Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(15): 10655-10665, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564662

RESUMEN

While Ru-catalyzed hydrogenolysis holds significant promise in converting waste polyolefins into value-added alkane fuels, a major constraint is the high cost of noble metal catalysts. In this work, we propose, for the first time, that Co-based catalysts derived from CoAl-layered double hydroxide (LDH) are alternatives for efficient polyolefin hydrogenolysis. Leveraging the chemical flexibility of the LDH platform, we reveal that metallic Co species serve as highly efficient active sites for polyolefin hydrogenolysis. Furthermore, we introduced Ni into the Co framework to tackle the issue of restricted hydrogenation ability associated with contiguous Co-Co sites. In-situ analysis indicates that the integration of Ni induces electron transfer and facilitates hydrogen spillover. This dual effect synergistically enhances the hydrogenation/desorption of olefin intermediates, resulting in a significant reduction in the yield of low-value CH4 from 27.1 to 12.6%. Through leveraging the unique properties of LDH, we have developed efficient and cost-effective catalysts for the sustainable recycling and valorization of waste polyolefin materials.

2.
J Am Chem Soc ; 146(10): 7076-7087, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38428949

RESUMEN

The present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous. Here, we have constructed stable Ru0-Ruδ+ complex species, even under reaction conditions, through surface ligand engineering of commercially available Ru/C catalysts. Our findings unequivocally demonstrate that surface-ligated Ru species can be stabilized in the form of a Ruδ+ state, which, in turn, engenders a perturbation of the σ bond electron distribution within the polyolefin carbon chain, ultimately boosting the rate-determining step of C-C scission. The optimized catalysts reach a solid conversion rate of 609 g·gRu-1·h-1 for polyethylene. This achievement represents a 4.18-fold enhancement relative to the pristine Ru/C catalyst while concurrently preserving a remarkable 94% selectivity toward valued liquid alkanes. Of utmost significance, this surface ligand engineering can be extended to the gentle mixing of catalysts in ligand solution at room temperature, thus rendering it amenable for swift integration into industrial processes involving polyolefin degradation.

3.
Phys Chem Chem Phys ; 26(33): 22286-22291, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39136548

RESUMEN

Propane dehydrogenation (PDH) is a highly efficient approach for industrial production of propylene, and the dual-atom catalysts (DACs) provide new pathways in advancing atomic catalysis for PDH with dual active sites. In this work, we have developed an efficient strategy to identify promising DACs for PDH reaction by combining high-throughput density functional theory (DFT) calculations and the machine-learning (ML) technique. By choosing the γ-Al2O3(100) surface as the substrate to anchor dual metal atoms, 435 kinds of DACs have been considered to evaluate their PDH catalytic activity. Four ML algorithms are employed to predict the PDH activity and determine the relationship between the intrinsic characteristics of DACs and the catalytic activity. The promising catalysts of CuFe, CuCo and CoZn DACs are finally screened out, which are further validated by the whole kinetic reaction calculations, and the highly efficient performance of DACs is attributed to the synergistic effects and interactions between the paired active sites.

4.
J Phys Chem A ; 128(36): 7536-7545, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39194318

RESUMEN

Graphyne has attracted considerable interest and attention since its successful synthesis, due to its enormous potential for applications in the fields of electronics, energy, catalysis, information technology, etc. Although various methods for synthesizing graphyne have been explored, single-layer graphynes have not been successfully developed. Hexaethynylbenzene (HEB) is considered an ideal precursor molecule because it can undergo Glaser coupling reactions between molecules to synthesize single layer graphdiyne on single crystal metal surfaces via on-surface reactions. Unfortunately, this method fails to achieve the expected results, and the underlying mechanism is not clear. In this work, we employed a combination of ab initio molecular dynamics (AIMD) and quantum mechanics (QM) methods to investigate the initial reaction mechanism of HEB molecules on a Au(111) surface. We revealed that HEB molecules undergo both intermolecular coupling and intramolecular cyclization on the Au(111) surface. The favorable pathways of these two types of reactions were then distinguished, confirming that the distance between the terminal carbon atoms of the ethynyl groups plays an important role in C-C coupling. The insights revealed from this work could facilitate the rational design of precursor molecules and deepen the understanding of the reaction processes.

5.
Angew Chem Int Ed Engl ; : e202411722, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39081066

RESUMEN

Thermally-induced dehydrogenative coupling of polyphenylenes on metal surfaces is an important technique to synthesize 𝜋-conjugated carbon nanostructures with atomic precision. However, this protocol has rarely been utilized to fabricate structurally defined carbon nanosheets composed of sp- and sp2-hybridized carbon atoms. Here, we present the synthesis of butadiyne-linked hexabenzocoronenes (HBCs) on Au(111) surfaces as core-expanded graphdiynes. The reaction started from hexa(4-ethylphenyl)benzene, which undergoes dehydrogenation toward hexa(4-vinylphenyl)benzene, followed by planarization to hexabenzocoronene, coupling between the vinyl groups, and further dehydrogenation. In addition to butadiyne linkages, benzene groups were also found as another type of linker. The reaction sequences were monitored by scanning tunneling microscopy and bond-resolved non-contact atomic force microscopy, which disclose the structures of intermediates and final products. In combination with density functional theory simulations, the key steps from ethyl substituents to butadiyne and benzene linkers were elucidated. This is a new on-surface synthesis of core-expanded graphdiynes with unprecedented electronic properties.

6.
J Am Chem Soc ; 145(4): 2544-2552, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661080

RESUMEN

Fashioning microporous covalent organic frameworks (COFs) into single crystals with ordered macropores allows for an effective reduction of the mass transfer resistance and the maximum preservation of their intrinsic properties but remains unexplored. Here, we report the first synthesis of three-dimensional (3D) ordered macroporous single crystals of the imine-linked 3D microporous COFs (COF-300 and COF-303) via a template-assisted modulated strategy. In this strategy, COFs crystallized within the sacrificial colloidal crystal template, assembled from monodisperse polystyrene microspheres, and underwent an aniline-modulated amorphous-to-crystalline transformation to form large single crystals with 3D interconnected macropores. The effects of the introduced macroporous structure on the sorption performances of COF-300 single crystals were further probed by iodine. Our results indicate that iodine adsorption occurred in micropores of COF-300 but not in the introduced macropores. Accordingly, the iodine adsorption capacity of COF single crystals was governed by their micropore accessibility. The relatively long diffusion path in the non-macroporous COF-300 single crystals resulted in a limited micropore accessibility (48.4%) and thus a low capacity in iodine adsorption (1.48 g·g-1). The introduction of 3D ordered macropores can greatly shorten the microporous diffusion path in COF-300 single crystals and thus render all their micropores fully accessible in iodine adsorption with a capacity (3.15 g·g-1) that coincides well with the theoretical one.

7.
J Am Chem Soc ; 145(47): 25570-25578, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37967022

RESUMEN

Effective control over the crystallization of metal-organic framework (MOF) films is of great importance not only for the performance study and optimization in related applications but also for the fundamental understanding of the involved reticular chemistry. Featuring many technological advantages, electrochemical synthesis has been extensively reported for many MOF materials but is still challenged by the production of dense oriented films with a large-range tuning of thickness. Here, we report a ligand-oxidation-based anodic strategy capable of synthesizing oriented films of two-dimensional (2D) and three-dimensional (3D) conductive M-catecholate MOFs (2D Cu3(HHTP)2, 2D Zn3(HHTP)2, 2D Co3(HHTP)2, 3D YbHHTP, and 2D Cu2TBA) with tunable thicknesses up to tens of micrometers on commonly used electrodes. This anodic strategy relies on the oxidation of redox-active catechol ligands and follows a stepwise electrochemical-chemical reaction mechanism to achieve effective control over crystallizing M-catecholate MOFs into films oriented in the [001] direction. Benefiting from the electrically conductive nature, Cu3(HHTP)2 films could be thickened at a steady rate (17.4 nm·min-1) from ∼90 nm to 10.7 µm via a growth mechanism differing from those adopted in previous electrochemical synthesis of dense MOF films with limited thickness due to the self-inhibition effect. This anodic synthesis could be further combined with a templating strategy to fabricate not only films with well-defined 2D features in sizes from micrometers to millimeters but also high aspect ratio mesostructures, such as nanorods, of Cu3(HHTP)2.

8.
J Am Chem Soc ; 145(8): 4545-4552, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36794794

RESUMEN

On-surface acetylenic homocoupling has been proposed to construct carbon nanostructures featuring sp hybridization. However, the efficiency of linear acetylenic coupling is far from satisfactory, often resulting in undesired enyne products or cyclotrimerization products due to the lack of strategies to enhance chemical selectivity. Herein, we inspect the acetylenic homocoupling reaction of polarized terminal alkynes (TAs) on Au(111) with bond-resolved scanning probe microscopy. The replacement of benzene with pyridine moieties significantly prohibits the cyclotrimerization pathway and facilitates the linear coupling to produce well-aligned N-doped graphdiyne nanowires. Combined with density functional theory calculations, we reveal that the pyridinic nitrogen modification substantially differentiates the coupling motifs at the initial C-C coupling stage (head-to-head vs head-to-tail), which is decisive for the preference of linear coupling over cyclotrimerization.

9.
Small ; 19(17): e2207111, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36599616

RESUMEN

Chirality transfer is of vital importance that dominates the structure and functionality of biological systems and living matters. External physical stimulations, e.g. polarized light and mechanical forces, can trigger the chirality symmetry breaking, leading to the appearance of the enantiomeric entities created from a chiral self-assembly of achiral molecule. Here, several 2D assemblies with different chirality, synthesized on Au(111) surface by using achiral building blocks - glycylglycine (digly), the simplest polypeptide are reported. By delicately tuning the kinetic factors, i.e., one-step slow/rapid deposition, or stepwise slow deposition with mild annealing, achiral square hydrogen-bond organic frameworks (HOF), homochiral rhombic HOF and racemic rectangular assembly are achieved, respectively. Chirality induction and related symmetry broken in assemblies are introduced by the handedness (H-bond configurations in principle) of the assembled motifs and then amplified to the entire assemblies via the interaction between motifs. The results show that the chirality transfer and induction of biological assemblies can be tuned by altering the kinetic factors instead of applying external forces, which may offer an in-depth understanding and practical approach to peptide chiral assembly on the surfaces and can further facilitate the design of desired complex biomolecular superstructures.

10.
Angew Chem Int Ed Engl ; 62(37): e202304549, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37439325

RESUMEN

Hydrophobic conjugated polymers have poor ionic transport property, so hydrophilic side chains are often grafted for their application as organic electrochemical transistors (OECTs). However, this modification lowers their charge transport ability. Here, an ionic gel interfacial layer is applied to improve the ionic transport while retaining the charge transport ability of the polymers. By using the ionic gels comprising gel matrix and ionic liquids as the interfacial layers, the hydrophobic polymer achieves the OECT feature with high transconductance, low threshold voltage, high current on/off ratio, short switching time, and high operational stability. The working mechanism is also revealed. Moreover, the OECT performance can be tuned by varying the types and ratios of ionic gels. With the proposed ionic gel strategy, OECTs can be effectively realized with hydrophobic conjugated polymers.

11.
J Am Chem Soc ; 144(18): 8214-8222, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35442656

RESUMEN

Assembly of semiconducting organic molecules with multiple aryl-metal covalent bonds into stable one- and two-dimensional (1D and 2D) metal-organic frameworks represents a promising route to the integration of single-molecule electronics in terms of structural robustness and charge transport efficiency. Although various metastable organometallic frameworks have been constructed by the extensive use of single aryl-metal bonds, it remains a great challenge to embed multiple aryl-metal bonds into these structures due to inadequate knowledge of harnessing such complex bonding motifs. Here, we demonstrate the substrate-modulated synthesis of 1D and 2D metal-organic hybrids (MOHs) with the organic building blocks (perylene) interlinked solely with multiple aryl-metal bonds via the stepwise thermal dehalogenation of 3,4,9,10-tetrabromo-1,6,7,12-tetrachloroperylene and subsequent metal-organic connection on metal surfaces. More importantly, the conversion from 1D to 2D MOHs is completely impeded on Au(111) but dominant on Ag(111). We comprehensively study the distinct reaction pathways on the two surfaces by visually tracking the structural evolution of the MOHs with high-resolution scanning tunneling and noncontact atomic force microscopy, supported by first-principles density functional theory calculations. The substrate-dependent structural control of the MOHs is attributed to the variation of the M-X (M = Au, Ag; X = C, Cl) bond strength regulated by the nature of the metal species.

12.
J Am Chem Soc ; 144(47): 21596-21605, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36383110

RESUMEN

On-surface synthesis is a powerful methodology for the fabrication of low-dimensional functional materials. The precursor molecules usually anchor on different metal surfaces via similar configurations. The activation energies are therefore solely determined by the chemical activity of the respective metal surfaces. Here, we studied the influence of the detailed adsorption configuration on the activation energy on different metal surfaces. We systematically studied the desulfonylation homocoupling for a molecular precursor on Au(111) and Ag(111) and found that the activation energy is lower on inert Au(111) than on Ag(111). Combining scanning tunneling microscopy observations, synchrotron radiation photoemission spectroscopy measurements, and density functional theory calculations, we elucidate that the phenomenon arises from different molecule-substrate interactions. The molecular precursors anchor on Au(111) via Au-S interactions, which lead to weakening of the phenyl-S bonds. On the other hand, the molecular precursors anchor on Ag(111) via Ag-O interactions, resulting in the lifting of the S atoms. As a consequence, the activation barrier of the desulfonylation reactions is higher on Ag(111), although silver is generally more chemically active than gold. Our study not only reports a new type of on-surface chemical reaction but also clarifies the influence of detailed adsorption configurations on specific on-surface chemical reactions.


Asunto(s)
Oro , Plata , Oro/química , Plata/química , Conformación Molecular , Adsorción
13.
Macromol Rapid Commun ; 43(23): e2200542, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35856411

RESUMEN

2D conducting polymer thin film recently has garnered numerous interests as a means of combining the molecular aggregate ordering and promoting in-plane charge transport for large-scale/flexible organic electronics. However, it remains far from satisfactory for conducting polymer chains to achieve desirable surface topography and crystallinity due to lack of control over the precursor-involved interfacial assembly. Herein, wafer-size polyaniline (PANI) and tetra-aniline thin films are developed via a controlled interfacial synthesis with customized surface morphology and crystallinity through two typical aniline precursors selective polymerization. Two crucial competing assembly mechanisms, a) direct interfacial polymerization, b) solution polymerization and subsequent interfacial assembly, are investigated to play a vital role in determining elemental chain length and aggregate architecture. The optimal PANI thin film manifests ultraflat surface topography and unambiguous crystalline domains, which also enabling fascinating ammonia sensing capability with 31.4% ppm-1 sensitivity, fast response time (88 s) with astonishing selectivity, repeatability, and recovery capability. The thus-demonstrated strategy with wafer-scale processing potential and flexible microdevice offers a promising route for large-scale manufacturing thin-film organic electronics.


Asunto(s)
Compuestos de Anilina , Polímeros , Polimerizacion , Compuestos de Anilina/química
14.
Angew Chem Int Ed Engl ; 61(5): e202113590, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34708485

RESUMEN

Amide bond formation is one of the most important reactions in biochemistry, notably being of crucial importance for the origin of life. Herein, we combine scanning tunneling microscopy and X-ray photoelectron spectroscopy studies to provide evidence for thermally activated abiotic formation of amide bonds between adsorbed precursors through direct carboxyl-amine coupling under ultrahigh-vacuum conditions by means of on-surface synthesis. Complementary insights from temperature-programmed desorption measurements and density functional theory calculations reveal the competition between cross-coupling amide formation and decarboxylation reactions on the Au(111) surface. Furthermore, we demonstrate the critical influence of the employed metal support: whereas on Au(111) the coupling readily occurs, different reaction scenarios prevail on Ag(111) and Cu(111). The systematic experiments signal that archetypical bio-related molecules can be abiotically synthesized in clean environments without water or oxygen.

15.
Angew Chem Int Ed Engl ; 61(30): e202204123, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35474405

RESUMEN

We describe the on-surface dehalogenative homocoupling of benzylic bromides, namely bis-bromomethyl- and bis-gem-(dibromomethyl) naphthalene as a potential route to either hydrocarbon dimers or conjugated polymers on Au(111). While bis-gem-(dibromomethyl) naphthalene affords different dimers with naphthocyclobutadiene as the key intermediate, bis-bromomethyl naphthalene furnishes a poly(o-naphthylene vinylidene) as a non-conjugated polymer which undergoes dehydrogenation toward its conjugated derivative poly(o-naphthylene vinylene) upon mild annealing. A combination of scanning tunneling microscopy, non-contact atomic force microscopy and density functional theory calculations provides deep insights into the prevailing mechanisms.

16.
J Am Chem Soc ; 142(42): 17881-17886, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33021787

RESUMEN

Bottom-up-synthesized graphene nanoribbons (GNRs) with excellent electronic properties are promising materials for energy storage systems. Herein, we report bottom-up-synthesized GNR films employed as electrode materials for micro-supercapacitors (MSCs). The micro-device delivers an excellent volumetric capacitance and an ultra-high power density. The electrochemical performance of MSCs could be correlated with the charge carrier mobility within the differently employed GNRs, as determined by pump-probe terahertz spectroscopy studies.

17.
Small ; 16(35): e2002393, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32761784

RESUMEN

While surface-confined Ullmann-type coupling has been widely investigated for its potential to produce π-conjugated polymers with unique properties, the pathway of this reaction in the presence of adsorbed oxygen has yet to be explored. Here, the effect of oxygen adsorption between different steps of the polymerization reaction is studied, revealing an unexpected transformation of the 1D organometallic (OM) chains to 2D OM networks by annealing, rather than the 1D polymer obtained on pristine surfaces. Characterization by scanning tunneling microscopy and X-ray photoelectron spectroscopy indicates that the networks consist of OM segments stabilized by chemisorbed oxygen at the vertices of the segments, as supported by density functional theory calculations. Hexagonal 2D OM networks with different sizes on Cu(111) can be created using precursors with different length, either 4,4″-dibromo-p-terphenyl or 1,4-dibromobenzene (dBB), and square networks are obtained from dBB on Cu(100). The control over size and symmetry illustrates a versatile surface patterning technique, with potential applications in confined reactions and host-guest chemistry.

18.
Chemphyschem ; 21(9): 843-846, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32096309

RESUMEN

We demonstrate an enhancement of cyclization against polymerization for the on-surface debrominative coupling reaction, by using the metal-organic Cu-N coordination template to direct the reaction pathways. Experiments performed by using ultrahigh-vacuum scanning tunneling microscopy (UHV-STM), with the substitution of metal-coordination centers, metallic substrates and functional organic ligands, corroborate the template effect of the Cu-N coordination.

19.
Langmuir ; 36(20): 5510-5516, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32356994

RESUMEN

Dynamically switchable porous networks offer exciting potential in functionalizing surfaces. The structure and morphology of the networks can be controlled by applying external stimuli. Here, a dynamic supramolecular template assembled by 1,3,5-tris(4-carboxyphenyl)benzene (BTB) is successfully achieved at the liquid-solid interface by applying two external stimuli simultaneously. Upon varying the concentration of BTB solution together with switching the polarity of the sample bias, self-assembled monolayers (SAMs) undergo phase transitions twice: an immediate transition from a compact structure to a macroporous (honeycomb) structure as a response to the change in the electric field and a fast-changing transition from the macroporous to a microporous (oblique) structure. With saturated BTB solution, however, the initial compact structure can only transform into the oblique structure after switching the polarity of the sample bias without the appearance of a honeycomb structure. The different phase transitions suggest that the dynamic supramolecular template can only survive at a specific concentration range and is obtainable by performing multiple stimuli simultaneously. Interestingly, introducing a guest molecule to the system can adjust the phase transition process and effectively stabilize the honeycomb structure of BTB. The flexibility associated with the porous networks renders it a dynamic supramolecular template for guest binding.

20.
Chem Rev ; 118(11): 5690-5754, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29785854

RESUMEN

Recent advances in flexible and stretchable electronics (FSE), a technology diverging from the conventional rigid silicon technology, have stimulated fundamental scientific and technological research efforts. FSE aims at enabling disruptive applications such as flexible displays, wearable sensors, printed RFID tags on packaging, electronics on skin/organs, and Internet-of-things as well as possibly reducing the cost of electronic device fabrication. Thus, the key materials components of electronics, the semiconductor, the dielectric, and the conductor as well as the passive (substrate, planarization, passivation, and encapsulation layers) must exhibit electrical performance and mechanical properties compatible with FSE components and products. In this review, we summarize and analyze recent advances in materials concepts as well as in thin-film fabrication techniques for high- k (or high-capacitance) gate dielectrics when integrated with FSE-compatible semiconductors such as organics, metal oxides, quantum dot arrays, carbon nanotubes, graphene, and other 2D semiconductors. Since thin-film transistors (TFTs) are the key enablers of FSE devices, we discuss TFT structures and operation mechanisms after a discussion on the needs and general requirements of gate dielectrics. Also, the advantages of high- k dielectrics over low- k ones in TFT applications were elaborated. Next, after presenting the design and properties of high- k polymers and inorganic, electrolyte, and hybrid dielectric families, we focus on the most important fabrication methodologies for their deposition as TFT gate dielectric thin films. Furthermore, we provide a detailed summary of recent progress in performance of FSE TFTs based on these high- k dielectrics, focusing primarily on emerging semiconductor types. Finally, we conclude with an outlook and challenges section.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA