Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34561305

RESUMEN

Endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR) signaling promote the pathology of many human diseases. Loss-of-function variants of the UPR regulator Activating Transcription Factor 6 (ATF6) cause severe congenital vision loss diseases such as achromatopsia by unclear pathomechanisms. To investigate this, we generated retinal organoids from achromatopsia patient induced pluripotent stem cells carrying ATF6 disease variants and from gene-edited ATF6 null hESCs. We found that achromatopsia patient and ATF6 null retinal organoids failed to form cone structures concomitant with loss of cone phototransduction gene expression, while rod photoreceptors developed normally. Adaptive optics retinal imaging of achromatopsia patients carrying ATF6 variants also showed absence of cone inner/outer segment structures but preserved rod structures, mirroring the defect in cone formation observed in our retinal organoids. These results establish that ATF6 is essential for human cone development. Interestingly, we find that a selective small molecule ATF6 signaling agonist restores the transcriptional activity of some ATF6 disease-causing variants and stimulates cone growth and gene expression in patient retinal organoids carrying these variants. These findings support that pharmacologic targeting of the ATF6 pathway can promote human cone development and should be further explored for blinding retinal diseases.


Asunto(s)
Factor de Transcripción Activador 6/genética , Defectos de la Visión Cromática/genética , Retina/citología , Células Fotorreceptoras Retinianas Conos/patología , Factor de Transcripción Activador 6/agonistas , Factor de Transcripción Activador 6/metabolismo , Opsinas de los Conos/genética , Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Organoides , Retina/diagnóstico por imagen , Células Fotorreceptoras Retinianas Conos/fisiología , Visión Ocular/genética
2.
Proc Natl Acad Sci U S A ; 114(2): 400-405, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028229

RESUMEN

Achromatopsia is an autosomal recessive disorder characterized by cone photoreceptor dysfunction. We recently identified activating transcription factor 6 (ATF6) as a genetic cause of achromatopsia. ATF6 is a key regulator of the unfolded protein response. In response to endoplasmic reticulum (ER) stress, ATF6 migrates from the ER to Golgi to undergo regulated intramembrane proteolysis to release a cytosolic domain containing a basic leucine zipper (bZIP) transcriptional activator. The cleaved ATF6 fragment migrates to the nucleus to transcriptionally up-regulate protein-folding enzymes and chaperones. ATF6 mutations in patients with achromatopsia include missense, nonsense, splice site, and single-nucleotide deletion or duplication changes found across the entire gene. Here, we comprehensively tested the function of achromatopsia-associated ATF6 mutations and found that they group into three distinct molecular pathomechanisms: class 1 ATF6 mutants show impaired ER-to-Golgi trafficking and diminished regulated intramembrane proteolysis and transcriptional activity; class 2 ATF6 mutants bear the entire ATF6 cytosolic domain with fully intact transcriptional activity and constitutive induction of downstream target genes, even in the absence of ER stress; and class 3 ATF6 mutants have complete loss of transcriptional activity because of absent or defective bZIP domains. Primary fibroblasts from patients with class 1 or class 3 ATF6 mutations show increased cell death in response to ER stress. Our findings reveal that human ATF6 mutations interrupt distinct sequential steps of the ATF6 activation mechanism. We suggest that increased susceptibility to ER stress-induced damage during retinal development underlies the pathology of achromatopsia in patients with ATF6 mutations.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/metabolismo , Mutación/genética , Muerte Celular/genética , Línea Celular , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Fibroblastos/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Transcripción Genética/genética
3.
Adv Exp Med Biol ; 1185: 305-310, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884629

RESUMEN

Activating transcription factor 6 (ATF6) is a key regulator of the unfolded protein response (UPR). In response to endoplasmic reticulum (ER) stress, ATF6 is transported from the ER to the Golgi apparatus where it is cleaved by intramembrane proteolysis, releasing its cytosolic fragment. The cleaved ATF6 fragment, which is a basic leucine zipper (bZip) transcription factor, translocates to the nucleus and upregulates the expression of ER protein-folding chaperones and enzymes. Mutations in ATF6 cause heritable forms of cone photoreceptor dysfunction diseases. These mutations include missense, nonsense, splice site, and deletion or duplication changes found across the entire ATF6. To date, there are 11 ATF6 mutations reported, and we classified them into three classes based on their functional defects that interrupt distinct steps in the ATF6 signaling pathway.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Transducción de Señal , Estrés del Retículo Endoplásmico , Aparato de Golgi , Humanos , Mutación , Pliegue de Proteína
4.
Sensors (Basel) ; 17(12)2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29206162

RESUMEN

A submicron pixel's light and dark performance were studied by experiment and simulation. An advanced node technology incorporated with a stacked CMOS image sensor (CIS) is promising in that it may enhance performance. In this work, we demonstrated a low dark current of 3.2 e-/s at 60 °C, an ultra-low read noise of 0.90 e-·rms, a high full well capacity (FWC) of 4100 e-, and blooming of 0.5% in 0.9 µm pixels with a pixel supply voltage of 2.8 V. In addition, the simulation study result of 0.8 µm pixels is discussed.

5.
Am J Pathol ; 185(7): 1800-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25956028

RESUMEN

Eukaryotic cells fold and assemble membrane and secreted proteins in the endoplasmic reticulum (ER), before delivery to other cellular compartments or the extracellular environment. Correctly folded proteins are released from the ER, and poorly folded proteins are retained until they achieve stable conformations; irreparably misfolded proteins are targeted for degradation. Diverse pathological insults, such as amino acid mutations, hypoxia, or infection, can overwhelm ER protein quality control, leading to misfolded protein buildup, causing ER stress. To cope with ER stress, eukaryotic cells activate the unfolded protein response (UPR) by increasing levels of ER protein-folding enzymes and chaperones, enhancing the degradation of misfolded proteins, and reducing protein translation. In mammalian cells, three ER transmembrane proteins, inositol-requiring enzyme-1 (IRE1; official name ERN1), PKR-like ER kinase (PERK; official name EIF2AK3), and activating transcription factor-6, control the UPR. The UPR signaling triggers a set of prodeath programs when the cells fail to successfully adapt to ER stress or restore homeostasis. ER stress and UPR signaling are implicated in the pathogenesis of diverse diseases, including neurodegeneration, cancer, diabetes, and inflammation. This review discusses the current understanding in both adaptive and apoptotic responses as well as the molecular mechanisms instigating apoptosis via IRE1 and PERK signaling. We also examine how IRE1 and PERK signaling may be differentially used during neurodegeneration arising in retinitis pigmentosa and prion infection.


Asunto(s)
Apoptosis , Retículo Endoplásmico/metabolismo , Células Eucariotas/fisiología , Transducción de Señal , Respuesta de Proteína Desplegada , Animales , Distinciones y Premios , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Humanos , Mamíferos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Patología , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Sociedades Médicas , Estados Unidos , eIF-2 Quinasa/metabolismo
6.
Adv Exp Med Biol ; 854: 185-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26427410

RESUMEN

RHO (Rod opsin) encodes a G-protein coupled receptor that is expressed exclusively by rod photoreceptors of the retina and forms the essential photopigment, rhodopsin, when coupled with 11-cis-retinal. Many rod opsin disease -mutations cause rod opsin protein misfolding and trigger endoplasmic reticulum (ER) stress, leading to activation of the Unfolded Protein Response (UPR) signal transduction network. Chop is a transcriptional activator that is induced by ER stress and promotes cell death in response to chronic ER stress. Here, we examined the role of Chop in transgenic mice expressing human P23H rhodopsin (hP23H Rho Tg) that undergo retinal degeneration. With the exception of one time point, we found no significant induction of Chop in these animals and no significant change in retinal degeneration by histology and electrophysiology when hP23H Rho Tg animals were bred into a Chop (-/-) background. Our results indicate that Chop does not play a significant causal role during retinal degeneration in these animals. We suggest that other modules of the ER stress-induced UPR signaling network may be involved photoreceptor disease induced by P23H rhodopsin.


Asunto(s)
Degeneración Retiniana/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Rodopsina/genética , Factor de Transcripción CHOP/genética , Animales , Supervivencia Celular/genética , Electrorretinografía , Expresión Génica , Humanos , Ratones Noqueados , Ratones Transgénicos , Degeneración Retiniana/metabolismo , Degeneración Retiniana/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rodopsina/metabolismo , Factor de Transcripción CHOP/deficiencia , Transgenes/genética
7.
J Virol ; 88(4): 2071-82, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24307586

RESUMEN

In certain sporadic, familial, and infectious prion diseases, the prion protein misfolds and aggregates in skeletal muscle in addition to the brain and spinal cord. In myocytes, prion aggregates accumulate intracellularly, yet little is known about clearance pathways. Here we investigated the clearance of prion aggregates in muscle of transgenic mice that develop prion disease de novo. In addition to neurodegeneration, aged mice developed a degenerative myopathy, with scattered myocytes containing ubiquitinated, intracellular prion inclusions that were adjacent to myocytes lacking inclusions. Myocytes also showed elevated levels of the endoplasmic reticulum chaperone Grp78/BiP, suggestive of impaired protein degradation and endoplasmic reticulum stress. Additionally, autophagy was induced, as indicated by increased levels of beclin-1 and LC3-II. In C2C12 myoblasts, inhibition of autophagosome maturation or lysosomal degradation led to enhanced prion aggregation, consistent with a role for autophagy in prion aggregate clearance. Taken together, these findings suggest that the induction of autophagy may be a central strategy for prion aggregate clearance in myocytes. IMPORTANCE In prion diseases, the prion protein misfolds and aggregates in the central nervous system and sometimes in other organs, including muscle, yet the cellular pathways of prion aggregate clearance are unclear. Here we investigated the clearance of prion aggregates in the muscle of a transgenic mouse model that develops profound muscle degeneration. We found that endoplasmic reticulum stress pathways were activated and that autophagy was induced. Blocking of autophagic degradation in cell culture models led to an accumulation of aggregated prion protein. Collectively, these findings suggest that autophagy has an instrumental role in prion protein clearance.


Asunto(s)
Autofagia/fisiología , Músculo Esquelético/fisiopatología , Enfermedades por Prión/fisiopatología , Animales , Western Blotting , Cartilla de ADN/genética , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Inmunohistoquímica , Ratones , Ratones Transgénicos , Células Musculares/metabolismo , Reacción en Cadena de la Polimerasa
8.
Adv Exp Med Biol ; 801: 661-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24664756

RESUMEN

Many mutations in rhodopsin gene linked to retinitis pigmentosa (RP) cause rhodopsin misfolding. Rod photoreceptor cells expressing misfolded rhodopsin eventually die. Identifying mechanisms to prevent rhodopsin misfolding or to remove irreparably misfolded rhodopsin could provide new therapeutic strategies. IRE1, ATF6, and PERK signaling pathways, collectively called the unfolded protein response (UPR), regulate the functions of endoplasmic reticulum, responsible for accurate folding of membrane proteins such as rhodopsin. We used chemical and genetic approaches to selectively activate IRE1, ATF6, or PERK signaling pathways one at a time and analyzed their effects on mutant rhodopsin linked to RP. We found that both artificial IRE1 and ATF6 signaling promoted the degradation of mutant rhodopsin with lesser effects on wild-type rhodopsin. Furthermore, IRE1 and ATF6 signaling preferentially reduced levels of aggregated rhodopsins. By contrast, PERK signaling reduced levels of wild-type and mutant rhodopsin. These studies indicate that activation of either IRE1, ATF6, or PERK prevents mutant rhodopsin from accumulating in the cells. In addition, activation of IRE1 or ATF6 can selectively remove aggregated or mutant rhodopsin from the cells and may be useful in treating RP associated with rhodopsin protein misfolding.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Retinitis Pigmentosa/metabolismo , Rodopsina/metabolismo , Transducción de Señal/fisiología , eIF-2 Quinasa/metabolismo , Humanos , Deficiencias en la Proteostasis/metabolismo , Degeneración Retiniana/metabolismo
9.
Dis Model Mech ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813692

RESUMEN

Vertebrate photoreceptors are highly specialized retinal neurons that have cilium-derived membrane organelles called outer segments (OS), which function as platforms for phototransduction. Male germ cell-associated kinase (MAK) is a cilium-associated serine/threonine kinase, and its genetic mutation causes photoreceptor degeneration in mice and retinitis pigmentosa in humans. However, the role of MAK in photoreceptors is not fully understood. Here, we report that zebrafish mak mutants show rapid photoreceptor degeneration during embryonic development. In mak mutants, both cone and rod photoreceptors completely lack OSs and undergo apoptosis. Interestingly, zebrafish mak mutants fail to generate axonemes during photoreceptor ciliogenesis, whereas basal bodies are specified. These data suggest that MAK contributes to axoneme development in zebrafish, in contrast to mouse Mak mutants, which have elongated photoreceptor axonemes. Furthermore, the kinase activity of MAK is critical in ciliary axoneme development and photoreceptor survival. Thus, MAK is required for ciliogenesis and OS formation in zebrafish photoreceptors to ensure intracellular protein transport and photoreceptor survival.

10.
Sci Rep ; 12(1): 17405, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36258031

RESUMEN

Rhodopsin is essential for phototransduction, and many rhodopsin mutations cause heritable retinal degenerations. The P23H rhodopsin variant generates a misfolded rhodopsin protein that photoreceptors quickly target for degradation by mechanisms that are incompletely understood. To gain insight into how P23H rhodopsin is removed from rods, we used mass spectrometry to identify protein interaction partners of P23H rhodopsin immunopurified from RhoP23H/P23H mice and compared them with protein interaction partners of wild-type rhodopsin from Rho+/+ mice. We identified 286 proteins associated with P23H rhodopsin and 276 proteins associated with wild-type rhodopsin. 113 proteins were shared between wild-type and mutant rhodopsin protein interactomes. In the P23H rhodopsin protein interactome, we saw loss of phototransduction, retinal cycle, and rhodopsin protein trafficking proteins but gain of ubiquitin-related proteins when compared with the wild-type rhodopsin protein interactome. In the P23H rhodopsin protein interactome, we saw enrichment of gene ontology terms related to ER-associated protein degradation, ER stress, and translation. Protein-protein interaction network analysis revealed that translational and ribosomal quality control proteins were significant regulators in the P23H rhodopsin protein interactome. The protein partners identified in our study may provide new insights into how photoreceptors recognize and clear mutant rhodopsin, offering possible novel targets involved in retinal degeneration pathogenesis.


Asunto(s)
Degeneración Retiniana , Rodopsina , Ratones , Animales , Rodopsina/genética , Rodopsina/metabolismo , ARN Mensajero/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Degeneración Retiniana/patología , Mutación , Control de Calidad , Ubiquitinas/metabolismo , Biología , Modelos Animales de Enfermedad
11.
JCI Insight ; 5(7)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32271167

RESUMEN

Achromatopsia (ACHM) is an autosomal recessive disease that results in severe visual loss. Symptoms of ACHM include impaired visual acuity, nystagmus, and photoaversion starting from infancy; furthermore, ACHM is associated with bilateral foveal hypoplasia and absent or severely reduced cone photoreceptor function on electroretinography. Here, we performed genetic sequencing in 3 patients from 2 families with ACHM, identifying and functionally characterizing 2 mutations in the activating transcription factor 6 (ATF6) gene. We identified a homozygous deletion covering exons 8-14 of the ATF6 gene from 2 siblings from the same family. In another patient from a different family, we identified a heterozygous deletion covering exons 2 and 3 of the ATF6 gene found in trans with a previously identified ATF6 c.970C>T (p.Arg324Cys) ACHM disease allele. Recombinant ATF6 proteins bearing these exon deletions showed markedly impaired transcriptional activity by qPCR and RNA-Seq analysis compared with WT-ATF6. Finally, RNAscope revealed that ATF6 and the related ATF6B transcripts were expressed in cones as well as in all retinal layers in normal human retina. Overall, our data identify loss-of-function ATF6 disease alleles that cause human foveal disease.


Asunto(s)
Factor de Transcripción Activador 6/genética , Alelos , Secuencia de Bases , Defectos de la Visión Cromática/genética , Exones , Eliminación de Secuencia , Adolescente , Femenino , Células HEK293 , Humanos , Masculino
12.
FEBS J ; 286(2): 399-412, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29802807

RESUMEN

The human eye is the organ that is able to react to light in order to provide sharp three-dimensional and colored images. Unfortunately, the health of the eye can be impacted by various stimuli that can lead to vision loss, such as environmental changes, genetic mutations, or aging. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling have been detected in many diverse ocular diseases, and chemical and genetic approaches to modulate ER stress and specific UPR regulatory molecules have shown beneficial effects in animal models of eye disease. This review highlights specific eye diseases associated with ER stress and UPR activity, based on a recent symposia exploring this theme.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/patología , Oftalmopatías/fisiopatología , Ojo/metabolismo , Respuesta de Proteína Desplegada , Animales , Retículo Endoplásmico/metabolismo , Humanos , Transducción de Señal
13.
Biochemistry ; 47(33): 8775-85, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18656957

RESUMEN

Human NTPDase 2 is a cell surface integral membrane glycoprotein that is anchored to the membranes by two transmembrane domains while the bulk of the protein containing the active site faces the extracellular milieu. It contains 10 conserved cysteine residues in the extracellular domain that are involved in disulfide bond formation and one free cysteine residue, C26, which is located in the N-terminal transmembrane domain. The human NTPDase 2 activity is inactivated by membrane perturbation that disrupts interaction of the transmembrane domains and is inhibited by p-chloromercuriphenylsulfonate (pCMPS), a sulfhydryl reagent. In this report, we show that C26 is the target of pCMPS modification, since a mutant in which C26 was replaced with a serine was no longer inhibited by pCMPS. Mutants in which cysteine residues are placed in the C-terminal transmembrane domain near the extracellular surface were still modified by pCMPS, but the degree of inhibition of their ATPase activity was lower than that of the wild-type enzyme. Thus, loss of the ATPase activity of human NTPDase 2 in the presence of pCMPS probably results from the disturbance of both transmembrane domain interaction and its active site. Inhibition of human NTPDase 2 activity by pCMPS and membrane perturbation is attenuated when the enzyme is cross-linked by glutaraldehyde. On the other hand, NTPDase 2 dimers formed from oxidative cross-linking of the wild-type enzyme and mutants containing a single cysteine residue in the C-terminal transmembrane domain displayed reduced ATPase activity. A similar reduction in activity was also obtained upon intramolecular disulfide formation in mutants that contain a cysteine residue in each of the two transmembrane domains. These results indicate that the mobility of the transmembrane helices is necessary for maximal catalysis.


Asunto(s)
4-Cloromercuribencenosulfonato/química , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Membrana Celular/química , Cisteína/química , 4-Cloromercuribencenosulfonato/farmacología , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Cisteína/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción , Estructura Terciaria de Proteína
14.
Arch Biochem Biophys ; 472(2): 89-99, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18295590

RESUMEN

Human NTPDase2 and chicken NTPDase8 are cell surface nucleotidases that contain two transmembrane domains (TMD) and five apyrase conserved regions (ACRs). ACR1 is located near the N-terminal TMD whereas ACR5 is located near the C-terminal TMD. The human NTPDase2 activity is decreased by low concentration of NP-40 and at temperatures higher than 37 degrees C, and undergoes substrate inactivation, whereas the chicken NTPDase8 activity is not. When freed from membrane anchorage, the soluble human NTPDase2 is no longer inactivated by detergents, high temperature, and substrate. These characteristics are retained in the hu-ck ACR1,5 chimera in which the extracellular domain is anchored to the membrane by the two TMDs of the chicken NTPDase8. The hu-ck ACR1,5 chimera is the first chimeric NTPDase reported that shows a resistance to membrane perturbation and substrate inactivation. Our results indicate that the strengths of interaction of the respective TMD pairs of the human NTPDase2 and chicken NTPDase8 determine their different responses to membrane perturbation and substrate.


Asunto(s)
Adenosina Trifosfatasas/química , Apirasa/química , Membrana Celular/química , Adenosina Difosfato/química , Adenosina Trifosfato/química , Animales , Pollos , Activación Enzimática , Humanos , Octoxinol , Polietilenglicoles/química , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Especificidad por Sustrato , Temperatura
15.
Sci Signal ; 11(517)2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440509

RESUMEN

ATF6 encodes a transcription factor that is anchored in the endoplasmic reticulum (ER) and activated during the unfolded protein response (UPR) to protect cells from ER stress. Deletion of the isoform activating transcription factor 6α (ATF6α) and its paralog ATF6ß results in embryonic lethality and notochord dysgenesis in nonhuman vertebrates, and loss-of-function mutations in ATF6α are associated with malformed neuroretina and congenital vision loss in humans. These phenotypes implicate an essential role for ATF6 during vertebrate development. We investigated this hypothesis using human stem cells undergoing differentiation into multipotent germ layers, nascent tissues, and organs. We artificially activated ATF6 in stem cells with a small-molecule ATF6 agonist and, conversely, inhibited ATF6 using induced pluripotent stem cells from patients with ATF6 mutations. We found that ATF6 suppressed pluripotency, enhanced differentiation, and unexpectedly directed mesodermal cell fate. Our findings reveal a role for ATF6 during differentiation and identify a new strategy to generate mesodermal tissues through the modulation of the ATF6 arm of the UPR.


Asunto(s)
Factor de Transcripción Activador 6/genética , Diferenciación Celular/genética , Mesodermo/metabolismo , Respuesta de Proteína Desplegada/genética , Factor de Transcripción Activador 6/agonistas , Factor de Transcripción Activador 6/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mesodermo/citología , Mutación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
17.
Eur J Hum Genet ; 25(11): 1210-1216, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28812650

RESUMEN

Inherited retinal dystrophies (IRDs) are clinically and genetically highly heterogeneous, making clinical diagnosis difficult. The advances in high-throughput sequencing (ie, panel, exome and genome sequencing) have proven highly effective on defining the molecular basis of these disorders by identifying the underlying variants in the respective gene. Here we report two siblings affected by an IRD phenotype and a novel homozygous c.1691A>G (p.(Asp564Gly)) ATF6 (activating transcription factor 6A) missense substitution identified by whole exome sequencing analysis. The pathogenicity of the variant was confirmed by functional analyses done on patients' fibroblasts and on recombinant p.(Asp564Gly) protein. The ATF6Asp564Gly/Asp564Gly variant shows impaired production of the ATF6 cleaved transcriptional activator domain in response to endoplasmic reticulum stress. Detailed phenotypic examination revealed extinguished cone responses but also decreased rod responses together with the ability to discriminate some colours suggestive rather for cone-rod dystrophy than achromatopsia.


Asunto(s)
Factor de Transcripción Activador 6/genética , Distrofias de Conos y Bastones/genética , Mutación Missense , Factor de Transcripción Activador 6/metabolismo , Células Cultivadas , Niño , Distrofias de Conos y Bastones/patología , Exoma , Femenino , Homocigoto , Humanos , Masculino , Hermanos
18.
Brain Res ; 1648(Pt B): 538-541, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27117871

RESUMEN

Photoreceptors are specialized sensory neurons essential for light detection in the human eye. Photoreceptor cell dysfunction and death cause vision loss in many eye diseases such as retinitis pigmentosa and achromatopsia. Endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR) signaling have been implicated in the development and pathology of heritable forms of retinitis pigmentosa and achromatopsia. We review the role of ER stress and UPR in retinitis pigmentosa arising from misfolded rhodopsins (RHO) and in achromatopsia arising from genetic mutations in Activating Transcription Factor 6 (ATF6). This article is part of a Special Issue entitled SI:ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Células Fotorreceptoras de Vertebrados/patología , Células Fotorreceptoras de Vertebrados/fisiología , Enfermedades de la Retina/patología , Factor de Transcripción Activador 6/genética , Estrés del Retículo Endoplásmico/genética , Humanos , Mutación/genética , Enfermedades de la Retina/genética , Enfermedades de la Retina/fisiopatología , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología
19.
Invest Ophthalmol Vis Sci ; 56(11): 6961-70, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26513501

RESUMEN

PURPOSE: Endoplasmic reticulum (ER) stress activates inositol requiring enzyme 1 (IRE1), a key regulator of the unfolded protein response. The ER stress activated indicator (ERAI) transgenic mouse expresses a yellow fluorescent GFP variant (Venus) when IRE1 is activated by ER stress. We tested whether ERAI mice would allow for real-time longitudinal studies of ER stress in living mouse eyes. METHODS: We chemically and genetically induced ER stress, and qualitatively and quantitatively studied the Venus signal by fluorescence ophthalmoscopy. We determined retinal cell types that contribute to the signal by immunohistology, and we performed molecular and biochemical assays using whole retinal lysates to assess activity of the IRE1 pathway. RESULTS: We found qualitative increase in vivo in fluorescence signal at sites of intravitreal tunicamycin injection in ERAI eyes, and quantitative increase in ERAI mice mated to RhoP23H mice expressing ER stress-inducing misfolded rhodopsin protein. As expected, we found that increased Venus signal arose primarily from photoreceptors in RhoP23H/+;ERAI mice. We found increased Xbp1S and XBP1s transcriptional target mRNA levels in RhoP23H/+;ERAI retinas compared to Rho+/+;ERAI retinas, and that Venus signal increased in ERAI retinas as a function of age. CONCLUSIONS: Fluorescence ophthalmoscopy of ERAI mice enables in vivo visualization of retinas undergoing ER stress. ER stress activated indicator mice enable identification of individual retinal cells undergoing ER stress by immunohistochemistry. ER stress activated indicator mice show higher Venus signal at older ages, likely arising from amplification of basal retinal ER stress levels by GFP's inherent stability.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retina/diagnóstico por imagen , Animales , Retículo Endoplásmico/diagnóstico por imagen , Retículo Endoplásmico/patología , Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estudios Longitudinales , Proteínas de la Membrana/análisis , Proteínas de la Membrana/fisiología , Ratones , Ratones Transgénicos , Oftalmoscopía , Reacción en Cadena de la Polimerasa , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/fisiología , Retina/química , Retina/efectos de los fármacos , Retina/patología , Retina/fisiología , Transducción de Señal/fisiología , Tomografía de Coherencia Óptica , Tunicamicina/farmacología , Ultrasonografía
20.
Mol Neurobiol ; 52(1): 679-95, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25270370

RESUMEN

Rhodopsin is a G protein-coupled receptor essential for vision and rod photoreceptor viability. Disease-associated rhodopsin mutations, such as P23H rhodopsin, cause rhodopsin protein misfolding and trigger endoplasmic reticulum (ER) stress, activating the unfolded protein response (UPR). The pathophysiologic effects of ER stress and UPR activation on photoreceptors are unclear. Here, by examining P23H rhodopsin knock-in mice, we found that the UPR inositol-requiring enzyme 1 (IRE1) signaling pathway is strongly activated in misfolded rhodopsin-expressing photoreceptors. IRE1 significantly upregulated ER-associated protein degradation (ERAD), triggering pronounced P23H rhodopsin degradation. Rhodopsin protein loss occurred as soon as photoreceptors developed, preceding photoreceptor cell death. By contrast, IRE1 activation did not affect JNK signaling or rhodopsin mRNA levels. Interestingly, pro-apoptotic signaling from the PERK UPR pathway was also not induced. Our findings reveal that an early and significant pathophysiologic effect of ER stress in photoreceptors is the highly efficient elimination of misfolded rhodopsin protein. We propose that early disruption of rhodopsin protein homeostasis in photoreceptors could contribute to retinal degeneration.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Rodopsina/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Estrés del Retículo Endoplásmico , Técnicas de Sustitución del Gen , Inmunoprecipitación , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/metabolismo , Retina/patología , Retina/ultraestructura , Segmento Interno de las Células Fotorreceptoras Retinianas/metabolismo , Segmento Interno de las Células Fotorreceptoras Retinianas/patología , Segmento Interno de las Células Fotorreceptoras Retinianas/ultraestructura , Rodopsina/genética , Transducción de Señal , Factor de Transcripción CHOP/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA