Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(1): 011806, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841544

RESUMEN

We report on the direct search for cosmic relic neutrinos using data acquired during the first two science campaigns of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the end point at 18.57 keV. The analysis is sensitive to a local relic neutrino overdensity ratio of η<9.7×10^{10}/α (1.1×10^{11}/α) at a 90% (95%) confidence level with α=1 (0.5) for Majorana (Dirac) neutrinos. A fit of the integrated electron spectrum over a narrow interval around the end point accounting for relic neutrino captures in the tritium source reveals no significant overdensity. This work improves the results obtained by the previous neutrino mass experiments at Los Alamos and Troitsk. We furthermore update the projected final sensitivity of the KATRIN experiment to η<1×10^{10}/α at 90% confidence level, by relying on updated operational conditions.

2.
Phys Rev Lett ; 126(9): 091803, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33750167

RESUMEN

We report on the light sterile neutrino search from the first four-week science run of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are analyzed by a high-resolution MAC-E filter down to 40 eV below the endpoint at 18.57 keV. We consider the framework with three active neutrinos and one sterile neutrino. The analysis is sensitive to the mass, m_{4}, of the fourth mass state for m_{4}^{2}≲1000 eV^{2} and to active-to-sterile neutrino mixing down to |U_{e4}|^{2}≳2×10^{-2}. No significant spectral distortion is observed and exclusion bounds on the sterile mass and mixing are reported. These new limits supersede the Mainz results for m_{4}^{2}≲1000 eV^{2} and improve the Troitsk bound for m_{4}^{2}<30 eV^{2}. The reactor and gallium anomalies are constrained for 100<Δm_{41}^{2}<1000 eV^{2}.

3.
Phys Rev Lett ; 123(22): 221802, 2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31868426

RESUMEN

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation.

4.
Data Brief ; 54: 110554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38882191

RESUMEN

To advance high-energy atmospheric physics, studying atmospheric electric fields (AEF) and cosmic ray fluxes as an interconnected system is crucial. At Mt. Argats, simultaneous measurements of particle fluxes, electric fields, weather conditions, and lightning locations have significantly enhanced the validation of models that describe the charge structures of thunderclouds and the mechanics of internal electron accelerators. In 2023, observations of the five largest thunderstorm ground enhancements (TGEs) revealed electric fields exceeding 2.0 kV/cm at elevations just tens of meters above ground-potentially hazardous to rockets and aircraft during launch and charging operations. Utilizing simple yet effective monitoring equipment developed at Aragats, we can mitigate the risks posed by these high-intensity fields. The Mendeley dataset, comprising various measured parameters during thunderstorm activities, enables researchers to perform advanced correlation analysis and uncover complex relationships between these atmospheric phenomena. This study underscores the critical importance of integrated atmospheric studies for ensuring the safety of high-altitude operations and advancing atmospheric science.

5.
Sci Rep ; 9(1): 6253, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000757

RESUMEN

The natural electron accelerator in the clouds above Aragats high-altitude research station in Armenia operates continuously in 2017 providing more than 100 Thunderstorm Ground enhancements (TGEs). Most important discovery based on analysis of 2017 data is observation and detailed description of the long-lasting TGEs. We present TGE catalog for 2 broad classes according to presence or absence of the high-energy particles. In the catalog was summarized several key parameters of the TGEs and related meteorological and atmospheric discharge observations. The statistical analysis of the data collected in tables reveals the months when TGEs are more frequent, the daytime when TGEs mostly occurred, the mean distance to lightning flash that terminates TGE and many other interesting relations. Separately was discussed the sharp count rate decline and following removal of high-energy particles from the TGE flux after a lightning flash. ADEI multivariate visualization and statistical analysis platform make analytical work on sophisticated problems rather easy; one can try and test many hypotheses very fast and come to a definite conclusion allowing crosscheck and validation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA