Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38392421

RESUMEN

Brain tumor segmentation using neural networks presents challenges in accurately capturing diverse tumor shapes and sizes while maintaining real-time performance. Additionally, addressing class imbalance is crucial for achieving accurate clinical results. To tackle these issues, this study proposes a novel N-shaped lightweight network that combines multiple feature pyramid paths and U-Net architectures. Furthermore, we ingeniously integrate hybrid attention mechanisms into various locations of depth-wise separable convolution module to improve efficiency, with channel attention found to be the most effective for skip connections in the proposed network. Moreover, we introduce a combination loss function that incorporates a newly designed weighted cross-entropy loss and dice loss to effectively tackle the issue of class imbalance. Extensive experiments are conducted on four publicly available datasets, i.e., UCSF-PDGM, BraTS 2021, BraTS 2019, and MSD Task 01 to evaluate the performance of different methods. The results demonstrate that the proposed network achieves superior segmentation accuracy compared to state-of-the-art methods. The proposed network not only improves the overall segmentation performance but also provides a favorable computational efficiency, making it a promising approach for clinical applications.

2.
Bioengineering (Basel) ; 11(8)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39199772

RESUMEN

Recent advances in deep learning have shown significant potential for accurate cell detection via density map regression using point annotations. However, existing deep learning models often struggle with multi-scale feature extraction and integration in complex histopathological images. Moreover, in multi-class cell detection scenarios, current density map regression methods typically predict each cell type independently, failing to consider the spatial distribution priors of different cell types. To address these challenges, we propose CellRegNet, a novel deep learning model for cell detection using point annotations. CellRegNet integrates a hybrid CNN/Transformer architecture with innovative feature refinement and selection mechanisms, addressing the need for effective multi-scale feature extraction and integration. Additionally, we introduce a contrastive regularization loss that models the mutual exclusiveness prior in multi-class cell detection cases. Extensive experiments on three histopathological image datasets demonstrate that CellRegNet outperforms existing state-of-the-art methods for cell detection using point annotations, with F1-scores of 86.38% on BCData (breast cancer), 85.56% on EndoNuke (endometrial tissue) and 93.90% on MBM (bone marrow cells), respectively. These results highlight CellRegNet's potential to enhance the accuracy and reliability of cell detection in digital pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA