publicly available collection of de novo variants identified in patients with DD. RESULTS: This approach identified 30 variants with strong evidence of pathogenicity, including variants already classified as pathogenic or probably pathogenic by our team, and also several new variants of interest in known OMIM genes or in novel genes. We identified FEM1B and GNAI2 as good candidate genes for syndromic intellectual disability and confirmed the implication of ACTL6B in a neurodevelopmental disorder. CONCLUSION: Annotation of local variants with denovo-db can highlight missense variants with high potential for pathogenicity, both facilitating the time-consuming reanalysis process and allowing novel DD gene discoveries.


Asunto(s)
Pruebas Genéticas/métodos , Genómica/métodos , Trastornos del Neurodesarrollo/genética , Trastorno Autístico/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Discapacidades del Desarrollo/genética , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación Missense/genética , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/genética
15.
Genet Med ; 20(6): 645-654, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29095811

RESUMEN

PurposeCongenital anomalies and intellectual disability (CA/ID) are a major diagnostic challenge in medical genetics-50% of patients still have no molecular diagnosis after a long and stressful diagnostic "odyssey." Solo clinical whole-exome sequencing (WES) was applied in our genetics center to improve diagnosis in patients with CA/ID.MethodsThis retrospective study examined 416 consecutive tests performed over 3 years to demonstrate the effectiveness of periodically reanalyzing WES data. The raw data from each nonpositive test was reanalyzed at 12 months with the most recent pipeline and in the light of new data in the literature. The results of the reanalysis for patients enrolled in the third year are not yet available.ResultsOf the 416 patients included, data for 156 without a diagnosis were reanalyzed. We obtained 24 (15.4%) additional diagnoses: 12 through the usual diagnostic process (7 new publications, 4 initially misclassified, and 1 copy-number variant), and 12 through translational research by international data sharing. The final yield of positive results was 27.9% through a strict diagnostic approach, and 2.9% through an additional research strategy.ConclusionThis article highlights the effectiveness of periodically combining diagnostic reinterpretation of clinical WES data with translational research involving data sharing for candidate genes.


Asunto(s)
Anomalías Congénitas/genética , Secuenciación del Exoma/métodos , Discapacidad Intelectual/genética , Bases de Datos Genéticas , Exoma , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Enfermedades Raras/genética , Estudios Retrospectivos , Análisis de Secuencia de ADN/métodos
17.
Eur J Hum Genet ; 32(2): 200-208, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37853102

RESUMEN

Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.


Asunto(s)
Exoma , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Benchmarking , Secuenciación del Exoma , Pruebas Genéticas/métodos
18.
Eur J Med Genet ; 66(2): 104678, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36503153

RESUMEN

BACKGROUND: Subjects with Megalencephaly-Capillary Malformation-Polymicrogyria syndrome (MCAP) can present with a Chiari Malformation Type 1 and resulting alterations in cerebrospinal fluid (CSF) dynamics, which may require surgical treatment. The aim of this paper is to describe the features of children with MCAP who underwent surgical decompression for CM1, and to explore the PIK3CA variant allele frequency (VAF) identified in cerebellar parenchyma and other adjacent structures. METHODS: This study reviewed two cases of children with CM1 and MCAP who underwent surgical decompression treatment. These two cases were part of a national cohort of 12 MCAP patients who had CM1, due to their surgical eligibility. Tissue samples were obtained from the cerebellar tonsils and adjacent anatomical structures during the surgical procedures. Samples were then subsequently analyzed for PIK3CA postzygotic variants. RESULTS: In both cases, alterations in CSF dynamics, specifically hydrocephalus and syringomyelia, were observed and required surgical treatment. PIK3CA targeted sequencing determined the VAF of the postzygotic variant in both cerebellar and adjacent bone/connective tissues. DISCUSSION: The recognition of a CM1 comorbidity in MCAP patients is of paramount importance when considering personalized treatment options, especially because these patients are at higher risk of developing complications during surgical decompression surgery. The variable PIK3CA VAF identified in the different analyzed tissues might help explain the heterogeneous nature and severity of anomalies observed in the volume of the posterior fossa structures in MCAP patients and associated CSF and venous disorders.


Asunto(s)
Malformación de Arnold-Chiari , Megalencefalia , Niño , Humanos , Mosaicismo , Malformación de Arnold-Chiari/genética , Malformación de Arnold-Chiari/cirugía , Malformación de Arnold-Chiari/complicaciones , Megalencefalia/complicaciones , Fosfatidilinositol 3-Quinasa Clase I/genética , Resultado del Tratamiento
19.
Eur J Hum Genet ; 31(7): 761-768, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36450799

RESUMEN

About 0.3% of all variants are due to de novo mobile element insertions (MEIs). The massive development of next-generation sequencing has made it possible to identify MEIs on a large scale. We analyzed exome sequencing (ES) data from 3232 individuals (2410 probands) with developmental and/or neurological abnormalities, with MELT, a tool designed to identify MEIs. The results were filtered by frequency, impacted region and gene function. Following phenotype comparison, two candidates were identified in two unrelated probands. The first mobile element (ME) was found in a patient referred for poikilodermia. A homozygous insertion was identified in the FERMT1 gene involved in Kindler syndrome. RNA study confirmed its pathological impact on splicing. The second ME was a de novo Alu insertion in the GRIN2B gene involved in intellectual disability, and detected in a patient with a developmental disorder. The frequency of de novo exonic MEIs in our study is concordant with previous studies on ES data. This project, which aimed to identify pathological MEIs in the coding sequence of genes, confirms that including detection of MEs in the ES pipeline can increase the diagnostic rate. This work provides additional evidence that ES could be used alone as a diagnostic exam.


Asunto(s)
Discapacidad Intelectual , Enfermedades Raras , Humanos , Secuenciación del Exoma , Enfermedades Raras/genética , Exones , Discapacidad Intelectual/genética , Exoma , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética
20.
Oncotarget ; 14: 111-125, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36749285

RESUMEN

In oncogenetics, some patients could be considered as "extreme phenotypes", such as those with very early onset presentation or multiple primary malignancies, unusually high numbers of cancers of the same spectrum or rare cancer types in the same parental branch. For these cases, a genetic predisposition is very likely, but classical candidate gene panel analyses often and frustratingly remains negative. In the framework of the EX2TRICAN project, exploring unresolved extreme cancer phenotypes, we applied exome sequencing on rare familial cases with male breast cancer, identifying a novel pathogenic variant of ATR (p.Leu1808*). ATR has already been suspected as being a predisposing gene to breast cancer in women. We next identified 3 additional ATR variants in a cohort of both male and female with early onset and familial breast cancers (c.7762-2A>C; c.2078+1G>A; c.1A>G). Further molecular and cellular investigations showed impacts on transcripts for variants affecting splicing sites and reduction of ATR expression and phosphorylation of the ATR substrate CHEK1. This work further demonstrates the interest of an extended genetic analysis such as exome sequencing to identify very rare variants that can play a role in cancer predisposition in extreme phenotype cancer cases unexplained by classical cancer gene panels testing.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Masculino , Alelos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Fenotipo , Fosforilación , Neoplasias de la Mama Masculina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA