Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674968

RESUMEN

Multiple Sclerosis (MS) is, to date, an incurable disease of the nervous system characterized by demyelination. Several genetic mutations are associated with the disease but they are not able to explain all the diagnosticated cases. Thus, it is suggested that altered gene expression may play a role in human pathologies. In this review, we explored the role of the transcriptomic profile in MS to investigate the main altered biological processes and pathways involved in the disease. Herein, we focused our attention on RNA-seq methods that in recent years are producing a huge amount of data rapidly replacing microarrays, both with bulk and single-cells. The studies evidenced that different MS stages have specific molecular signatures and non-coding RNAs may play a key role in the disease. Sex-dependence was observed before and after treatments used to alleviate symptomatology activating different biological processes in a drug-dependent manner. New pathways, such as neddylation, were found deregulated in MS and inflammation was linked to neuron degeneration areas through spatial transcriptomics. It is evident that the use of RNA-seq in the study of complex pathologies, such as MS, is a valid strategy to shed light on new involved mechanisms.


Asunto(s)
Esclerosis Múltiple , Transcriptoma , Humanos , Esclerosis Múltiple/genética , Perfilación de la Expresión Génica , RNA-Seq
2.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298437

RESUMEN

Cannabinoids, natural or synthetic, have antidepressant, anxiolytic, anticonvulsant, and anti-psychotic properties. Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied cannabinoids, but recently, attention has turned towards minor cannabinoids. Delta-8-tetrahydrocannabinol (Δ8-THC), an isomer of Δ9-THC, is a compound for which, to date, there is no evidence of its role in the modulation of synaptic pathways. The aim of our work was to evaluate the effects of Δ8-THC on differentiated SH-SY5Y human neuroblastoma cells. Using next generation sequencing (NGS), we investigated whether Δ8-THC could modify the transcriptomic profile of genes involved in synapse functions. Our results showed that Δ8-THC upregulates the expression of genes involved in the glutamatergic pathway and inhibits gene expression at cholinergic synapses. Conversely, Δ8-THC did not modify the transcriptomic profile of genes involved in the GABAergic and dopaminergic pathways.


Asunto(s)
Cannabidiol , Cannabinoides , Neuroblastoma , Humanos , Dronabinol/farmacología , Regulación hacia Arriba , Transcriptoma , Neuroblastoma/genética , Cannabinoides/farmacología , Cannabidiol/farmacología
3.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37047608

RESUMEN

Alzheimer's disease (AD) represents the most common form of dementia, characterized by amyloid ß (Aß) plaques and neurofibrillary tangles (NFTs). It is characterized by neuroinflammation, the accumulation of misfolded protein, ER stress and neuronal apoptosis. It is of main importance to find new therapeutic strategies because AD prevalence is increasing worldwide. Cannabinoids are arising as promising neuroprotective phytocompounds. In this study, we evaluated the neuroprotective potential of Δ8-THC pretreatment in an in vitro model of AD through transcriptomic analysis. We found that Δ8-THC pretreatment restored the loss of cell viability in retinoic acid-differentiated neuroblastoma SH-SY5Y cells treated with Aß1-42. Moreover, the transcriptomic analysis provided evidence that the enriched biological processes of gene ontology were related to ER functions and proteostasis. In particular, Aß1-42 upregulated genes involved in ER stress and unfolded protein response, leading to apoptosis as demonstrated by the increase in Bax and the decrease in Bcl-2 both at gene and protein expression levels. Moreover, genes involved in protein folding and degradation were also deregulated. On the contrary, Δ8-THC pretreatment reduced ER stress and, as a consequence, neuronal apoptosis. Then, the results demonstrated that Δ8-THC might represent a new neuroprotective agent in AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Fármacos Neuroprotectores , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/toxicidad , Apoptosis , Línea Celular Tumoral , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fragmentos de Péptidos/farmacología , Transcriptoma , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico
4.
Int J Mol Sci ; 23(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35563628

RESUMEN

Alzheimer's disease (AD) is an incurable neurodegenerative disease diagnosed by clinicians through healthcare records and neuroimaging techniques. These methods lack sensitivity and specificity, so new antemortem non-invasive strategies to diagnose AD are needed. Herein, we designed a machine learning predictor based on transcriptomic data obtained from the blood of AD patients and individuals without dementia (non-AD) through an 8 × 60 K microarray. The dataset was used to train different models with different hyperparameters. The support vector machines method allowed us to reach a Receiver Operating Characteristic score of 93% and an accuracy of 89%. High score levels were also achieved by the neural network and logistic regression methods. Furthermore, the Gene Ontology enrichment analysis of the features selected to train the model along with the genes differentially expressed between the non-AD and AD transcriptomic profiles shows the "mitochondrial translation" biological process to be the most interesting. In addition, inspection of the KEGG pathways suggests that the accumulation of ß-amyloid triggers electron transport chain impairment, enhancement of reactive oxygen species and endoplasmic reticulum stress. Taken together, all these elements suggest that the oxidative stress induced by ß-amyloid is a key feature trained by the model for the prediction of AD with high accuracy.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Inteligencia Artificial , Disfunción Cognitiva/diagnóstico , Humanos , Estrés Oxidativo/genética , Transcriptoma
5.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35886896

RESUMEN

Cannabis sativa L. proved to be a source of several phytocompounds able to help patients facing different diseases. Moreover, these phytocompounds can help ameliorate general conditions and control certain unpleasant effects of diseases. Some cannabinoids, however, provided more benefits applicable to settings other than palliative care. Using the NSC-34 cell line, we evaluated the barely known phytocompound named cannabinerol (CBNR) at different doses, in order to understand its unique characteristics and the ones shared with other cannabinoids. The transcriptomic analysis suggests a possible ongoing neuronal differentiation, principally due to the activation of cannabinoid receptor 1 (CB1), to which the phosphorylation of serine-threonine protein kinase (Akt) followed, especially between 20 and 7.5 µM. The increase of Neurod1 and Map2 genes at 7.5 µM, accompanied by a decrease of Vim, as well as the increase of Syp at all the other doses, point toward the initiation of differentiation signals. Our preliminary results indicate CBNR as a promising candidate to be added to the list of cannabinoids with neuronal differentiation-enhancer properties. However, further studies are needed to confirm this initial insight.


Asunto(s)
Cannabinoides , Neurogénesis , Cannabinoides/farmacología , Cannabis , Diferenciación Celular/efectos de los fármacos , Humanos , Neurogénesis/efectos de los fármacos , Proteínas Serina-Treonina Quinasas , Receptor Cannabinoide CB1 , Transcriptoma
6.
Molecules ; 27(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36080415

RESUMEN

Recently, the scientific community has started to focus on the neurogenic potential of cannabinoids. The phytocompound cannabidiol (CBD) shows different mechanism of signaling on cannabinoid receptor 1 (CB1), depending on its concentration. In this study, we investigated if CBD may induce in vitro neuronal differentiation after treatment at 5 µM and 10 µM. For this purpose, we decided to use the spinal cord × neuroblastoma hybrid cell line (NSC-34) because of its proliferative and undifferentiated state. The messenger RNAs (mRNAs) expression profiles were tested using high-throughput sequencing technology and Western blot assay was used to determine the number of main proteins in different pathways. Interestingly, the treatment shows different genes associated with neurodifferentiation statistically significant, such as Rbfox3, Tubb3, Pax6 and Eno2. The CB1 signaling pathway is responsible for neuronal differentiation at 10 µM, as suggested by the presence of p-ERK and p-AKT, but not at 5 µM. A new correlation between CBD, neurodifferentiation and retinoic acid receptor-related orphan receptors (RORs) has been observed.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabidiol/metabolismo , Cannabidiol/farmacología , Cannabinoides/farmacología , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal
7.
Medicina (Kaunas) ; 58(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35454332

RESUMEN

Background and objectives: Alzheimer's disease (AD) is the most common form of dementia characterized by memory loss and executive dysfunction. To date, no markers can effectively predict the onset of AD and an early diagnosis is increasingly necessary. Age represents an important risk factor for the disease but it is not known whether it is the trigger event. Materials and Methods: We downloaded transcriptomic data related to post-mortem brain of thirty samples gathered as young without AD (Young), old without AD (Old), and old suffering from AD (OAD) groups. Results: Our results showed that steroid biosynthesis was enriched and associated with aging, while sphingolipid metabolism was related to both aging and AD. Specifically, sphingolipid metabolism is involved in the deregulation of CERS2, UGT8, and PLPP2. These genes are downregulated in Young and Old groups as compared with upregulated between Old and OAD groups. Moreover, the analysis of the interaction networks revealed that GABAergic synapse and Hippo signaling pathways were altered in AD condition along with mitochondrial metabolism and RNA processing. Conclusions: Observing the particular trend of genes related to sphingolipid metabolism that are downregulated during normal aging and start to be upregulated with the onset of AD, we suppose that sphingolipids could be early markers for the disease.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento/genética , Enfermedad de Alzheimer/genética , Biomarcadores/metabolismo , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Humanos , Esfingolípidos , Transcriptoma/genética
8.
Curr Issues Mol Biol ; 43(1): 197-214, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073287

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and represents the most common form of senile dementia. Autophagy and mitophagy are cellular processes that play a key role in the aggregation of ß-amyloid (Aß) and tau phosphorylation. As a consequence, impairment of these processes leads to the progression of AD. Thus, interest is growing in the search for new natural compounds, such as Moringin (MOR), with neuroprotective, anti-amyloidogenic, antioxidative, and anti-inflammatory properties that could be used for AD prevention. However, MOR appears to be poorly soluble and stable in water. To increase its solubility MOR was conjugated with α-cyclodextrin (MOR/α-CD). In this work, it was evaluated if MOR/α-CD pretreatment was able to exert neuroprotective effects in an AD in vitro model through the evaluation of the transcriptional profile by next-generation sequencing (NGS). To induce the AD model, retinoic acid-differentiated SH-SY5Y cells were exposed to Aß1-42. The MOR/α-CD pretreatment reduced the expression of the genes which encode proteins involved in senescence, autophagy, and mitophagy processes. Additionally, MOR/α-CD was able to induce neuronal remodeling modulating the axon guidance, principally downregulating the Slit/Robo signaling pathway. Noteworthy, MOR/α-CD, modulating these important pathways, may induce neuronal protection against Aß1-42 toxicity as demonstrated also by the reduction of cleaved caspase 3. These data indicated that MOR/α-CD could attenuate the progression of the disease and promote neuronal repair.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Ciclodextrinas/química , Isotiocianatos/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Humanos , Isotiocianatos/química , Plasticidad Neuronal , Transcriptoma
9.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34948400

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the pandemic Coronavirus Disease 19 (COVID-19), causing millions of deaths. The elderly and those already living with comorbidity are likely to die after SARS-CoV-2 infection. People suffering from Alzheimer's disease (AD) have a higher risk of becoming infected, because they cannot easily follow health roles. Additionally, those suffering from dementia have a 40% higher risk of dying from COVID-19. Herein, we collected from Gene Expression Omnibus repository the brain samples of AD patients who died of COVID-19 (AD+COVID-19), AD without COVID-19 (AD), COVID-19 without AD (COVID-19) and control individuals. We inspected the transcriptomic and interactomic profiles by comparing the COVID-19 cohort against the control cohort and the AD cohort against the AD+COVID-19 cohort. SARS-CoV-2 in patients without AD mainly activated processes related to immune response and cell cycle. Conversely, 21 key nodes in the interactome are deregulated in AD. Interestingly, some of them are linked to beta-amyloid production and clearance. Thus, we inspected their role, along with their interactors, using the gene ontologies of the biological process that reveals their contribution in brain organization, immune response, oxidative stress and viral replication. We conclude that SARS-CoV-2 worsens the AD condition by increasing neurotoxicity, due to higher levels of beta-amyloid, inflammation and oxidative stress.


Asunto(s)
Enfermedad de Alzheimer/genética , COVID-19/complicaciones , COVID-19/genética , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/virología , Péptidos beta-Amiloides/metabolismo , Encéfalo/virología , COVID-19/fisiopatología , Comorbilidad/tendencias , Bases de Datos Factuales , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Inflamación/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo/fisiología , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Transcriptoma/genética
10.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360824

RESUMEN

Different mechanisms were proposed as responsible for COVID-19 neurological symptoms but a clear one has not been established yet. In this work we aimed to study SARS-CoV-2 capacity to infect pediatric human cortical neuronal HCN-2 cells, studying the changes in the transcriptomic profile by next generation sequencing. SARS-CoV-2 was able to replicate in HCN-2 cells, that did not express ACE2, confirmed also with Western blot, and TMPRSS2. Looking for pattern recognition receptor expression, we found the deregulation of scavenger receptors, such as SR-B1, and the downregulation of genes encoding for Nod-like receptors. On the other hand, TLR1, TLR4 and TLR6 encoding for Toll-like receptors (TLRs) were upregulated. We also found the upregulation of genes encoding for ERK, JNK, NF-κB and Caspase 8 in our transcriptomic analysis. Regarding the expression of known receptors for viral RNA, only RIG-1 showed an increased expression; downstream RIG-1, the genes encoding for TRAF3, IKKε and IRF3 were downregulated. We also found the upregulation of genes encoding for chemokines and accordingly we found an increase in cytokine/chemokine levels in the medium. According to our results, it is possible to speculate that additionally to ACE2 and TMPRSS2, also other receptors may interact with SARS-CoV-2 proteins and mediate its entry or pathogenesis in pediatric cortical neurons infected with SARS-CoV-2. In particular, TLRs signaling could be crucial for the neurological involvement related to SARS-CoV-2 infection.


Asunto(s)
COVID-19/metabolismo , Corteza Cerebral/metabolismo , Neuronas/virología , SARS-CoV-2/patogenicidad , Receptores Toll-Like/metabolismo , COVID-19/genética , COVID-19/inmunología , Niño , Citocinas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Neuronas/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Transducción de Señal/genética , Receptores Toll-Like/genética , Replicación Viral
11.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769246

RESUMEN

The inflammatory response plays a central role in the complications of congenital pulmonary airway malformations (CPAM) and severe coronavirus disease 2019 (COVID-19). The aim of this study was to evaluate the transcriptional changes induced by SARS-CoV-2 exposure in pediatric MSCs derived from pediatric lung (MSCs-lung) and CPAM tissues (MSCs-CPAM) in order to elucidate potential pathways involved in SARS-CoV-2 infection in a condition of exacerbated inflammatory response. MSCs-lung and MSCs-CPAM do not express angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TRMPSS2). SARS-CoV-2 appears to be unable to replicate in MSCs-CPAM and MSCs-lung. MSCs-lung and MSCs-CPAM maintained the expression of stemness markers MSCs-lung show an inflammatory response (IL6, IL1B, CXCL8, and CXCL10), and the activation of Notch3 non-canonical pathway; this route appears silent in MSCs-CPAM, and cytokine genes expression is reduced. Decreased value of p21 in MSCs-lung suggested no cell cycle block, and cells did not undergo apoptosis. MSCs-lung appears to increase genes associated with immunomodulatory function but could contribute to inflammation, while MSCs-CPAM keeps stable or reduce the immunomodulatory receptors expression, but they also reduce their cytokines expression. These data indicated that, independently from their perilesional or cystic origin, the MSCs populations already present in a patient affected with CPAM are not permissive for SARS-CoV-2 entry, and they will not spread the disease in case of infection. Moreover, these MSCs will not undergo apoptosis when they come in contact with SARS-CoV-2; on the contrary, they maintain their staminality profile.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Anomalías del Sistema Respiratorio , SARS-CoV-2/fisiología , Transcriptoma , COVID-19/genética , COVID-19/metabolismo , COVID-19/patología , Estudios de Casos y Controles , Células Cultivadas , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Lactante , Pulmón/anomalías , Pulmón/metabolismo , Pulmón/patología , Masculino , Células Madre Mesenquimatosas/patología , Células Madre Mesenquimatosas/virología , RNA-Seq , Anomalías del Sistema Respiratorio/genética , Anomalías del Sistema Respiratorio/patología , Anomalías del Sistema Respiratorio/virología
12.
Medicina (Kaunas) ; 57(4)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916982

RESUMEN

Background and Objectives: Musculoskeletal injuries represent a pathological condition due to limited joint motility and morphological and functional alterations of the muscles. Temporomandibular disorders (TMDs) are pathological conditions due to alterations in the musculoskeletal system. TMDs mainly cause temporomandibular joint and masticatory muscle dysfunctions following trauma, along with various pathologies and inflammatory processes. TMD affects approximately 15% of the population and causes malocclusion problems and common symptoms such as myofascial pain and migraine. The aim of this work was to provide a transcriptomic profile of masticatory muscles obtained from TMD migraine patients compared to control. Materials and Methods: We used Next Generation Sequencing (NGS) technology to evaluate transcriptomes in masseter and temporalis muscle samples. Results: The transcriptomic analysis showed a prevalent downregulation of the genes involved in the myogenesis process. Conclusions: In conclusion, our findings suggest that the muscle regeneration process in TMD migraine patients may be slowed, therefore therapeutic interventions are needed to restore temporomandibular joint function and promote healing processes.


Asunto(s)
Trastornos de la Articulación Temporomandibular , Transcriptoma , Humanos , Músculo Masetero , Músculos Masticadores , Regeneración/genética , Trastornos de la Articulación Temporomandibular/genética
13.
Hum Mutat ; 40(9): 1330-1345, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31144778

RESUMEN

The Critical Assessment of Genome Interpretation-5 intellectual disability challenge asked to use computational methods to predict patient clinical phenotypes and the causal variant(s) based on an analysis of their gene panel sequence data. Sequence data for 74 genes associated with intellectual disability (ID) and/or autism spectrum disorders (ASD) from a cohort of 150 patients with a range of neurodevelopmental manifestations (i.e. ID, autism, epilepsy, microcephaly, macrocephaly, hypotonia, ataxia) have been made available for this challenge. For each patient, predictors had to report the causative variants and which of the seven phenotypes were present. Since neurodevelopmental disorders are characterized by strong comorbidity, tested individuals often present more than one pathological condition. Considering the overall clinical manifestation of each patient, the correct phenotype has been predicted by at least one group for 93 individuals (62%). ID and ASD were the best predicted among the seven phenotypic traits. Also, causative or potentially pathogenic variants were predicted correctly by at least one group. However, the prediction of the correct causative variant seems to be insufficient to predict the correct phenotype. In some cases, the correct prediction has been supported by rare or common variants in genes different from the causative one.


Asunto(s)
Trastorno del Espectro Autista/genética , Biología Computacional/métodos , Discapacidad Intelectual/genética , Análisis de Secuencia de ADN/métodos , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Fenotipo , Sitios de Carácter Cuantitativo
14.
Hum Mutat ; 40(9): 1474-1485, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31260570

RESUMEN

The CAGI-5 pericentriolar material 1 (PCM1) challenge aimed to predict the effect of 38 transgenic human missense mutations in the PCM1 protein implicated in schizophrenia. Participants were provided with 16 benign variants (negative controls), 10 hypomorphic, and 12 loss of function variants. Six groups participated and were asked to predict the probability of effect and standard deviation associated to each mutation. Here, we present the challenge assessment. Prediction performance was evaluated using different measures to conclude in a final ranking which highlights the strengths and weaknesses of each group. The results show a great variety of predictions where some methods performed significantly better than others. Benign variants played an important role as negative controls, highlighting predictors biased to identify disease phenotypes. The best predictor, Bromberg lab, used a neural-network-based method able to discriminate between neutral and non-neutral single nucleotide polymorphisms. The CAGI-5 PCM1 challenge allowed us to evaluate the state of the art techniques for interpreting the effect of novel variants for a difficult target protein.


Asunto(s)
Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Biología Computacional/métodos , Mutación Missense , Esquizofrenia/genética , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Humanos , Redes Neurales de la Computación , Fenotipo , Polimorfismo de Nucleótido Simple
15.
Int J Mol Sci ; 20(23)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801206

RESUMEN

Inflammation is a common feature of many neurodegenerative diseases. The treatment of stem cells as a therapeutic approach to repair damage in the central nervous system represents a valid alternative. In this study, using Next-Generation Sequencing (NGS) technology, we analyzed the transcriptomic profile of human Gingival Mesenchymal Stem Cells (hGMSCs) treated with Moringin [4-(α-l-ramanosyloxy)-benzyl isothiocyanate] (hGMSCs-MOR) or with Cannabidiol (hGMSCs-CBD) at dose of 0.5 or 5 µM, respectively. Moreover, we compared their transcriptomic profiles in order to evaluate analogies and differences in pro- and anti-inflammatory pathways. The hGMSCs-MOR selectively downregulate TNF-α signaling from the beginning, reducing the expression of TNF-α receptor while hGMSCs-CBD limit its activity after the process started. The treatment with CBD downregulates the pro-inflammatory pathway mediated by the IL-1 family, including its receptor while MOR is less efficient. Furthermore, both the treatments are efficient in the IL-6 signaling. In particular, CBD reduces the effect of the pro-inflammatory JAK/STAT pathway while MOR enhances the pro-survival PI3K/AKT/mTOR. In addition, both hGMSCs-MOR and hGMSCs-CBD improve the anti-inflammatory activity enhancing the TGF-ß pathway.


Asunto(s)
Antiinflamatorios/farmacología , Cannabidiol/farmacología , Isotiocianatos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Encía/citología , Encía/efectos de los fármacos , Encía/inmunología , Humanos , Interleucina-1/genética , Interleucina-1/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Quinasas Janus/genética , Quinasas Janus/inmunología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/inmunología , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología , Transcriptoma/inmunología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
16.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269731

RESUMEN

Bone tissue regeneration strategies require approaches that provide an osteogenic and angiogenic microenvironment able to drive the bone growth. Recently, the development of 3D printing biomaterials, including poly(lactide) (3D-PLA), enriched with mesenchymal stem cells (MSCs) and/or their derivatives, such as extracellular vesicles (EVs) has been achieving promising results. In this study, in vitro results showed an increased expression of osteogenic and angiogenic markers, as RUNX2, VEGFA, OPN and COL1A1 in the living construct 3D-PLA/human Gingival MSCs (hGMSCs)/EVs. Considering that EVs carry and transfer proteins, mRNA and microRNA into target cells, we evaluated miR-2861 and miR-210 expression related to osteoangiogenesis commitment. Histological examination of rats implanted with 3D-PLA/hGMSCs/EVs evidenced the activation of bone regeneration and of the vascularization process, confirmed also by MicroCT. In synthesis, an upregulation of miR-2861 and -210 other than RUNX2, VEGFA, OPN and COL1A1 was evident in cells cultured in the presence of the biomaterial and EVs. Then, these results evidenced that EVs may enhance bone regeneration in calvaria defects, in association with an enhanced vascularization offering a novel regulatory system in the osteoangiogenesis evolution. The application of new strategies to improve biomaterial engraftment is of great interest in the regenerative medicine and can represent a way to promote bone regeneration.


Asunto(s)
Células Madre Mesenquimatosas/citología , MicroARNs/genética , Poliésteres/química , Andamios del Tejido/química , Animales , Células Cultivadas , Vesículas Extracelulares/genética , Vesículas Extracelulares/trasplante , Encía/citología , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica , Osteogénesis , Impresión Tridimensional , Ratas Wistar , Regulación hacia Arriba
17.
Molecules ; 24(18)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487916

RESUMEN

Moringin [4-(α-L-rhamnosyloxy) benzyl isothiocyanate] is an isothiocyanate extracted from Moringa oleifera seeds. It is an antioxidant known for several biological properties useful in the treatment of neurodegenerative diseases. Several neurodegenerative disorders such as Parkinson's and Alzheimer's diseases are linked to dysfunctional mitochondria due to the resulting increase of Reactive Oxygen Species (ROS). Stem cell-based therapeutic treatments in neurodegenerative diseases provide an alternative strategy aimed to replace the impaired tissue. In this study were investigated the deregulated genes involved in mitophagy in the human periodontal ligament stem cells pretreated with moringin. The RNA-seq study reveals the downregulation of PINK1, with a fold change (FC) of -0.56, such as the genes involved in the phagophore formation (MAP1LC3B FC: -0.73, GABARAP FC: -0.52, GABARAPL1 FC: -0.70, GABARAPL2 FC: -0.39). The moringin pretreatment downregulates the pro-apoptotic gene BAX (-0.66) and upregulates the anti-apoptotic genes BCL2L12 (FC: 1.35) and MCL1 (FC: 0.36). The downregulation of the most of the caspases (CASP1 FC: -1.43, CASP4 FC: -0.18, CASP6 FC: -1.34, CASP7 FC: -0.46, CASP8 FC: -0.65) implies the inactivation of the apoptotic process. Our results suggest that mitochondrial dysfunctions induced by oxidative stress can be inhibited by moringin pretreatment in human periodontal ligament stem cells (hPDLSCs).


Asunto(s)
Expresión Génica , Isotiocianatos/farmacología , Mitofagia/efectos de los fármacos , Mitofagia/genética , Ligamento Periodontal/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Biomarcadores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Isotiocianatos/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Modelos Biológicos , Estructura Molecular , Células Madre/citología , Transcriptoma
18.
Biomedicines ; 12(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38255294

RESUMEN

Cannabinoids are receiving great attention as a novel approach in the treatment of cognitive and motor disabilities, which characterize neurological disorders. To date, over 100 phytocannabinoids have been extracted from Cannabis sativa, and some of them have shown neuroprotective properties and the capacity to influence synaptic transmission. In this study, we investigated the effects of a less-known phytocannabinoid, cannabinerol (CBNR), on neuronal physiology. Using the NSC-34 motor-neuron-like cell line and next-generation sequencing analysis, we discovered that CBNR influences synaptic genes associated with synapse organization and specialization, including genes related to the cytoskeleton and ion channels. Specifically, the calcium, sodium, and potassium channel subunits (Cacna1b, Cacna1c, Cacnb1, Grin1, Scn8a, Kcnc1, Kcnj9) were upregulated, along with genes related to NMDAR (Agap3, Syngap1) and calcium (Cabp1, Camkv) signaling. Moreover, cytoskeletal and cytoskeleton-associated genes (Actn2, Ina, Trio, Marcks, Bsn, Rtn4, Dgkz, Htt) were also regulated by CBNR. These findings highlight the important role played by CBNR in the regulation of synaptogenesis and synaptic transmission, suggesting the need for further studies to evaluate the neuroprotective role of CBNR in the treatment of synaptic dysfunctions that characterize motor disabilities in many neurological disorders.

19.
Cells ; 13(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920643

RESUMEN

Neurodegenerative disorders are affecting millions of people worldwide, impacting the healthcare system of our society. Among them, Alzheimer's disease (AD) is the most common form of dementia, characterized by severe cognitive impairments. Neuropathological hallmarks of AD are ß-amyloid (Aß) plaques and neurofibrillary tangles, as well as endoplasmic reticulum and mitochondria dysfunctions, which finally lead to apoptosis and neuronal loss. Since, to date, there is no definitive cure, new therapeutic and prevention strategies are of crucial importance. In this scenario, cannabinoids are deeply investigated as promising neuroprotective compounds for AD. In this study, we evaluated the potential neuroprotective role of cannabinerol (CBNR) in an in vitro cellular model of AD via next-generation sequencing. We observed that CBNR pretreatment counteracts the Aß-induced loss of cell viability of differentiated SH-SY5Y cells. Moreover, a network-based transcriptomic analysis revealed that CBNR restores normal mitochondrial and endoplasmic reticulum functions in the AD model. Specifically, the most important genes regulated by CBNR are related mainly to oxidative phosphorylation (COX6B1, OXA1L, MT-CO2, MT-CO3), protein folding (HSPA5) and degradation (CUL3, FBXW7, UBE2D1), and glucose (G6PC3) and lipid (HSD17B7, ERG28, SCD) metabolism. Therefore, these results suggest that CBNR could be a new neuroprotective agent helpful in the prevention of AD dysfunctions.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Cannabinoides , Retículo Endoplásmico , Mitocondrias , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Cannabinoides/farmacología , Péptidos beta-Amiloides/metabolismo , Chaperón BiP del Retículo Endoplásmico , Línea Celular Tumoral , Perfilación de la Expresión Génica , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Supervivencia Celular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Biológicos , Redes Reguladoras de Genes/efectos de los fármacos
20.
Biomedicines ; 12(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38927547

RESUMEN

Cannabinoids are reported to have neuroprotective properties and play a role in neurogenesis and neuroplasticity in in vitro and in vivo models. Cannabinol (CBN) is a minor cannabinoid produced by the degradation of Δ9-tetrahydrocannabinol in Cannabis sativa L. and exhibits anti-oxidant, analgesic, anti-bacterial, and anti-inflammatory effects. In this study, we explored the biological effects of 20 µM CBN (6.20 µg/mL) on differentiated NSC-34 cells by MTT assay and next-generation sequencing analysis on the transcriptome. KEGG and Gene Ontology enrichment analyses have been performed to evaluate potential CBN-associated processes. Our results highlighted the absence of any cytotoxic effect of CBN. The comparative transcriptomic analysis pointed out the downregulation of Cdkn2a, Cdkn2c and Cdkn2d genes, which are known to suppress the cell cycle. Ccne2, Cdk2, Cdk7, Anapc11, Anapc10, Cdc23, Cdc16, Anapc4, Cdc27, Stag1, Smc3, Smc1a, Nipbl, Pds5a, Pds5b, and Wapl genes, renowned for their role as cell cycle progression activators, were instead upregulated. Our work suggests that CBN regulates the expression of many genes related to the cell cycle, which are required for axonal maturation, migration, and synaptic plasticity, while not affecting the expression of genes involved in cell death or tumorigenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA