Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 226(4): 585-594, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-35413121

RESUMEN

The development of a vaccine to prevent congenital human cytomegalovirus (HCMV) disease is a public health priority. We tested rhesus CMV (RhCMV) prototypes of HCMV vaccine candidates in a seronegative macaque oral challenge model. Immunogens included a recombinant pentameric complex (PC; gH/gL/pUL128/pUL130/pUL131A), a postfusion gB ectodomain, and a DNA plasmid that encodes pp65-2. Immunization with QS21-adjuvanted PC alone or with the other immunogens elicited neutralizing titers comparable to those elicited by RhCMV infection. Similarly, immunization with all 3 immunogens elicited pp65-specific cytotoxic T-cell responses comparable to those elicited by RhCMV infection. RhCMV readily infected immunized animals and was detected in saliva, blood, and urine after challenge in quantities similar to those in placebo-immunized animals. If HCMV evades vaccine-elicited immunity in humans as RhCMV evaded immunity in macaques, a HCMV vaccine must elicit immunity superior to, or different from, that elicited by the prototype RhCMV vaccine to block horizontal transmission.


Asunto(s)
Infecciones por Citomegalovirus , Vacunas contra Citomegalovirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Citomegalovirus , Humanos , Macaca mulatta , Proteínas del Envoltorio Viral
2.
Plant Dis ; 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471468

RESUMEN

In June 2021, a previously unreported leaf blight disease of peanut (Arachis hypogaea) was observed on field-grown peanut (Jinhua19) in Laixi city, Shandong province of China. Approximately 5% of plants showed disease symptoms in the fields we investigated. The symptoms first appeared as yellow round or irregular spots on leaves, and then the spots became brown. As the disease progressed, spots became larger and even converge, which later produced leaf chlorosis and abscission. Symptomatic leaves were cut into small pieces, surface disinfested with 70% ethanol for 30s, 1% NaClO for 60s, rinsed three times in sterile water, dried on sterile filter papers, placed on potato dextrose agar (PDA) media, and incubated at 25°C in darkness. Fungal cultures were initially white, with red pigment, then turned gray, and eventually turned black, and aerial hyphae were dense. Conidia were spherical or slightly ellipsoidal, black, smooth, and 8.6 to 11.5 × 8.7 to 14.5µm (n=50). Morphological characteristics of the isolates matched the description of Nigrospora aurantiaca (Wang et al. 2017). Molecular identification was performed by sequencing beta tubulin gene (TUB) with Bt2a/Bt2b and translation elongation factor 1-alpha (TEF) with EF1-728F/EF1-986R (Wang et al. 2021) of a representative isolate ZHX11. TUB (OK489789) and TEF (OK489790) of ZHX11 obtained 100% (401/401 nucleotides) and 99.64% (279/279 nucleotides) similar to those of N. aurantiaca (MN329935, MN264010), respectively. Alignment was conducted separately for each gene set using Clustal W algorithm implemented in MEGA 7.0 (Kumar et al. 2016), and multi-gene (TUB and TEF) phylogenetic analyses using Neighbor-Joining (NJ) method showed that the isolate was N. aurantiaca. To complete Koch's postulates, nine 2-week-old peanut (Zhonghua 12) seedlings were sprayed with conidia suspensions (106 conidia mL-1 in 0.05% Tween 20 buffer). The same number of seedlings were only treated with 0.05% Tween buffer as controls. The experiment was repeated three times. Plants were incubated in a growth chamber (30°C in the day and 25°C at night, a 12-h photoperiod and 80% RH). Ten days after inoculation, typical symptoms were observed on inoculated leaves but not on the controls. N. aurantiaca was reisolated from the diseased leaves but not from the controls. N. sphaerica was observed on peanut in China (Liu et al. 2020). To our knowledge, this is the first report of N. aurantiaca causing leaf blight on peanut in shandong province, China. These findings will help to develop better preventive measures in accordance with the emergence of the new disease.

3.
Arch Microbiol ; 203(2): 829-834, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33070233

RESUMEN

A novel Gram-stain-negative, aerobic strain, designated Y22T, was isolated from peanut field soil in Laoshan Mountain in China. Cells of strain Y22T were rod-shaped and motile by a single flagellum. The strain was found to be oxidase- and catalase-positive. 16S rRNA gene sequence based on phylogenetic analysis indicated that strain Y22T belonged to the genus Pseudomonas, and showed the highest 16S rRNA gene sequence similarity of 99.0% to Pseudomonas pelagia JCM 15562T, followed by Pseudomonas salina JCM 19469T (98.4%), Pseudomonas sabulinigri JCM 14963T (97.9%), Pseudomonas bauzanensis CGMCC 1.9095T (97.6%) and Pseudomonas litoralis KCTC23093T (97.5%). The phylogenetic analysis based on multilocus sequence analyses with concatenated 16S rRNA, gyrB, rpoD and rpoB genes indicated that strain Y22T belonged to Pseudomonas pertucinogena lineage. The average nucleotide identity scores between strain Y22T and closely related species were 74.6-82.8%, and the Genome-to-Genome Distance Calculator scores were 16.4-44.9%. The predominant cellular fatty acids of strain Y22T were C18:1ω7c (29.6%), C17:0 cyclo (17.5%) and summed feature 3 (C16:1ω7c and/or C16:1ω6c) (17.4%). The genomic DNA G+C content was 57.9 mol%. On the basis of phenotypic characteristics, phylogenetic analyses and in silico DNA-DNA relatedness, a novel species, Pseudomonas laoshanensis sp. nov. is proposed. The type strain is Y22T (= JCM 32580T = KCTC 62385T = CGMCC 1.16552T).


Asunto(s)
Filogenia , Pseudomonas/clasificación , Microbiología del Suelo , Arachis , China , Genes Bacterianos/genética , Pseudomonas/genética , ARN Ribosómico 16S/genética , Especificidad de la Especie
4.
Fish Shellfish Immunol ; 98: 988-994, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31712129

RESUMEN

Complement factor I (CFI) is a serine protease which plays a key role in the modulation of complement system and the induced-fit factor responsible for controlling the complement-mediated processes. In this study, a CFI gene was cloned and characterized from Lampetra morii (designated as L-CFI) at molecular and cellular levels. The L-CFI protein included a factor I membrane attack complex domain (FIMAC), a scavenger receptor cysteine-rich domain (SRCR), a trypsin-like serine protease domain (Tryp_SPc) and 2 low-density lipoprotein receptor class A domains (LDLa) which would exhibit functional similarities to CFI superfamily proteins. Tissue expression profile analysis showed that L-CFI mRNA constitutively expressed in all tested tissues except erythrocytes, with the predominant expression in liver. The mRNA expression level of L-CFI increased significantly after Vibrio anguillarum and Staphylocccus aureus stimulation. It is demonstrated that L-CFI interacted with L-C3 protein and affected the deposition of L-C3 on the cell surface. Furthermore, lamprey serum after deplete L-CFI and L-C3 reduced the cytotoxic activity against HeLa cells. These findings suggest that L-CFI plays an important role in lamprey immunity and involved in the lamprey complement system.


Asunto(s)
Activación de Complemento/inmunología , Factor I de Complemento/genética , Proteínas de Peces/genética , Inmunidad Innata/genética , Lampreas/genética , Lampreas/inmunología , Secuencia de Aminoácidos , Animales , Factor I de Complemento/química , Factor I de Complemento/metabolismo , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Alineación de Secuencia
5.
Proc Natl Acad Sci U S A ; 113(24): 6785-90, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27247390

RESUMEN

Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45-56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity.


Asunto(s)
Arachis , Genoma de Planta/fisiología , Familia de Multigenes/fisiología , Aceites de Plantas/metabolismo , Proteínas de Plantas , Tetraploidía , Arachis/genética , Arachis/metabolismo , Humanos , Aceite de Cacahuete , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Fish Shellfish Immunol ; 75: 295-300, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29410138

RESUMEN

The lamprey (Lampetra japonica), a representative of the jawless vertebrates, is the oldest extant species in the world. LIP-1, which has a jacalin-like domain and an aerolysin pore-forming domain, has previously been identified in Lampetra japonica. However, the structure and function of the LIP-1 protein have not been described. In this study, the LIP-1 gene was overexpressed in HeLa cells and H293T cells. The results showed that the overexpression of LIP-1 in HeLa cells significantly elevated LDH release (P < 0.05), phosphatidylserine exposure and ROS accumulation. The overexpression of LIP-1 also had remarkable effects on the organelles in HeLa cells, while it had no effect on H293T cell organelles. Array data indicated that overexpression of LIP-1 primarily upregulated P53 signaling pathways in HeLa cells. Cell cycle assay results confirmed that LIP-1 caused arrest in the G2/M phase of the cell cycle in HeLa cells. In summary, our findings provide insights into the function and characterization of LIP-1 genes in vertebrates and establish the foundation for further research into the biological function of LIP-1. Our observations suggest that this lamprey protein has the potential for use in new applications in the medical field.


Asunto(s)
Puntos de Control del Ciclo Celular/inmunología , Proteínas de Peces/inmunología , Lampreas/inmunología , Transducción de Señal/inmunología , Animales , Muerte Celular , Proteínas de Peces/genética , Vectores Genéticos , Células HEK293 , Células HeLa , Humanos , Lampreas/genética , Análisis de Secuencia de ADN
7.
Plant Mol Biol Report ; 36(3): 518-529, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30100671

RESUMEN

Peanut (Arachis hypogaea), a major source of vegetable oil in many Asian countries, has become an integral part of human diet globally due to its high nutritional properties and option to consume in different forms. In order to meet the demand of vegetable oil, many peanut breeding programs of China have intensified their efforts in increasing oil content in newly bred varieties for reducing the import of edible oils in China. In this context, transcriptome sequencing data generated on 49 peanut cultivars were analyzed to identify candidate genes and develop molecular markers for seed oil content across multiple environments. Transcriptome analysis identified 5458 differentially expressed genes (DEGs) including 2243 positive DEGs and 3215 negative DEGs involved in oil synthesis process. Genome-wide association study identified 48 significant insertion/deletion (InDel) markers associated with seed oil content across five environments. A comparative genomics and transcriptomics analysis detected a total of 147 common gene clusters located in 17 chromosomes. Interestingly, an InDel cluster associated with seed oil content on A03 chromosome was detected in three different environments. Candidate genes identified on A03 form a haplotype, in which variable alleles were found to be different in oil content in an independent population. This locus is important for understanding the genetic control of peanut oil content and may be useful for marker-assisted selection in peanut breeding programs.

8.
Can J Microbiol ; 63(9): 788-805, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28700833

RESUMEN

Gold tailings often release arsenic (As) contaminants into the surrounding environment. Microorganisms play an important role in the As cycle, whereas the effects of As on bacterial communities remain unclear. To reveal the effects of As on the diversity of bacterial communities and their As-tolerance potential, farmland soil and river sediment samples were collected at various distances from tailings in the Dandong area of northeastern China. The bacterial communities were analyzed using high-throughput sequencing of 16S rRNA genes. The membrane transport proteins ArsB and (or) ACR3 pump As(III) out of the cell to resist As toxicity. We studied the abundance and phylogeny of ArsB and ACR3 using PCR-based clone libraries and quantitative PCR. The bacterial community was divided into 10 phyla and 59 genera. The transformation from As(V) to As(III) was predominant, which was coupled with denitrification. Both ArsB and ACR3 likely evolved from different orders of Proteobacteria. The arsB gene seems to be more stable in bestowing bacteria with the capability to respond to the As concentration. Moreover, As with iron, manganese, and total organic carbon also influenced the clustering relationships of samples and bacterial distribution.


Asunto(s)
Arsénico/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Sedimentos Geológicos/microbiología , Oro/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Bacterias/clasificación , Bacterias/genética , China , Sedimentos Geológicos/química , Filogenia , Suelo/química , Contaminantes del Suelo/análisis
9.
Plant Biotechnol J ; 14(5): 1215-24, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26502832

RESUMEN

A characteristic feature of peanut is the subterranean fructification, geocarpy, in which the gynophore ('peg'), a specialized organ that transitions from upward growth habit to downward outgrowth upon fertilization, drives the developing pod into the soil for subsequent development underground. As a step towards understanding this phenomenon, we explore the developmental dynamics of the peanut pod transcriptome at 11 successive stages. We identified 110 217 transcripts across developmental stages and quantified their abundance along a pod developmental gradient in pod wall. We found that the majority of transcripts were differentially expressed along the developmental gradient as well as identified temporal programs of gene expression, including hundreds of transcription factors. Thought to be an adaptation to particularly harsh subterranean environments, both up- and down-regulated gene sets in pod wall were enriched for response to a broad array of stimuli, like gravity, light and subterranean environmental factors. We also identified hundreds of transcripts associated with gravitropism and photomorphogenesis, which may be involved in the geocarpy. Collectively, this study forms a transcriptional baseline for geocarpy in peanut as well as provides a considerable body of evidence that transcriptional regulation in peanut aerial and subterranean fruits is complex.


Asunto(s)
Arachis/genética , Regulación de la Expresión Génica de las Plantas , Gravitropismo/genética , Transcriptoma , Arachis/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Ontología de Genes , Proteínas de Plantas/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ARN
10.
Front Plant Sci ; 14: 1136626, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925750

RESUMEN

Abiotic stresses such as salinity and low temperature have serious impact on peanut growth and yield. The present work investigated the function of a MYB-related transcription factor gene AhMYB30 obtained from peanut under salt and low temperature stresses by transgenic methods. The results indicated that the overexpression of AhMYB30 in Arabidopsis could enhance the resistance of transgenic plants to freezing and salt stresses. The expression of stress-response genes RD29A (Response-to-Dehydration 29A), COR15A (Cold-Regulated 15A), KIN1 (Kinesin 1) and ABI2 (Abscisic acid Insensitive 2) increased in transgenic plants compared with in wild-type. Subcellular localization and transcriptional autoactivation validation demonstrated that AhMYB30 has essential features of transcription factors. Therefore, AhMYB30 may increase salt and freezing stress tolerance as the transcription factor (TF) in Arabidopsis through both DREB/CBF and ABA-signaling pathways. Our results lay the theoretical foundation for exploring stress resistance mechanisms of peanut and offering novel genetic resources for molecular breeding.

11.
Curr Genet ; 58(1): 13-20, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22205301

RESUMEN

Normalization based on inappropriate reference gene may lead to the reduction of the accuracy of RT-qPCR. Although determination of suitable reference genes is essential to RT-qPCR studies, reports on the evaluation of reference genes in Ulva linza, a ubiquitous green-tide forming alga, are lacking. The expression levels of ten candidate reference genes were analyzed in U. linza across different experimental treatments, and the best-ranked reference genes differed across the treatments. The most suitable reference genes were tubulin2 (TUB2) among different salinity and UV treatments. Histone 2 (H2) was stably expressed in different temperature and desiccation stress treatments. 18S rRNA exhibited better expression stability in different light intensity treatments. While all tested samples were considered, none of single gene was widely applicable as a reference gene. Moreover, using a combination of two genes as reference genes might improve the reliability of gene expression by RT-qPCR, and the combination of TUB1 and TUB2 was selected as ideal for all tested samples. The results suggest that assessing the stability of reference gene expression patterns, determining candidates, and testing their suitability are required for each experimental investigation. The results will guide the selection of reference genes for gene expression studies in U. linza.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes de Plantas , Ulva/genética , Perfilación de la Expresión Génica/normas , Regulación de la Expresión Génica de las Plantas , ARN Ribosómico 18S , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Tubulina (Proteína)/genética , Rayos Ultravioleta , Ulva/efectos de la radiación
12.
Mol Genet Genomics ; 287(2): 167-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22203160

RESUMEN

Quantitative real-time reverse transcription PCR (qRT-PCR), a sensitive technique for quantifying gene expression, depends on the stability of the reference gene(s) used for data normalization. Only a few studies on the reference genes have been done with peanut to date. In the present study, 14 potential reference genes in peanut were evaluated for their expression stability using the geNorm and NormFinder statistical algorithms. Expression stability was assessed by qRT-PCR across 32 biological samples, including various tissue types, seed developmental stages, salt and cold treatments. The results showed that the best-ranked references genes differed across the samples. UKN1, UKN2, TUA5 and ACT11 were the most stable across all the tested samples. A combination of ACT11, TUA5, UKN2, PEPKR1 and TIP41 would be appropriate as a reference panel for normalizing gene expression data across the various tissues tested, whereas the combination of TUA5 and UKN1 was the most suitable for seed developmental stages. TUA5 and EF1b exhibited the most stable expression under cold treatment. For salt-treated leaves, TUA5 and UKN2 were the most stably expressed and HDC and UKN1 for salt-treated roots. The relative gene expression level of peanut Cys(2)/His(2)-type zinc finger protein gene AhZFP1 was analyzed in order to validate the reference genes selected for this study. These results provide guidelines for the selection of reference genes under different experimental conditions and also a foundation for more accurate and widespread use of qRT-PCR in peanut gene analysis.


Asunto(s)
Arachis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Algoritmos , Genes de Plantas/genética , Reproducibilidad de los Resultados , Factores de Tiempo
13.
Vaccines (Basel) ; 10(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35891239

RESUMEN

Human cytomegalovirus (HCMV) is the leading viral cause of congenital disease and permanent birth defects worldwide. Although the development of an effective vaccine is a public health priority, no vaccines are approved. Among the major antigenic targets are glycoproteins in the virion envelope, including gB, which facilitates cellular entry, and the pentameric complex (gH/gL/pUL128-131), required for the infection of specialized cell types. In this study, sera from rabbits immunized with the recombinant pentameric complex were tested for their ability to neutralize infection of epithelial cells, fibroblasts, and primary placental cell types. Sera from rhesus macaques immunized with recombinant gB or gB plus pentameric complex were tested for HCMV neutralizing activity on both cultured cells and cell column cytotrophoblasts in first-trimester chorionic villus explants. Sera from rabbits immunized with the pentameric complex potently blocked infection by pathogenic viral strains in amniotic epithelial cells and cytotrophoblasts but were less effective in fibroblasts and trophoblast progenitor cells. Sera from rhesus macaques immunized with the pentameric complex and gB more strongly reduced infection in fibroblasts, epithelial cells, and chorionic villus explants than sera from immunization with gB alone. These results suggest that the pentameric complex and gB together elicit antibodies that could have potential as prophylactic vaccine antigens.

14.
Plant Cell Rep ; 30(8): 1393-404, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21409552

RESUMEN

Fatty acid desaturases are responsible for the insertion of double bonds into pre-formed fatty acid chains in reactions that require oxygen and reducing equivalents. In this study, genes for FAB2, FAD2-2, FAD6 and SLD1, were cloned from peanut (Arachis hypogaea L.). The ORFs of the four genes were 1,221, 1,152, 1,329 and 1,347 bp in length, encoding 406, 383, 442 and 448 amino acids, respectively. The predicted amino acid sequences of AhFAB2, AhFAD2-2, AhFAD6, AhSLD1 shared high sequence identity of 79, 76.2, 73.4 and 61% to the corresponding ones in Arabidopsis, respectively. Heterologous expression in yeast was used to confirm the regioselectivity and the function of AhFAD2-2 and AhFAD6. Linoleic acid (18:2), normally not present in wild-type yeast cells, was detected in transformants of these two genes. Quantitative real-time RT-PCR analysis indicated that the transcript abundances of AhFAB2 and AhFAD2-1 were higher in seed than that in other tissues examined. On the other hand, transcript of AhFAD2-2, AhFAD6 and AhSLD1 showed higher abundances in leaves. In addition, these five genes showed different expression patterns during seed development. These results indicated that the five genes may have different biochemical functions during vegetative growth and seed development.


Asunto(s)
Arachis/genética , Ácido Graso Desaturasas/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arachis/enzimología , Clonación Molecular , ADN Complementario/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos/análisis , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , ARN de Planta/genética , Semillas/enzimología , Semillas/genética , Análisis de Secuencia de ADN
15.
Front Microbiol ; 12: 777351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35027913

RESUMEN

Soil salinity has adverse effects on soil microbial activity and nutrient cycles and therefore limits crop growth and yield. Amendments with halotolerant phosphate-solubilizing bacteria (PSB) and rock phosphate (RP) may improve properties of saline soil. In this study, we investigated the effects of RP either alone or in combination with PSB (Providencia rettgeri strain TPM23) on peanut growth and soil quality in a saline soil. With the combined application of RP and PSB, plant length and biomass (roots and shoots) and uptake of phosphorus (P), nitrogen (N), and potassium (K) increased significantly. Soil Na+ and Cl- contents decreased in the PR alone or PR combined with PSB treatment groups. There were strongly synergistic effects of RP and PSB on soil quality, including a decrease in pH. The soil available N, P, and K contents were significantly affected by the PSB treatments. In addition, the alkaline phosphomonoesterases, urease, and dehydrogenase activities increased significantly compared with the untreated group; highest alkaline phosphomonoesterases activity was observed in the RP and PSB treatment groups. The composition of rhizosphere soil bacterial communities was determined using 454-pyrosequencing of the 16S rRNA gene. In the PR alone or PR combined with PSB treatment groups, the structure of the soil bacterial community improved with increasing richness and diversity. With PSB inoculation, the relative abundance of Acidobacteria, Chloroflexi, and Planctomycetes increased. The three phyla were also positively correlated with soil available N and root dry weight. These results suggested microbiological mechanisms by which the combined use of RP and PSB improved saline soil and promoted plant growth. Overall, the study indicates the combined use of RP and PSB can be an economical and sustainable strategy to increase plant growth in P-deficient and salt-affected soils.

16.
Front Oncol ; 11: 663600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307136

RESUMEN

Lamprey immune protein (LIP), a novel protein derived from the Lampetra japonica, has been shown to exert efficient tumoricidal actions without concomitant damage to healthy cells. Our study aimed to ascertain the mechanisms by which LIP inhibits lung cancer cells, thus delineating potential innovative therapeutic strategies. LIP expression in lung cancer cells was evaluated by western blotting and immunohistochemistry. Functional assays, such as high-content imaging, 3D-structured illumination microscopy (3D-SIM) imaging, flow cytometry, and confocal laser scanning microscopy, were performed to examine the proliferation and lung cancer cell apoptosis. Tumor xenograft assays were performed using an in vivo imaging system. We observed that LIP induces the decomposition of certain lung cancer cell membranes by destroying organelles such as the microtubules, mitochondria, and endoplasmic reticulum (ER), in addition to causing leakage of cytoplasm, making the maintenance of homeostasis difficult. We also demonstrated that LIP activates the ER stress pathway, which mediates lung cancer cell apoptosis by producing reactive oxygen species (ROS). In addition, injection of LIP significantly retarded the tumor growth rate in nude mice. Taken together, these data revealed a role of LIP in the regulation of lung cancer cell apoptosis via control of the ER stress signaling pathway, thus revealing its possible application in lung cancer treatment.

17.
Sci Adv ; 7(10)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33674318

RESUMEN

Human cytomegalovirus (HCMV) causes congenital disease with long-term morbidity. HCMV glycoprotein B (gB) transitions irreversibly from a metastable prefusion to a stable postfusion conformation to fuse the viral envelope with a host cell membrane during entry. We stabilized prefusion gB on the virion with a fusion inhibitor and a chemical cross-linker, extracted and purified it, and then determined its structure to 3.6-Å resolution by electron cryomicroscopy. Our results revealed the structural rearrangements that mediate membrane fusion and details of the interactions among the fusion loops, the membrane-proximal region, transmembrane domain, and bound fusion inhibitor that stabilized gB in the prefusion state. The structure rationalizes known gB antigenic sites. By analogy to successful vaccine antigen engineering approaches for other viral pathogens, the high-resolution prefusion gB structure provides a basis to develop stabilized prefusion gB HCMV vaccine antigens.

18.
J Microbiol ; 58(7): 563-573, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32329018

RESUMEN

Balancing soil microbial diversity and abundance is critical to sustaining soil health, and understanding the dynamics of soil microbes in a monocropping system can help determine how continuous monocropping practices induce soil sickness mediated by microorganisms. This study used previously constructed gradient continuous monocropping plots and four varieties with different monocropping responses were investigated. The feedback responses of their soil fungal communities to short-term and long-term continuous monocropping were tracked using high-throughput sequencing techniques. The analyses indicated that soil samples from 1 and 2 year monocropped plots were grouped into one class, and samples from the 11 and 12 year plots were grouped into another, regardless of variety. At the species level, the F. solani, Fusarium oxysporum, Neocosmospora striata, Acrophialophora levis, Aspergillus niger, Aspergillus corrugatus, Thielavia hyrcaniae, Emericellopsis minima, and Scedosporium aurantiacum taxa showed significantly increased abundances in the long-term monocropping libraries compared to the short-term cropping libraries. In contrast, Talaromyces flavus, Talaromyces purpureogenus, Mortierella alpina, Paranamyces uniporus, and Volutella citrinella decreased in the long-term monocropping libraries compared to the short-term libraries. This study, combined with our previous study, showed that fungal community structure was significantly affected by the length of the monocropping period, but peanut variety and growth stages were less important. The increase in pathogen abundances and the decrease in beneficial fungi abundances seem to be the main cause for the yield decline and poor growth of long-term monocultured peanut. Simplification of fungal community diversity could also contribute to peanut soil sickness under long-term monocropping. Additionally, the different responses of peanut varieties to monocropping may be related to variations in their microbial community structure.


Asunto(s)
Arachis/metabolismo , Hongos/clasificación , Micobioma/fisiología , Suelo/química , Agricultura/métodos , Hongos/genética , Hongos/aislamiento & purificación , Microbiología del Suelo
19.
PeerJ ; 8: e9024, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32377450

RESUMEN

Soil sickness is the progressive loss of soil quality due to continuous monocropping. The bacterial populations are critical to sustaining agroecosystems, but their responses to long-term peanut monocropping have not been determined. In this study, based on a previously constructed gradient of continuous monocropped plots, we tracked the detailed feedback responses of soil bacteria to short- and long-term continuous monocropping of four different peanut varieties using high-throughput sequencing techniques. The analyses showed that soil samples from 1- and 2-year monocropped plots were grouped into one class, and samples from the 11- and 12-year plots were grouped into another. Long-term consecutive monocropping could lead to a general loss in bacterial diversity and remarkable changes in bacterial abundance and composition. At the genera level, the dominant genus Bacillus changed in average abundance from 1.49% in short-term monocropping libraries to 2.96% in the long-term libraries. The dominant species Bacillus aryabhattai and Bacillus funiculus and the relatively abundant species Bacillus luciferensis and Bacillus decolorationis all showed increased abundance with long-term monocropping. Additionally, several other taxa at the genus and species level also presented increased abundance with long-term peanut monocropping; however, several taxa showed decreased abundance. Comparing analyses of predicted bacterial community functions showed significant changes at different KEGG pathway levels with long-term peanut monocropping. Combined with our previous study, this study indicated that bacterial communities were obviously influenced by the monocropping period, but less influenced by peanut variety and growth stage. Some bacterial taxa with increased abundance have functions of promoting plant growth or degrading potential soil allelochemicals, and should be closely related with soil remediation and may have potential application to relieve peanut soil sickness. A decrease in diversity and abundance of bacterial communities, especially beneficial communities, and simplification of bacterial community function with long-term peanut monocropping could be the main cause of peanut soil sickness.

20.
Sci Rep ; 10(1): 13792, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796889

RESUMEN

Recombination hot spots (RHP), caused by meiosis, are considered to play crucial roles in improvement and domestication of crop. Cultivated peanut is one of the most important rich-source of oil and protein crops. However, no direct scale of recombination events and RHP have been estimated for peanut. To examine the scale of recombination events and RHP in peanut, a RIL population with 200 lines and a natural population with 49 cultivars were evaluated. The precise integrated map comprises 4837 SLAF markers with genetic length of 2915.46 cM and density of 1.66 markers per cM in whole genome. An average of 30.0 crossover (2.06 cMMb-1) events was detected per RIL plant. The crossover events (CE) showed uneven distribution among B sub-genome (2.32) and A sub-genome (1.85). There were 4.34% and 7.86% of the genome contained large numbers of CE (> 50 cMMb-1) along chromosomes in F6 and natural population, respectively. High density of CE regions called RHP, showed negative relationship to marker haplotypes conservative region but positive to heatmap of recombination. The genes located within the RHP regions by GO categories showed the responding of environmental stimuli, which suggested that recombination plays a crucial role in peanut adaptation to changing environments.


Asunto(s)
Arachis/genética , ADN de Plantas/genética , Genoma de Planta/genética , Recombinación Homóloga , Meiosis/genética , Repeticiones de Microsatélite/genética , Algoritmos , Arachis/clasificación , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Domesticación , Genotipo , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA