Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Cancer ; 23(1): 63, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528526

RESUMEN

Efficient predictive biomarkers are needed for immune checkpoint inhibitor (ICI)-based immunotherapy in non-small cell lung cancer (NSCLC). Testing the predictive value of single nucleotide polymorphisms (SNPs) in programmed cell death 1 (PD-1) or its ligand 1 (PD-L1) has shown contrasting results. Here, we aim to validate the predictive value of PD-L1 SNPs in advanced NSCLC patients treated with ICIs as well as to define the molecular mechanisms underlying the role of the identified SNP candidate. rs822336 efficiently predicted response to anti-PD-1/PD-L1 immunotherapy in advanced non-oncogene addicted NSCLC patients as compared to rs2282055 and rs4143815. rs822336 mapped to the promoter/enhancer region of PD-L1, differentially affecting the induction of PD-L1 expression in human NSCLC cell lines as well as their susceptibility to HLA class I antigen matched PBMCs incubated with anti-PD-1 monoclonal antibody nivolumab. The induction of PD-L1 expression by rs822336 was mediated by a competitive allele-specificity binding of two identified transcription factors: C/EBPß and NFIC. As a result, silencing of C/EBPß and NFIC differentially regulated the induction of PD-L1 expression in human NSCLC cell lines carrying different rs822336 genotypes. Analysis by binding microarray further validated the competitive allele-specificity binding of C/EBPß and NFIC to PD-L1 promoter/enhancer region based on rs822336 genotype in human NSCLC cell lines. These findings have high clinical relevance since identify rs822336 and induction of PD-L1 expression as novel biomarkers for predicting anti-PD-1/PD-L1-based immunotherapy in advanced NSCLC patients.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Factores de Transcripción NFI/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
2.
J Pept Sci ; 30(7): e3593, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38471710

RESUMEN

In recent decades, the global rise of viral emerging infectious diseases has posed a substantial threat to both human and animal health worldwide. The rapid spread and accumulation of mutations into viruses, and the limited availability of antiviral drugs and vaccines, stress the urgent need for alternative therapeutic strategies. Antimicrobial peptides (AMPs) derived from natural sources present a promising avenue due to their specificity and effectiveness against a broad spectrum of pathogens. The present study focuses on investigating the antiviral potential of oreochromicin-1 (oreoch-1), a fish-derived AMP obtained from Nile tilapia, against a wide panel of animal viruses including canine distemper virus (CDV), Schmallenberg virus (SBV), caprine herpesvirus 1 (CpHV-1), and bovine herpesvirus 1 (BoHV-1). Oreoch-1 exhibited a strong antiviral effect, demonstrating an inhibition of infection at concentrations in the micromolar range. The mechanism of action involves the interference with viral entry into host cells and a direct interaction between oreoch-1 and the viral envelope. In addition, we observed that the peptide could also interact with the cell during the CDV infection. These findings not only highlight the efficacy of oreoch-1 in inhibiting viral infection but also emphasize the potential of fish-derived peptides, specifically oreoch-1, as effective antiviral agents against viral infections affecting animals, whose potential to spill into humans is high. This research contributes valuable insights to the ongoing quest for novel antiviral drugs with the potential to mitigate the impact of infectious diseases on a global scale.


Asunto(s)
Antivirales , Animales , Antivirales/farmacología , Antivirales/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Humanos , Pruebas de Sensibilidad Microbiana , Chlorocebus aethiops , Internalización del Virus/efectos de los fármacos
3.
Mar Drugs ; 21(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37504915

RESUMEN

In the last decades, the interest in bioactive compounds derived from natural sources including bacteria, fungi, plants, and algae has significantly increased. It is well-known that aquatic or terrestrial organisms can produce, in special conditions, secondary metabolites with a wide range of biological properties, such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. In this study, we focused on the extremophilic microalga Galdieria sulphuraria as a possible producer of bioactive compounds with antiviral activity. The algal culture was subjected to organic extraction with acetone. The cytotoxicity effect of the extract was evaluated by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The antiviral activity was assessed through a plaque assay against herpesviruses and coronaviruses as enveloped viruses and poliovirus as a naked one. The monolayer was treated with different concentrations of extract, ranging from 1 µg/mL to 200 µg/mL, and infected with viruses. The algal extract displayed strong antiviral activity at non-toxic concentrations against all tested enveloped viruses, in particular in the virus pre-treatment against HSV-2 and HCoV-229E, with IC50 values of 1.7 µg/mL and IC90 of 1.8 µg/mL, respectively. However, no activity against the non-enveloped poliovirus has been detected. The inhibitory effect of the algal extract was confirmed by the quantitative RT-PCR of viral genes. Preliminary chemical profiling of the extract was performed using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS), revealing the enrichment in primary fatty acid amides (PFAA), such as oleamide, palmitamide, and pheophorbide A. These promising results pave the way for the further purification of the mixture to explore its potential role as an antiviral agent.


Asunto(s)
Infecciones por Coronavirus , Rhodophyta , Virus , Humanos , Antivirales/química , Rhodophyta/metabolismo , Extractos Vegetales/farmacología
4.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37762191

RESUMEN

Pandemic and epidemic outbreaks of respiratory viruses are a challenge for public health and social care system worldwide, leading to high mortality and morbidity among the human populations. In light of the limited efficacy of current vaccines and antiviral drugs against respiratory viral infections and the emergence and re-emergence of new viruses, novel broad-spectrum antiviral drugs are needed for the prevention and treatment of these infections. Antimicrobial peptides with an antiviral effect, also known as AVPs, have already been reported as potent inhibitors of viral infections by affecting different stages of the virus lifecycle. In the present study, we analyzed the activity of the AVP Hylin-a1, secreted by the frog Hypsiboas albopunctatus, against a wide range of respiratory viruses, including the coronaviruses HCoV-229E and SARS-CoV-2, measles virus, human parainfluenza virus type 3, and influenza virus H1N1. We report a significant inhibitory effect on infectivity in all the enveloped viruses, whereas there was a lack of activity against the naked coxsackievirus B3. Considering the enormous therapeutic potential of Hylin-a1, further experiments are required to elucidate its mechanism of action and to increase its stability by modifying the native sequence.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Subtipo H1N1 del Virus de la Influenza A , Humanos , Animales , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Anuros
5.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055066

RESUMEN

Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.


Asunto(s)
Proteínas Anfibias/farmacología , Péptidos Antimicrobianos/farmacología , Antivirales/farmacología , Ranidae/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Virus ADN/efectos de los fármacos , Virus ARN/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Células Vero , Envoltura Viral/efectos de los fármacos , Ensayo de Placa Viral , Virosis/tratamiento farmacológico
6.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35216177

RESUMEN

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Asunto(s)
Proteínas Anfibias/farmacología , Anfibios/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/química , Virus ADN/efectos de los fármacos , Virus ARN/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas Anfibias/química , Proteínas Anfibias/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Antivirales/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Lípidos/química , SARS-CoV-2/efectos de los fármacos , Células Vero
7.
Intervirology ; 62(1): 15-22, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31117080

RESUMEN

Epstein-Barr virus (EBV) is a common herpesvirus that may cause asymptomatic infection or various diseases, such as mononucleosis, lymphoproliferative disorders and several cancers. Our objective was to estimate the prevalence of EBV among patients hospitalized in "Luigi Vanvitelli" University Hospital in the last 10 years. Our results showed that EBV seroprevalence in our geographical area was 65%. Seroprevalence increased gradually with age with no significant difference between females (49.42%) and males (50.58%). The seropositivity for primary infection was higher in patients about 5 years old, while seropositivity for past infection was predominant in patients of about 35 years old. These results underline that children in our country are still exposed to EBV. The development and the deeper use of an EBV vaccine in the early years of life could represent the solution for this infection.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones Asintomáticas/epidemiología , Infecciones por Virus de Epstein-Barr/epidemiología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Infecciones por Virus de Epstein-Barr/diagnóstico , Femenino , Herpesvirus Humano 4 , Hospitales Universitarios , Humanos , Lactante , Recién Nacido , Italia/epidemiología , Masculino , Persona de Mediana Edad , Prevalencia , Estudios Retrospectivos , Estudios Seroepidemiológicos , Adulto Joven
8.
IDCases ; 36: e01959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681078

RESUMEN

Magnusiomyces capitatus (M. capitatus) is an emerging opportunistic yeast in the Mediterranean region typically isolated from immunocompromised patients, usually affected by blood malignancies. We reported a rare case of M. capitatus infection, isolated from a drainage fluid in a patient affected by lung cancer recovered in the University Hospital of Campania "Luigi Vanvitelli", Naples, Italy. The isolate was identified by phenotypic methods, i.e., Gram and Lactophenol cotton blue (LCB) staining, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. We identified M. capitatus on the third day from Sabouraud Dextrose Agar supplemented with chloramphenicol and gentamicin. Antifungal susceptibility test revealed that 5-fluorocytosine was the most active drug against M. capitatus, followed by itraconazole and voriconazole, micafungin, amphotericin B and fluconazole, posaconazole, anidulafungin, and caspofungin. Our data showed the importance of an early cultural and fast microbiology diagnosis based on the characteristic morphologic features observed in Gram-stained smears of blood culture positive bottles, and the validation via MALDI-TOF MS. This dual approach has significant impact in the clinical management of infectious diseases and antibiotic stewardship, by integrating sample processing, fluid handling, and detection for rapid bacterial diagnosis.

9.
Microorganisms ; 12(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674764

RESUMEN

The spread of antibiotic-resistant bacteria and the rise of emerging and re-emerging viruses in recent years constitute significant public health problems. Therefore, it is necessary to develop new antimicrobial strategies to overcome these challenges. Herein, we describe an innovative method to synthesize ligand-free silver nanoparticles by Pulsed Laser Ablation in Liquid (PLAL-AgNPs). Thus produced, nanoparticles were characterized by total X-ray fluorescence, zeta potential analysis, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the nanoparticles' cytotoxicity. Their potential was evaluated against the enveloped herpes simplex virus type 1 (HSV-1) and the naked poliovirus type 1 (PV-1) by plaque reduction assays and confirmed by real-time PCR and fluorescence microscopy, showing that nanoparticles interfered with the early stage of infection. Their action was also examined against different bacteria. We observed that the PLAL-AgNPs exerted a strong effect against both methicillin-resistant Staphylococcus aureus (S. aureus MRSA) and Escherichia coli (E. coli) producing extended-spectrum ß-lactamase (ESBL). In detail, the PLAL-AgNPs exhibited a bacteriostatic action against S. aureus and a bactericidal activity against E. coli. Finally, we proved that the PLAL-AgNPs were able to inhibit/degrade the biofilm of S. aureus and E. coli.

10.
Viruses ; 16(5)2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38793547

RESUMEN

Severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) has infected more than 762 million people to date and has caused approximately 7 million deaths all around the world, involving more than 187 countries. Although currently available vaccines show high efficacy in preventing severe respiratory complications in infected patients, the high number of mutations in the S proteins of the current variants is responsible for the high level of immune evasion and transmissibility of the virus and the reduced effectiveness of acquired immunity. In this scenario, the development of safe and effective drugs of synthetic or natural origin to suppress viral replication and treat acute forms of COVID-19 remains a valid therapeutic challenge. Given the successful history of flavonoids-based drug discovery, we developed esters of substituted cinnamic acids with quercetin to evaluate their in vitro activity against a broad spectrum of Coronaviruses. Interestingly, two derivatives, the 3,4-methylenedioxy 6 and the ester of acid 7, have proved to be effective in reducing OC43-induced cytopathogenicity, showing interesting EC50s profiles. The ester of synaptic acid 7 in particular, which is not endowed with relevant cytotoxicity under any of the tested conditions, turned out to be active against OC43 and SARS-CoV-2, showing a promising EC50. Therefore, said compound was selected as the lead object of further analysis. When tested in a yield reduction, assay 7 produced a significant dose-dependent reduction in viral titer. However, the compound was not virucidal, as exposure to high concentrations of it did not affect viral infectivity, nor did it affect hCoV-OC43 penetration into pre-treated host cells. Additional studies on the action mechanism have suggested that our derivative may inhibit viral endocytosis by reducing viral attachment to host cells.


Asunto(s)
Antivirales , Cinamatos , Ésteres , Quercetina , SARS-CoV-2 , Replicación Viral , Antivirales/farmacología , Antivirales/química , Quercetina/farmacología , Quercetina/química , Quercetina/análogos & derivados , Cinamatos/farmacología , Cinamatos/química , Ésteres/farmacología , Ésteres/química , Humanos , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Tratamiento Farmacológico de COVID-19 , Chlorocebus aethiops , Células Vero , COVID-19/virología , Línea Celular
11.
Asian Pac J Cancer Prev ; 24(2): 435-441, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36853290

RESUMEN

INTRODUCTION: Human papillomavirus (HPV) can infect both male and female genitals, skin, and mucous membranes, causing benign or malignant lesions. HPV is a common sexually transmitted infection and it is the main cause of cervical cancer. The present retrospective study updated the previously published data on HPV genotypes distribution among women living in Naples. MATERIALS AND METHODS: In this study, 502 cervical scrape specimens were collected from women with abnormal cytological indication and analyzed for HPV DNA identification by Linear Array HPV genotyping test. RESULTS: The HPV infection rate was 24.1%. HPV-16 (14.6%) was the most representative HR-HPV genotypes, followed by HPV-31 (13.8%), -18 (9.2%), and HPV-51 (8.5%). In addition, HPV-42 (16.4%) was the most prevalent genotype among LR-HPV  genotypes (low-risk human papillomavirus). It was also found that women at the age group of 23-29 years (42.5%) were at the highest risk of HPV infection. It was found that the HPV-16 frequency decreased, but HPV-31 and -18 frequency increased a little. The LR HPV-53 frequency decreased, leaving the first place for abundance to the LR HPV-42. HPV-6 frequency did not change. LR HPV -11 was no more present. Merging <23 and 23-29 age classes into one class followed the same result. CONCLUSION: HPV prevalence declined in comparison to the previous data. A frequency variation was recorded for several genotypes in this study.  Data can be useful to implement the preventative strategies and to promote HPV vaccination.


Asunto(s)
Infecciones por Papillomavirus , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Infecciones por Papillomavirus/epidemiología , Prevalencia , Estudios Retrospectivos , Virus del Papiloma Humano , Papillomaviridae/genética , Genotipo , Papillomavirus Humano 16
12.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37111266

RESUMEN

In recent years, the resistance of pathogenic microorganisms to common antimicrobial agents has raised to a severe public health problem. The moderate and wise use of antimicrobials and the prevention of infections are the most effective strategies for decreasing the spread and development of resistance. Therefore, the World Health Organization (WHO) has intensified the search for new drugs to fight emerging pathogens. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), play a crucial role in innate immunity, representing one of the first line of defense against microbial attacks. In this study, we evaluated the antibacterial activity of the AMP named Hylin-a1 (derived from the skin of the frog Heleioporus albopunctatus) against Staphylococcus aureus strains. S. aureus represents a commensal bacterium but also the principal causative agent of several human infections, including bacteremia, endocarditis, skin and device-related infections. Hylin-a1 toxicity was evaluated on human keratinocytes; once the non-cytotoxic concentration range was determined, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were analyzed, and time-killing assays were performed to verify the bacteriostatic and/or bactericidal activity of the peptide. We found that Hylin-a1 exerted a bacteriostatic action against most of the tested strains, with 90% inhibition at the concentration of 6.25 µM. Noteworthy, the peptide at a very low concentration (~3 µM) significantly blocked the growth of ß-lactam- and methicillin-resistant S. aureus. The levels of interleukin (IL)-1ß, IL-6 and IL-8 were quantified through a molecular assay, indicating that the peptide was able also to regulate the inflammatory response following bacterial infection. The effect of Hylin-a1 on S. aureus cell morphology was also evaluated. Altogether, these results indicate the high therapeutic potential of Hylin-a1 against a wide variety of clinical manifestations caused by S. aureus.

13.
Microorganisms ; 11(5)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37317320

RESUMEN

Herpes simplex virus (HSV) is widespread in the population, causing oral or genital ulcers and, rarely, severe complications such as encephalitis, keratitis, and neonatal herpes. Current available anti-HSV drugs are acyclovir and its derivatives, although long-term therapy with these agents can lead to drug resistance. Thus, the discovery of novel antiherpetic compounds merits additional studies. In recent decades, much scientific effort has been invested in the discovery of new synthetic or natural compounds with promising antiviral properties. In our study, we tested the antiviral potential of a novel polyphenol-based nutraceutical formulation (named Taurisolo®) consisting of a water polyphenol extract of grape pomace. The evaluation of the antiviral activity was carried out by using HSV-1 and HSV-2 in plaque assay experiments to understand the mechanism of action of the extract. Results were confirmed by real-time PCR, transmission electron microscope (TEM), and fluorescence microscope. Taurisolo® was able to block the viral infection by acting on cells when added together with the virus and also when the virus was pretreated with the extract, demonstrating an inhibitory activity directed to the early phases of HSV-1 and HSV-2 infection. Altogether, these data evidence for the first time the potential use of Taurisolo® as a topical formulation for both preventing and healing herpes lesions.

14.
Microorganisms ; 11(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37894104

RESUMEN

Emerging viruses pose an important global public health challenge, and early action is needed to control their spread. The Bunyaviridae family contains a great number of arboviruses which are potentially pathogenic for humans. For example, phleboviruses affect a large range of hosts, including humans and animals. Some infections usually have an asymptomatic course, but others lead to severe complications, such as Toscana virus, which is able to cause meningitis and encephalitis. Unfortunately, to date, no vaccines or antiviral treatments have been found. In the present study, we evaluated the effect of melittin-related peptides, namely the frog-derived RV-23 and AR-23, on sandfly fever Naples virus infection in vitro. Both peptides exhibited a strong antiviral activity by targeting the viral particles and blocking the virus-cell interaction. Their action was directed to an early phase of SFNV infection, in particular at viral adsorption on host cells, by interfering with the binding of common glycosaminoglycan receptors. Given the better antimicrobial behavior of AR-23 and RV-23 compared to melittin in terms of selectivity, our studies expand our understanding of the potential of these peptides as antimicrobials and stimulate further investigations in the direction of novel antiviral strategies against phlebovirus infection.

15.
Pharmaceutics ; 15(12)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38140131

RESUMEN

Fusion is a key event for enveloped viruses, through which viral and cell membranes come into close contact. This event is mediated by viral fusion proteins, which are divided into three structural and functional classes. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein belongs to class I fusion proteins, characterized by a trimer of helical hairpins and an internal fusion peptide (FP), which is exposed once fusion occurs. Many efforts have been directed at finding antivirals capable of interfering with the fusion mechanism, mainly by designing peptides on the two heptad-repeat regions present in class I viral fusion proteins. Here, we aimed to evaluate the anti-SARS-CoV-2 activity of the FP sequence conjugated to a tetravalent dendrimer through a classical organic nucleophilic substitution reaction (SN2) using a synthetic bromoacetylated peptide mimicking the FP and a branched scaffold of poly-L-Lysine functionalized with cysteine residues. We found that the FP peptide conjugated to the dendrimer, unlike the monomeric FP sequence, has virucidal activity by impairing the attachment of SARS-CoV-2 to cells. Furthermore, we found that the peptide dendrimer does not have the same effects on other coronaviruses, demonstrating that it is selective against SARS-CoV-2.

16.
Viruses ; 15(8)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37631991

RESUMEN

In a framework aimed at the recovery and enhancement of medicinal plants endemic to the territory of the Cilento and Vallo di Diano National Park, Lavandula austroapennina N.G. Passal., Tundis and Upson has aroused interest. An insight into the chemical composition of the corolla, calyx, leaf, stem, and root organs was carried out following ultrasound-assisted maceration in n-hexane. The obtained lipophilic extracts were explored using ultra-high-performance chromatography coupled to high-resolution mass spectrometry (UHPLC-ESI-QqTOF-MS/MS). The extracts from the different organs varied in their relative content of fatty acids, ursanes, and oleanane-type triterpenes. In particular, the oleanolic acid content appeared to increase in the order of corolla < leaf < stem. An MTT assay was performed to verify the possible cytotoxicity of the organ extracts of L. austroapennina at a concentration ranging from 12.5 to 400 µg/mL on the Vero CCL-81 cell line. Antiviral activity against herpes simplex virus type 1 (HSV-1), alpha human coronavirus 229E (HCoV-229E), and poliovirus type 1 (PV-1) was evaluated via a plaque reduction assay in the same cellular model. All the extracts did not show cytotoxic effects after 2 and 24 h exposure times, and the antiviral efficacy was particularly important for the stem extract, capable of completely inhibiting the tested viruses at low doses. The antiviral activity in a non-enveloped virus PV-1 allowed the assertion that the extracts from the organs of L. austroapennina, and especially the stem extract, interfered directly with the viral envelope. This study underlines how much knowledge of a territory's medicinal plant heritage is a harbinger of promising discoveries in the health field.


Asunto(s)
Gastrópodos , Lavandula , Ácido Oleanólico , Humanos , Animales , Antivirales/farmacología , Espectrometría de Masas en Tándem , Bioensayo , Extractos Vegetales/farmacología
17.
Pharmaceutics ; 15(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37376070

RESUMEN

The COVID-19 pandemic has made it clear that there is a crucial need for the design and development of antiviral agents that can efficiently reduce the fatality rate caused by infectious diseases. The fact that coronavirus mainly enters through the nasal epithelial cells and spreads through the nasal passage makes the nasal delivery of antiviral agents a promising strategy not only to reduce viral infection but also its transmission. Peptides are emerging as powerful candidates for antiviral treatments, showing not only a strong antiviral activity, but also improved safety, efficacy, and higher specificity against viral pathogens. Based on our previous experience on the use of chitosan-based nanoparticles to deliver peptides intra-nasally the current study aimed to explore the delivery of two-novel antiviral peptides making use of nanoparticles consisting of HA/CS and DS/CS. The antiviral peptides were chemically synthesized, and the optimal conditions for encapsulating them were selected through a combination of physical entrapment and chemical conjugation using HA/CS and DS/CS nanocomplexes. Finally, we evaluated the in vitro neutralization capacity against SARS-CoV-2 and HCoV-OC43 for potential use as prophylaxis or therapy.

18.
Cancers (Basel) ; 15(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38067286

RESUMEN

Cervical cancer ranks as the fourth most prevalent cancer among women globally, with approximately 600,000 new cases being diagnosed each year. The principal driver of cervical cancer is the human papillomavirus (HPV), where viral oncoproteins E6 and E7 undertake the role of driving its carcinogenic potential. Despite extensive investigative efforts, numerous facets concerning HPV infection, replication, and pathogenesis remain shrouded in uncertainty. The virus operates through a variety of epigenetic mechanisms, and the epigenetic signature of HPV-related tumors is a major bottleneck in our understanding of the disease. Recent investigations have unveiled the capacity of viral oncoproteins to influence epigenetic changes within HPV-related tumors, and conversely, these tumors exert an influence on the surrounding epigenetic landscape. Given the escalating occurrence of HPV-triggered tumors and the deficiency of efficacious treatments, substantial challenges emerge. A promising avenue to address this challenge lies in epigenetic modulators. This review aggregates and dissects potential epigenetic modulators capable of combatting HPV-associated infections and diseases. By delving into these modulators, novel avenues for therapeutic interventions against HPV-linked cancers have come to the fore.

19.
Pathogens ; 12(10)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37887704

RESUMEN

Staphylococci, including Staphylococcus aureus and Staphylococcus epidermidis, are important human pathogens associated with potentially life-threatening infections. Their great biofilm-producing ability and the development of resistance mechanisms often account for therapeutic failure. Hence, the scientific community has devoted intensive efforts to the development of antimicrobial compounds active against both planktonic and sessile bacterial populations. Contextually, antimicrobial peptides (AMPs) are natural peptides produced by the innate immunity of every organism, representing a potential new therapeutic solution against human microbial pathogens. Our work focused on the in vitro activity of Oreoch-1, an AMP from the gills of Nile tilapia (Oreochromis niloticus), against standard and clinical S. aureus and S. epidermidis strains. Firstly, the cytotoxicity profile of Oreoch-1 was determined in human colon carcinoma cells. Secondly, its antibacterial spectrum was explored against staphylococcal strains to set up the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Our results highlighted an antibacterial activity in the range 6.25-25 µM, with a general bacteriostatic effect. Therefore, the biofilm-inhibitory property was assessed against S. aureus ATCC 25923 and S. epidermidis ATCC 35984, indicating a significant reduction in S. aureus biomass at sub-MIC concentrations. Overall, our study indicates Oreoch-1 as a promising new therapeutic weapon against staphylococcal infections.

20.
Viruses ; 15(9)2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37766211

RESUMEN

Given the emergence of the coronavirus disease 2019 (COVID-19), zoonoses have raised in the spotlight of the scientific community. Animals have a pivotal role not only for this infection, but also for many other recent emerging and re-emerging viral diseases, where they may represent both intermediate hosts and/or vectors for zoonoses diffusion. Today, roughly two-thirds of human infections are derived from animal origins; therefore, the search for new broad-spectrum antiviral molecules is mandatory to prevent, control and eradicate future epidemic outbreaks. Host defense peptides, derived from skin secretions of amphibians, appear as the right alternative to common antimicrobial drugs. They are cationic peptides with an amphipathic nature widely described as antibacterial agents, but less is reported about their antiviral potential. In the present study, we evaluated the activity of five amphibian peptides, namely RV-23, AR-23, Hylin-a1, Deserticolin-1 and Hylaseptin-P1, against a wide panel of enveloped animal viruses. A strong virucidal effect was observed for RV-23, AR-23 and Hylin-a1 against bovine and caprine herpesviruses, canine distemper virus, bovine viral diarrhea virus, and Schmallenberg virus. Our results identified these three peptides as potential antiviral-led candidates with a putative therapeutic effect against several animal viruses.


Asunto(s)
COVID-19 , Virus , Animales , Humanos , Cabras , Zoonosis/prevención & control , Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA