RESUMEN
BACKGROUND: Protein phosphatase 2A (PP2A) is one of the major protein phosphatases in eukaryotic cells and is essential for cellular homeostasis. PP2A is a heterotrimer comprising the dimeric AC core enzyme and a highly variable regulatory B subunit. Distinct B subunits help the core enzyme gain full activity toward specific substrates and contribute to diverse cellular roles of PP2A. PP2A has been thought to play a tumor suppressor and the B56γ3 regulatory subunit was shown to play a key tumor suppressor regulatory subunit of PP2A. Nevertheless, we uncovered a molecular mechanism of how B56γ3 may act as an oncogene in colorectal cancer (CRC). METHODS: Polyclonal pools of CRC cells with stable B56γ3 overexpression or knockdown were generated by retroviral or lentiviral infection and subsequent drug selection. Co-immunoprecipitation(co-IP) and in vitro pull-down analysis were applied to analyze the protein-protein interaction. Transwell migration and invasion assays were applied to investigate the role of B56γ3 in affecting motility and invasive capability of CRC cells. The sensitivity of CRC cells to 5-fluorouracil (5-FU) was analyzed using the PrestoBlue reagent assay for cell viability. Immunohistochemistry (IHC) was applied to investigate the expression levels of phospho-AKT and B56γ3 in paired tumor and normal tissue specimens of CRC. DataSets of TCGA and GEO were analyzed to investigate the correlation of B56γ3 expression with overall survival rates of CRC patients. RESULTS: We showed that B56γ3 promoted epithelial-mesenchymal transition (EMT) and reduced the sensitivity of CRC cells to 5-FU through upregulating AKT activity. Mechanistically, B56γ3 upregulates AKT activity by targeting PP2A to attenuate the p70S6K-mediated negative feedback loop regulation on PI3K/AKT activation. B56γ3 was highly expressed and positively correlated with the level of phospho-AKT in tumor tissues of CRC. Moreover, high B56γ3 expression is associated with poor prognosis of a subset of patients with CRC. CONCLUSIONS: Our finding reveals that the B56γ3 regulatory subunit-containing PP2A plays an oncogenic role in CRC cells by sustaining AKT activation through suppressing p70S6K activity and suggests that the interaction between B56γ3 and p70S6K may serve as a therapeutic target for CRC. Video Abstract.
Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Humanos , Proteína Fosfatasa 2 , Proteínas Proto-Oncogénicas c-akt , Retroalimentación , Proteínas Quinasas S6 Ribosómicas 70-kDa , Fosfatidilinositol 3-Quinasas , FluorouraciloRESUMEN
The non-linear voltage-dependent hysteresis (Hys(V)) of voltage-gated ionic currents can be robustly activated by the isosceles-triangular ramp voltage (Vramp) through digital-to-analog conversion. Perturbations on this Hys(V) behavior play a role in regulating membrane excitability in different excitable cells. A variety of small molecules may influence the strength of Hys(V) in different types of ionic currents elicited by long-lasting triangular Vramp. Pirfenidone, an anti-fibrotic drug, decreased the magnitude of Ih's Hys(V) activated by triangular Vramp, while dexmedetomidine, an agonist of α2-adrenoceptors, effectively suppressed Ih as well as diminished the Hys(V) strength of Ih. Oxaliplatin, a platinum-based anti-neoplastic drug, was noted to enhance the Ih's Hys(V) strength, which is thought to be linked to the occurrence of neuropathic pain, while honokiol, a hydroxylated biphenyl compound, decreased Ih's Hys(V). Cell exposure to lutein, a xanthophyll carotenoid, resulted in a reduction of Ih's Hys(V) magnitude. Moreover, with cell exposure to UCL-2077, SM-102, isoplumbagin, or plumbagin, the Hys(V) strength of erg-mediated K+ current activated by triangular Vramp was effectively diminished, whereas the presence of either remdesivir or QO-58 respectively decreased or increased Hys(V) magnitude of M-type K+ current. Zingerone, a methoxyphenol, was found to attenuate Hys(V) (with low- and high-threshold loops) of L-type Ca2+ current induced by long-lasting triangular Vramp. The Hys(V) properties of persistent Na+ current (INa(P)) evoked by triangular Vramp were characterized by a figure-of-eight (i.e., ∞) configuration with two distinct loops (i.e., low- and high-threshold loops). The presence of either tefluthrin, a pyrethroid insecticide, or t-butyl hydroperoxide, an oxidant, enhanced the Hys(V) strength of INa(P). However, further addition of dapagliflozin can reverse their augmenting effects in the Hys(V) magnitude of the current. Furthermore, the addition of esaxerenone, mirogabalin, or dapagliflozin was effective in inhibiting the strength of INa(P). Taken together, the observed perturbations by these small-molecule modulators on Hys(V) strength in different types of ionic currents evoked during triangular Vramp are expected to influence the functional activities (e.g., electrical behaviors) of different excitable cells in vitro or in vivo.
Asunto(s)
Amino Alcoholes , Caprilatos , Transporte Iónico , SodioRESUMEN
Carbamazepine (CBZ, Tegretol®) is an anticonvulsant used in the treatment of epilepsy and neuropathic pain; however, several unwanted effects of this drug have been noticed. Therefore, the regulatory actions of CBZ on ionic currents in electrically excitable cells need to be reappraised, although its efficacy in suppressing voltage-gated Na+ current (INa) has been disclosed. This study was undertaken to explore the modifications produced by CBZ on ionic currents (e.g., INa and erg-mediated K+ current [IK(erg)]) measured from Neuro-2a (N2a) cells. In these cells, we found that this drug differentially suppressed the peak (transient, INa(T)) and sustained (late, INa(L)) components of INa in a concentration-dependent manner with effective IC50 of 56 and 18 µM, respectively. The overall current-voltage relationship of INa(T) with or without the addition of CBZ remained unchanged; however, the strength (i.e., ∆area) in the window component of INa (INa(W)) evoked by the short ascending ramp pulse (Vramp) was overly lessened in the CBZ presence. Tefluthrin (Tef), a synthetic pyrethroid, known to stimulate INa, augmented the strength of the voltage-dependent hysteresis (Hys(V)) of persistent INa (INa(P)) in response to the isosceles-triangular Vramp; moreover, further application of CBZ attenuated Tef-mediated accentuation of INa(P)'s Hys(V). With a two-step voltage protocol, the recovery of INa(T) inactivation seen in Neuro-2a cells became progressively slowed by adding CBZ; however, the cumulative inhibition of INa(T) evoked by pulse train stimulation was enhanced during exposure to this drug. Neuro-2a-cell exposure to CBZ (100 µM), the magnitude of erg-mediated K+ current measured throughout the entire voltage-clamp steps applied was mildly inhibited. The docking results regarding the interaction of CBZ and voltage-gate Na+ (NaV) channel predicted the ability of CBZ to bind to some amino-acid residues in NaV due to the existence of a hydrogen bond or hydrophobic contact. It is conceivable from the current investigations that the INa (INa(T), INa(L), INa(W), and INa(P)) residing in Neuro-2a cells are susceptible to being suppressed by CBZ, and that its block on INa(L) is larger than that on INa(T). Collectively, the magnitude and gating of NaV channels produced by the CBZ presence might have an impact on its anticonvulsant and analgesic effects occurring in vivo.
Asunto(s)
Anticonvulsivantes , Cresta Neural , Animales , Anticonvulsivantes/farmacología , Benzodiazepinas , Carbamazepina/farmacología , Línea Celular , Ratones , SodioRESUMEN
The effects of lacosamide (LCS, Vimpat®), an anti-convulsant and analgesic, on voltage-gated Na+ current (INa) were investigated. LCS suppressed both the peak (transient, INa(T)) and sustained (late, INa(L)) components of INa with the IC50 values of 78 and 34 µM found in GH3 cells and of 112 and 26 µM in Neuro-2a cells, respectively. In GH3 cells, the voltage-dependent hysteresis of persistent INa (INa(P)) during the triangular ramp pulse was strikingly attenuated, and the decaying time constant (τ) of INa(T) or INa(L) during a train of depolarizing pulses was further shortened by LCS. The recovery time course from the INa block elicited by the preceding conditioning train can be fitted by two exponential processes, while the single exponential increase in current recovery without a conditioning train was adequately fitted. The fast and slow τ's of recovery from the INa block by the same conditioning protocol arose in the presence of LCS. In Neuro-2a cells, the strength of the instantaneous window INa (INa(W)) during the rapid ramp pulse was reduced by LCS. This reduction could be reversed by tefluthrin. Moreover, LCS accelerated the inactivation time course of INa activated by pulse train stimulation, and veratridine reversed its decrease in the decaying τ value in current inactivation. The docking results predicted the capability of LCS binding to some amino-acid residues in sodium channels owing to the occurrence of hydrophobic contact. Overall, our findings unveiled that LCS can interact with the sodium channels to alter the magnitude, gating, voltage-dependent hysteresis behavior, and use dependence of INa in excitable cells.
Asunto(s)
Canales de Sodio , Sodio , Iones/metabolismo , Lacosamida/farmacología , Sodio/metabolismo , VeratridinaRESUMEN
The nucleolus is the cellular site of ribosomal (r)DNA transcription and ribosome biogenesis. The 58-kDa microspherule protein (MSP58) is a nucleolar protein involved in rDNA transcription and cell proliferation. However, regulation of MSP58-mediated rDNA transcription remains unknown. Using a yeast two-hybrid system with MSP58 as bait, we isolated complementary (c)DNA encoding Rad50-interacting protein 1 (RINT-1), as a MSP58-binding protein. RINT-1 was implicated in the cell cycle checkpoint, membrane trafficking, Golgi apparatus and centrosome dynamic integrity, and telomere length control. Both in vitro and in vivo interaction assays showed that MSP58 directly interacts with RINT-1. Interestingly, microscopic studies revealed the co-localization of MSP58, RINT-1, and the upstream binding factor (UBF), a rRNA transcription factor, in the nucleolus. We showed that ectopic expression of MSP58 or RINT-1 resulted in decreased rRNA expression and rDNA promoter activity, whereas knockdown of MSP58 or RINT-1 by siRNA exerted the opposite effect. Coexpression of MSP58 and RINT-1 robustly decreased rRNA synthesis compared to overexpression of either protein alone, whereas depletion of RINT-1 from MSP58-transfected cells enhanced rRNA synthesis. We also found that MSP58, RINT-1, and the UBF were associated with the rDNA promoter using a chromatin immunoprecipitation assay. Because aberrant ribosome biogenesis contributes to neoplastic transformation, our results revealed a novel protein complex involved in the regulation of rRNA gene expression, suggesting a role for MSP58 and RINT-1 in cancer development.
Asunto(s)
Proteínas de Ciclo Celular/genética , ADN Ribosómico/genética , Fibroblastos/metabolismo , Proteínas Nucleares/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Ribosómico/genética , Proteínas de Unión al ARN/genética , Transcripción Genética , Proteínas de Ciclo Celular/metabolismo , Fraccionamiento Celular , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Citosol/metabolismo , ADN Ribosómico/metabolismo , Fibroblastos/citología , Regulación de la Expresión Génica , Humanos , Proteínas Nucleares/metabolismo , Biogénesis de Organelos , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Ribosómico/biosíntesis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Técnicas del Sistema de Dos HíbridosRESUMEN
BACKGROUND: MSP58 is a nucleolar protein associated with rRNA transcription and cell proliferation. Its mechanism of translocation into the nucleus or the nucleolus, however, is not entirely known. In order to address this lack, the present study aims to determine a crucial part of this mechanism: the nuclear localization signal (NLS) and the nucleolar localization signal (NoLS) associated with the MSP58 protein. RESULTS: We have identified and characterized two NLSs in MSP58. The first is located between residues 32 and 56 (NLS1) and constitutes three clusters of basic amino acids (KRASSQALGTIPKRRSSSRFIKRKK); the second is situated between residues 113 and 123 (NLS2) and harbors a monopartite signal (PGLTKRVKKSK). Both NLS1 and NLS2 are highly conserved among different vertebrate species. Notably, one bipartite motif within the NLS1 (residues 44-56) appears to be absolutely necessary for MSP58 nucleolar localization. By yeast two-hybrid, pull-down, and coimmunoprecipitation analysis, we show that MSP58 binds to importin α1 and α6, suggesting that nuclear targeting of MSP58 utilizes a receptor-mediated and energy-dependent import mechanism. Functionally, our data show that both nuclear and nucleolar localization of MSP58 are crucial for transcriptional regulation on p21 and ribosomal RNA genes, and context-dependent effects on cell proliferation. CONCLUSIONS: Results suggest that MSP58 subnuclear localization is regulated by two nuclear import signals, and that proper subcellular localization of MSP58 is critical for its role in transcriptional regulation. Our study reveals a molecular mechanism that controls nuclear and nucleolar localization of MSP58, a finding that might help future researchers understand the MSP58 biological signaling pathway.
Asunto(s)
Núcleo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Nucléolo Celular/metabolismo , Humanos , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/química , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Alineación de SecuenciaRESUMEN
BACKGROUND: Fas-associated factor 1 (FAF1) is a multidomain protein that interacts with diverse partners to affect numerous cellular processes. Previously, we discovered two Small Ubiquitin-like Modifier (SUMO)-interacting motifs (SIMs) within FAF1 that are crucial for transcriptional modulation of mineralocorticoid receptor. Recently, we identified Sin3A-associated protein 130 (SAP130), a putative sumoylated protein, as a candidate FAF1 interaction partner by yeast two-hybrid screening. However, it remained unclear whether SAP130 sumoylation might occur and functionally interact with FAF1. RESULTS: In this study, we first show that SAP130 can be modified by SUMO1 at Lys residues 794, 878 and 932 both in vitro and in vivo. Mutation of these three SUMO-accepting Lys residues to Ala had no impact on SAP130 association with Sin3A or its nuclear localization, but the mutations abrogated the association of SAP130 with the FAF1. The mutations also potentiated SAP130 trans-repression activity and attenuated SAP130-mediated promotion of cell growth. Additionally, SUMO1-modified SAP130 was less stable than unmodified SAP130. Transient transfection experiments further revealed that FAF1 mitigated the trans-repression and cell proliferation-promoting functions of SAP130, and promoted SAP130 degradation by enhancing its polyubiquitination in a sumoylation-dependent manner. CONCLUSIONS: Together, these results demonstrate that sumoylation of SAP130 regulates its biological functions and that FAF1 plays a crucial role in controlling the SUMO-dependent regulation of transcriptional activity and protein stability of SAP130.
Asunto(s)
Sumoilación , Factores de Transcripción , Factores de Transcripción/metabolismo , Ubiquitinación , Estabilidad ProteicaRESUMEN
New agents are needed that selectively kill cancer cells without harming normal tissues. The TRAIL ligand and its receptors, DR5 and DR4, exhibit cancer-selective toxicity, but TRAIL analogs or agonistic antibodies targeting these receptors have not received FDA approval for cancer therapy. Small molecules for activating DR5 or DR4 independently of protein ligands may bypass some of the pharmacological limitations of these protein drugs. Previously described Disulfide bond Disrupting Agents (DDAs) activate DR5 by altering its disulfide bonding through inhibition of the Protein Disulfide Isomerases (PDIs) ERp44, AGR2, and PDIA1. Work presented here extends these findings by showing that disruption of single DR5 disulfide bonds causes high-level DR5 expression, disulfide-mediated clustering, and activation of Caspase 8-Caspase 3 mediated pro-apoptotic signaling. Recognition of the extracellular domain of DR5 by various antibodies is strongly influenced by the pattern of DR5 disulfide bonding, which has important implications for the use of agonistic DR5 antibodies for cancer therapy. Disulfide-defective DR5 mutants do not activate the ER stress response or stimulate autophagy, indicating that these DDA-mediated responses are separable from DR5 activation and pro-apoptotic signaling. Importantly, other ER stressors, including Thapsigargin and Tunicamycin also alter DR5 disulfide bonding in various cancer cell lines and in some instances, DR5 mis-disulfide bonding is potentiated by overriding the Integrated Stress Response (ISR) with inhibitors of the PERK kinase or the ISR inhibitor ISRIB. These observations indicate that the pattern of DR5 disulfide bonding functions as a sensor of ER stress and serves as an effector of proteotoxic stress by driving extrinsic apoptosis independently of extracellular ligands.
RESUMEN
Neonatal meningitis Escherichia coli (NMEC) is the most common Gram-negative organism that is associated with neonatal meningitis, which usually develops as a result of hematogenous spread of the bacteria. There are two key pathogenesis processes for NMEC to penetrate into the brain, the essential step for the development of E. coli meningitis: a high-level bacteremia and traversal of the blood-brain barrier (BBB). Our previous study has shown that the bacterial outer membrane protein NlpI contributes to NMEC binding to and invasion of brain microvascular endothelial cells, the major component cells of the BBB, suggesting a role for NlpI in NMEC crossing of the BBB. In this study, we showed that NlpI is involved in inducing a high level of bacteremia. In addition, NlpI contributed to the recruitment of the complement regulator C4bp to the surface of NMEC to evade serum killing, which is mediated by the classical complement pathway. NlpI may be involved in the interaction between C4bp and OmpA, which is an outer membrane protein that directly interacts with C4bp on the bacterial surface. The involvement of NlpI in two key pathogenesis processes of NMEC meningitis may make this bacterial factor a potential target for prevention and therapy of E. coli meningitis.
Asunto(s)
Bacteriemia/microbiología , Vía Clásica del Complemento/fisiología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Lipoproteínas/metabolismo , Animales , Animales Recién Nacidos , Bacteriemia/sangre , Bacteriemia/inmunología , Complemento C3b , Vía Clásica del Complemento/inmunología , Modelos Animales de Enfermedad , Escherichia coli/genética , Infecciones por Escherichia coli/inmunología , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Ratones , Mutación , Neutrófilos/inmunología , Distribución Aleatoria , Suero , Factores de TiempoRESUMEN
The transcription factor NF-κB (nuclear factor κB) co-ordinates various gene expressions in response to diverse signals and is a critical regulator of inflammation and innate immunity. Several negative regulators of NF-κB have been identified as downstream targets of NF-κB and function as a feedback control of NF-κB activation. A few protein phosphatases have also been shown to inactivate NF-κB activation. However, little is known about how protein phosphatases detect and respond to NF-κB activation. In the present study, we report a regulatory subunit of PP5 (protein phosphatase 5), G4-1, that physically interacts with IKKß [IκB (inhibitor of NF-κB) kinase ß] and negatively regulates NF-κB activation. The association of G4-1 with IKKß depends on the kinase activity of IKKß. Mapping of the G4-1-binding domain of IKKß reveals that the serine-rich domain in the C-terminus of IKKß is required for G4-1 binding. When seven autophosphorylated serine residues in this domain were mutated to alanine, the mutant form of IKKß lost its ability to bind G4-1 and was more potent than the wild-type kinase to activate NF-κB. Knockdown of G4-1 enhanced TNFα (tumour necrosis factor α)-induced NF-κB activity, and knockdown of PP5 totally abolished the inhibitory activity of G4-1 on NF-κB activation. The results of the present study suggest that G4-1 functions as an adaptor to recruit PP5 to the phosphorylated C-terminus of activated IKKß and to down-regulate the activation of IKKß.
Asunto(s)
Quinasa I-kappa B/fisiología , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Sitios de Unión , Activación Enzimática , Humanos , FN-kappa B/inmunología , Fosforilación , Unión Proteica , Subunidades de Proteína , Transporte de Proteínas , Serina , Factor de Necrosis Tumoral alfaRESUMEN
BACKGROUND AND OBJECTIVES: To investigate the pathogenicity of 2 novel KDM5C variations, report the clinical and neuroimaging findings, and review the available literature. METHODS: Physical examinations, structural neuroimaging studies, and exome sequence analysis were performed. KDM5C constructs were used to study the effect of the variations in transfected cells. RESULTS: We identified 2 novel variations c.2233C>G and c.3392_3393delAG in the KDM5C gene harboring from 2 Chinese families with X-linked intellectual disability (ID). The affected male patients exhibited severe ID, short stature, and facial dysmorphism. The 1 with c.3392_3393delAG additionally had epilepsy and autistic spectrum disorder (ASD). Transiently transfected mutant KDM5C constructs both reduced protein expression and stability and decreased histone demethylase activities in cells. Reviewing the available literature, we found that the associated ASD tended to occur in patients with variations near the C-terminus of KDM5C. DISCUSSION: We report the clinical, molecular genetic, and pathologic features in patients with novel variations of KDM5C. The variability of the clinical phenotype in addition to an ID may associate with altered particular parts of KDM5C.
RESUMEN
The prognosis of patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer has considerably improved. However, no reliable treatment besides anti-HER2 strategies has been available. FTY720, a small-molecule compound used for treating refractory multiple sclerosis, has been reported to have beneficial effects against cancers. We therefore evaluated the efficacy of FTY720 in trastuzumab-resistant breast cancer cells and investigated the possible mechanism involved. This study evaluated morphological changes after FTY720 treatment. Antiproliferative WST-1 assays and LDH Cytotoxicity Assay Kits were used to determine the treatment effects of drugs, whereas Western blot analysis was used to evaluate protein expression. Apoptotic events were investigated through annexin V staining and TUNEL assays using flow cytometry. FTY720 was effective in trastuzumab-resistant breast cancer cell lines despite the presence of PIK3CA mutation. Studied on a xenograft mouse model, FTY720-treated groups had statistically significantly poorer HCC1954 xenograft growth in vivo compared with the control group. Our findings suggest that FTY720 can overcome resistance to trastuzumab therapy in patients with HER2-positive breast cancer, with FTY720 plus trastuzumab might offer even better efficacy in vitro and in vivo.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Clorhidrato de Fingolimod/administración & dosificación , Receptor ErbB-2/genética , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Receptor ErbB-2/metabolismo , Trastuzumab/administración & dosificación , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Breast cancer mortality remains unacceptably high, indicating a need for safer and more effective therapeutic agents. Disulfide bond Disrupting Agents (DDAs) were previously identified as a novel class of anticancer compounds that selectively kill cancers that overexpress the Epidermal Growth Factor Receptor (EGFR) or its family member HER2. DDAs kill EGFR+ and HER2+ cancer cells via the parallel downregulation of EGFR, HER2, and HER3 and activation/oligomerization of Death Receptors 4 and 5 (DR4/5). However, the mechanisms by which DDAs mediate these effects are unknown. Affinity purification analyses employing biotinylated-DDAs reveal that the Protein Disulfide Isomerase (PDI) family members AGR2, PDIA1, and ERp44 are DDA target proteins. Further analyses demonstrate that shRNA-mediated knockdown of AGR2 and ERp44, or expression of ERp44 mutants, enhance basal DR5 oligomerization. DDA treatment of breast cancer cells disrupts PDIA1 and ERp44 mixed disulfide bonds with their client proteins. Together, the results herein reveal DDAs as the first small molecule, active site inhibitors of AGR2 and ERp44, and demonstrate roles for AGR2 and ERp44 in regulating the activity, stability, and localization of DR4 and DR5, and activation of Caspase 8.
Asunto(s)
Neoplasias de la Mama , Disulfuros , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Muerte Celular , Disulfuros/metabolismo , Disulfuros/uso terapéutico , Receptores ErbB/metabolismo , Femenino , Humanos , Proteínas de la Membrana , Chaperonas Moleculares/metabolismo , Mucoproteínas , Proteínas Oncogénicas/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Proteínas , Receptores de Muerte CelularRESUMEN
Protein phosphatase 2A (PP2A) is a heterotrimeric enzyme consisting of a scaffold subunit (A), a catalytic subunit (C), and a variable regulatory subunit (B). The regulatory B subunits determine the substrate specificity and subcellular localization of the PP2A holoenzyme. Here, we demonstrate that the subcellular localization of the B56gamma3 regulatory subunit is regulated in a cell cycle-specific manner. Notably, B56gamma3 becomes enriched in the nucleus at the G(1)/S border and in S phase. The S phase-specific nuclear enrichment of B56gamma3 is accompanied by increases of nuclear A and C subunits and nuclear PP2A activity. Overexpression of B56gamma3 promotes nuclear localization of the A and C subunits, whereas silencing both B56gamma2 and B56gamma3 blocks the S phase-specific increase in the nuclear localization and activity of PP2A. In NIH3T3 cells, B56gamma3 overexpression reduces p27 phosphorylation at Thr-187, concomitantly elevates p27 protein levels, delays the G(1) to S transition, and retards cell proliferation. Consistently, knockdown of endogenous B56gamma3 expression reduces p27 protein levels and increases cell proliferation in HeLa cells. These findings demonstrate that the dynamic nuclear distribution of the B56gamma3 regulatory subunit controls nuclear PP2A activity, which regulates cell cycle controllers, such as p27, to restrain cell cycle progression, and may be responsible for the tumor suppressor function of PP2A.
Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteína Fosfatasa 2/metabolismo , Transporte Activo de Núcleo Celular , Animales , Dominio Catalítico , Ciclo Celular , Proliferación Celular , Fase G1 , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/fisiología , Fase S , Fracciones Subcelulares/metabolismoRESUMEN
Hypoxic-ischemic (HI) encephalopathy is the major cause of mortality and disability in newborns. The neurovascular unit is a major target of acute and chronic brain injury, and therapies that protect simultaneously both neurons and vascular endothelial cells from neonatal HI injury are in demand. Insulin receptors and its key downstream molecule-insulin receptor substrate -1 (IRS-1) are potential neuroprotective targets and expressed both in neuron and endothelial cells. To investigate whether IRS-1 can act similarly in neurons and vascular endothelial cells in protecting neurovascular units and brain form HI injury, we found that neuron-specific IRS-1 transgenic rats showed reduced neurovascular injury and infarct volumes, whereas endothelial-specific IRS-1 transgenic rats showed increased blood-brain barrier (BBB) disruption and exaggerated neurovascular injury after neonatal HI brain injury. Endothelial-specific IRS-1 overexpression increased vascular permeability and disassembled the tight junction protein (zonula occludens-1) complex. Inhibition of mammalian target of rapamycin (mTOR) by rapamycin preserved tight junction proteins and attenuated BBB leakage and neuronal apoptosis after HI in the endothelial-specific IRS-1 transgenic pups. Together, our findings suggested that neuronal and endothelial IRS-1 had opposite effects on the neurovascular integrity and damage after neonatal HI brain injury and that endothelial IRS-1 worsens neurovascular integrity after HI via mTOR-mediated tight junction protein disassembly.
RESUMEN
To investigate the molecular mechanisms of arsenic (As)-associated carcinogenesis, we performed proteomic analysis on E7 immortalized human uroepithelial cells after treatment with As in vitro. Quantitative proteomics was performed using stable isotope dimethyl labeling coupled with two-dimensional liquid chromatography peptide separation and mass spectrometry (MS)/MS analysis. Among 285 proteins, a total of 26 proteins were upregulated (ratio>2.0) and 18 proteins were downregulated (ratio<0.65) by As treatment, which are related to nucleotide binding, lipid metabolism, protein folding, protein biosynthesis, transcription, DNA repair, cell cycle control, and signal transduction. This study reports the potential significance of nucleophosmin (NPM) in the As-related bladder carcinogenesis. NPM was universally expressed in all of uroepithelial cell lines examined, implying that NPM may play a role in human bladder carcinogenesis. Upregulation of NPM tends to be dose- and time-dependent after As treatment. Expression of NPM was associated with cell proliferation, migration and anti-apoptosis. On the contrary, soy isoflavones inhibited the expression of NPM in vitro. The results suggest that NPM may play a role in the As-related bladder carcinogenesis, and soybean-based foods may have potential in the suppression of As/NPM-related tumorigenesis.
Asunto(s)
Arsénico/toxicidad , Carcinógenos/toxicidad , Proteínas Nucleares/fisiología , Proteómica , Neoplasias de la Vejiga Urinaria/inducido químicamente , Secuencia de Bases , Western Blotting , Línea Celular Tumoral , Cromatografía Liquida , Cartilla de ADN , Humanos , Nucleofosmina , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Espectrometría de Masas en Tándem , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
The sperm annulus, a septin-based ring structure, is important for reproductive physiology. It is composed of SEPT12-based septin core complex followed by assembling as octameric filament. In clinical examinations, mutations of Septin12 result in male infertility, immotile sperm, as well as sperm with defective annuli. The dynamic assembly of septin filaments is regulated by several post-translational modifications, including sumoylation, acetylation, and phosphorylation. Here, we briefly review the biological significance and the regulation of SEPT12 phosphorylation in the mammalian sperm physiology. During mammalian spermiogenesis, the phosphorylation of SEPT12 on Ser198 residue is important in regulating mammalian annulus architectures. SEPT12 phosphomimetic knock-in mice displayed poor male fertility due to weak sperm motility and loss of the sperm annulus. SEPT12 is phosphorylated via Protein kinase A (PKA), and its phosphorylation interfered with SEPT12 polymerization into complexes and filaments. Taken together, the phosphorylation status of SEPT12 is crucial for its function in regulating the mammalian sperm physiology.
Asunto(s)
Septinas/metabolismo , Animales , Humanos , Infertilidad Masculina , Masculino , Ratones , Fosforilación , Septinas/genética , Motilidad Espermática/genética , Motilidad Espermática/fisiología , Espermatogénesis/genética , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Espermatozoides/fisiologíaRESUMEN
Fas-associated factor 1 (FAF1) was originally isolated as a Fas-associated factor and was subsequently found to interact with numerous other proteins that are involved in various cellular events including Fas-mediated apoptosis, nuclear factor (NF)-κB, Wnt/ß-catenin, and transforming growth factor (TGF)-ß signaling pathways, mineralocorticoid receptor (MR)-mediated transactivation, and ubiquitin-dependent processes. Herein, we defined two small ubiquitin-like modifier (SUMO)-interacting motifs (SIMs) within FAF1 and demonstrated to be crucial for transcriptional modulation of the MR. Our study demonstrated that the SIMs of FAF1 do not play a significant role in regulating its subcellular localization, Fas-mediated apoptosis, or NF-κB or Wnt/ß-catenin pathways. Remarkably, FAF1 interacts with the sumoylated MR and represses aldosterone-activated MR transactivation in a SIM-dependent manner. Moreover, silencing of endogenous FAF1 in cells resulted in an increase in the induction of MR target genes by aldosterone, indicating that FAF1 functions as an MR co-repressor. We further provide evidence to suggest that the mechanisms of FAF1/SIM-mediated MR transrepression involve inhibition of MR N/C interactions and promotion of MR polyubiquitination and degradation. Sumoylation has been linked to impacting of repressive properties on several transcription factors and cofactors. Our findings therefore provide mechanistic insights underlying SUMO-dependent transcriptional repression of the MR.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales/genética , Aldosterona/farmacología , Secuencias de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Transporte de Proteínas , Receptores de Mineralocorticoides/agonistas , Receptores de Mineralocorticoides/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/efectos de los fármacos , Sumoilación/genéticaRESUMEN
While HER2 and EGFR are overexpressed in breast cancers and multiple other types of tumors, the use of EGFR and/or HER2 inhibitors have failed to cure many cancer patients, largely because cancers acquire resistance to HER2/EGFR-specific drugs. Cancers that overexpress the HER-family proteins EGFR, HER2, and HER3 are uniquely sensitive to agents that disrupt HER2 and EGFR protein folding. We previously showed that disruption of disulfide bond formation by Disulfide Disrupting Agents (DDAs) kills HER2/EGFR overexpressing cells through multiple mechanisms. Herein, we show that interference with proline isomerization in HER2/EGFR overexpressing cells also induces cancer cell death. The peptidyl-prolyl isomerase inhibitor Cyclosporine A (CsA) selectively kills EGFR+ or HER2+ breast cancer cells in vitro by activating caspase-dependent apoptotic pathways. Further, CsA synergizes with the DDA tcyDTDO to kill HER2/EGFR overexpressing cells in vitro and the two agents cooperate to kill HER2+ tumors in vivo. There is a critical need for novel strategies to target HER2+ and EGFR+ cancers that are resistant to currently available mechanism-based agents. Drugs that target HER2/EGFR protein folding, including DDAs and CsA, have the potential to kill cancers that overexpress EGFR or HER2 through the induction of proteostatic synthetic lethality.