Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 593(7858): 211-217, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33981050

RESUMEN

Advanced beyond-silicon electronic technology requires both channel materials and also ultralow-resistance contacts to be discovered1,2. Atomically thin two-dimensional semiconductors have great potential for realizing high-performance electronic devices1,3. However, owing to metal-induced gap states (MIGS)4-7, energy barriers at the metal-semiconductor interface-which fundamentally lead to high contact resistance and poor current-delivery capability-have constrained the improvement of two-dimensional semiconductor transistors so far2,8,9. Here we report ohmic contact between semimetallic bismuth and semiconducting monolayer transition metal dichalcogenides (TMDs) where the MIGS are sufficiently suppressed and degenerate states in the TMD are spontaneously formed in contact with bismuth. Through this approach, we achieve zero Schottky barrier height, a contact resistance of 123 ohm micrometres and an on-state current density of 1,135 microamps per micrometre on monolayer MoS2; these two values are, to the best of our knowledge, the lowest and highest yet recorded, respectively. We also demonstrate that excellent ohmic contacts can be formed on various monolayer semiconductors, including MoS2, WS2 and WSe2. Our reported contact resistances are a substantial improvement for two-dimensional semiconductors, and approach the quantum limit. This technology unveils the potential of high-performance monolayer transistors that are on par with state-of-the-art three-dimensional semiconductors, enabling further device downscaling and extending Moore's law.

2.
Nature ; 577(7789): 209-215, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915395

RESUMEN

Strain engineering is a powerful tool with which to enhance semiconductor device performance1,2. Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties3-5. Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization6-8, electrostriction9, annealing10-12, van der Waals force13, thermal expansion mismatch14, and heat-induced substrate phase transition15, the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of α-formamidinium lead iodide (α-FAPbI3) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial α-FAPbI3 thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of α-FAPbI3. Strained epitaxy is also shown to have a substantial stabilization effect on the α-FAPbI3 phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an α-FAPbI3-based photodetector.

3.
Nano Lett ; 23(11): 4741-4748, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37196055

RESUMEN

Wafer-scale monolayer two-dimensional (2D) materials have been realized by epitaxial chemical vapor deposition (CVD) in recent years. To scale up the synthesis of 2D materials, a systematic analysis of how the growth dynamics depend on the growth parameters is essential to unravel its mechanisms. However, the studies of CVD-grown 2D materials mostly adopted the control variate method and considered each parameter as an independent variable, which is not comprehensive for 2D materials growth optimization. Herein, we synthesized a representative 2D material, monolayer hexagonal boron nitride (hBN), on single-crystalline Cu (111) by epitaxial chemical vapor deposition and varied the growth parameters to regulate the hBN domain sizes. Furthermore, we explored the correlation between two growth parameters and provided the growth windows for large flake sizes by the Gaussian process. This new analysis approach based on machine learning provides a more comprehensive understanding of the growth mechanism for 2D materials.

4.
Nat Nanotechnol ; 18(4): 350-356, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36690738

RESUMEN

Tailoring of the propagation dynamics of exciton-polaritons in two-dimensional quantum materials has shown extraordinary promise to enable nanoscale control of electromagnetic fields. Varying permittivities along crystal directions within layers of material systems, can lead to an in-plane anisotropic dispersion of polaritons. Exploiting this physics as a control strategy for manipulating the directional propagation of the polaritons is desired and remains elusive. Here we explore the in-plane anisotropic exciton-polariton propagation in SnSe, a group-IV monochalcogenide semiconductor that forms ferroelectric domains and shows room-temperature excitonic behaviour. Exciton-polaritons are launched in SnSe multilayer plates, and their propagation dynamics and dispersion are studied. This propagation of exciton-polaritons allows for nanoscale imaging of the in-plane ferroelectric domains. Finally, we demonstrate the electric switching of the exciton-polaritons in the ferroelectric domains of this complex van der Waals system. The study suggests that systems such as group-IV monochalcogenides could serve as excellent ferroic platforms for actively reconfigurable polaritonic optical devices.

5.
Nat Commun ; 14(1): 7168, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935672

RESUMEN

Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.

6.
Adv Mater ; 35(26): e2210894, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36959753

RESUMEN

Thin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in-plane ferroelectric material that exhibits a giant nonlinear optical effect, group-IV monochalcogenide SnSe, is reported. Nanometer-scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical-vapor-deposited SnSe by lateral piezoresponse force microscopy. Atomic structure characterization reveals both parallel and antiparallel stacking of neighboring van der Waals ferroelectric layers, leading to ferroelectric or antiferroelectric ordering. Ferroelectric domains exhibit giant nonlinear optical activity due to coherent enhancement of second-harmonic fields and the as-resulted second-harmonic generation was observed to be 100 times more intense than monolayer WS2 . This work demonstrates in-plane ferroelectric ordering and giant nonlinear optical activity in SnSe, which paves the way for applications in on-chip nonlinear optical components and nonvolatile memory devices.

7.
Adv Mater ; 34(34): e2202911, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35790036

RESUMEN

2D transition metal dichalcogenides (TMDCs) with intense and tunable photoluminescence (PL) have opened up new opportunities for optoelectronic and photonic applications such as light-emitting diodes, photodetectors, and single-photon emitters. Among the standard characterization tools for 2D materials, Raman spectroscopy stands out as a fast and non-destructive technique capable of probing material's crystallinity and perturbations such as doping and strain. However, a comprehensive understanding of the correlation between photoluminescence and Raman spectra in monolayer MoS2 remains elusive due to its highly nonlinear nature. Here, the connections between PL signatures and Raman modes are systematically explored, providing comprehensive insights into the physical mechanisms correlating PL and Raman features. This study's analysis further disentangles the strain and doping contributions from the Raman spectra through machine-learning models. First, a dense convolutional network (DenseNet) to predict PL maps by spatial Raman maps is deployed. Moreover, a gradient boosted trees model (XGBoost) with Shapley additive explanation (SHAP) to bridge the impact of individual Raman features in PL features is applied. Last, a support vector machine (SVM) to project PL features on Raman frequencies is adopted. This work may serve as a methodology for applying machine learning to characterizations of 2D materials.

8.
Nat Commun ; 11(1): 2994, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533001

RESUMEN

Both high resolution and high precision are required to quantitatively determine the atomic structure of complex nanostructured materials. However, for conventional imaging methods in scanning transmission electron microscopy (STEM), atomic resolution with picometer precision cannot usually be achieved for weakly-scattering samples or radiation-sensitive materials, such as 2D materials. Here, we demonstrate low-dose, sub-angstrom resolution imaging with picometer precision using mixed-state electron ptychography. We show that correctly accounting for the partial coherence of the electron beam is a prerequisite for high-quality structural reconstructions due to the intrinsic partial coherence of the electron beam. The mixed-state reconstruction gains importance especially when simultaneously pursuing high resolution, high precision and large field-of-view imaging. Compared with conventional atomic-resolution STEM imaging techniques, the mixed-state ptychographic approach simultaneously provides a four-times-faster acquisition, with double the information limit at the same dose, or up to a fifty-fold reduction in dose at the same resolution.

10.
J Phys Chem Lett ; 10(10): 2363-2371, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31020840

RESUMEN

To investigate the quantum confinement effect on excitons in hybrid perovskites, single-crystal platelets of CH3NH3PbBr3 are grown on mica substrates using one-step chemical vapor deposition. Photoluminescence measurements reveal a monotonous blue shift with a decreasing platelet thickness, which is accompanied by a significant increase in exciton binding energy from approximately 70 to 150 meV. Those phenomena can be attributed to the one-dimensional (1D) quantum confinement effect in the two-dimensional platelets. Furthermore, we develop an analytical model to quantitatively elucidate the 1D confinement effect in such quantum wells with asymmetric barriers. Our analysis indicates that the exciton Bohr radius of single-crystal CH3NH3PbBr3 is compressed from 4.0 nm for the thick (26.2 nm) platelets to 2.2 nm for the thin (5.9 nm) ones. The critical understanding of the 1D quantum confinement effect and the development of a general model to elucidate the exciton properties of asymmetric semiconductor quantum wells pave the way toward developing high-performance optoelectronic heterostructures.

11.
Adv Mater ; 31(18): e1900861, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30907033

RESUMEN

2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large-area electronics and circuits strongly relies on wafer-scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal-guided selective growth (MGSG), is reported. The success of control over the transition-metal-precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p- and n-type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom-up complementary metal-oxide-semiconductor inverter based on p-type WSe2 and n-type MoSe2 is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position.

12.
ACS Nano ; 12(2): 1859-1867, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29301073

RESUMEN

Monolayer two-dimensional transition-metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150 nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20 nm-wide gold trenches on flexible substrates, reporting ∼7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such a fully open, flat, and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

13.
ACS Nano ; 11(12): 12817-12823, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29182852

RESUMEN

Two-dimensional (2D) materials are drawing growing attention for next-generation electronics and optoelectronics owing to its atomic thickness and unique physical properties. One of the challenges posed by 2D materials is the large source/drain (S/D) series resistance due to their thinness, which may be resolved by thickening the source and drain regions. Recently explored lateral graphene-MoS21-3 and graphene-WS21,4 heterostructures shed light on resolving the mentioned issues owing to their superior ohmic contact behaviors. However, recently reported field-effect transistors (FETs) based on graphene-TMD heterostructures have only shown n-type characteristics. The lack of p-type transistor limits their applications in complementary metal-oxide semiconductor electronics. In this work, we demonstrate p-type FETs based on graphene-WSe2 lateral heterojunctions grown with the scalable CVD technique. Few-layer WSe2 is overlapped with the multilayer graphene (MLG) at MLG-WSe2 junctions such that the contact resistance is reduced. Importantly, the few-layer WSe2 only forms at the junction region while the channel is still maintained as a WSe2 monolayer for transistor operation. Furthermore, by imposing doping to graphene S/D, 2 orders of magnitude enhancement in Ion/Ioff ratio to ∼108 and the unipolar p-type characteristics are obtained regardless of the work function of the metal in ambient air condition. The MLG is proposed to serve as a 2D version of emerging raised source/drain approach in electronics.

14.
Nat Nanotechnol ; 12(8): 744-749, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28507333

RESUMEN

Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

15.
Adv Mater ; 28(19): 3683-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27008347

RESUMEN

Heterostructured photoconductors based on hybrid perovskites and 2D transition-metal dichalcogenides are fabricated and characterized. Due to the superior properties of CH3 NH3 PbI3 and WS2 , as well as the efficient interfacial charge transfer, such photoconductors show high performance with on/off ratio of ≈10(5) and responsivity of ≈17 A W(-1) . Furthermore, the response times of the heterostructured photoconductors are four orders of magnitude faster compared to the counterpart of a perovskite single layer.

16.
ACS Nano ; 10(1): 1454-61, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26716765

RESUMEN

Atomically thin two-dimensional transition-metal dichalcogenides (TMDCs) have attracted much attention recently due to their unique electronic and optical properties for future optoelectronic devices. The chemical vapor deposition (CVD) method is able to generate TMDCs layers with a scalable size and a controllable thickness. However, the TMDC monolayers grown by CVD may incorporate structural defects, and it is fundamentally important to understand the relation between photoluminescence and structural defects. In this report, point defects (Se vacancies) and oxidized Se defects in CVD-grown MoSe2 monolayers are identified by transmission electron microscopy and X-ray photoelectron spectroscopy. These defects can significantly trap free charge carriers and localize excitons, leading to the smearing of free band-to-band exciton emission. Here, we report that the simple hydrohalic acid treatment (such as HBr) is able to efficiently suppress the trap-state emission and promote the neutral exciton and trion emission in defective MoSe2 monolayers through the p-doping process, where the overall photoluminescence intensity at room temperature can be enhanced by a factor of 30. We show that HBr treatment is able to activate distinctive trion and free exciton emissions even from highly defective MoSe2 layers. Our results suggest that the HBr treatment not only reduces the n-doping in MoSe2 but also reduces the structural defects. The results provide further insights of the control and tailoring the exciton emission from CVD-grown monolayer TMDCs.

17.
Nat Commun ; 6: 7666, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26179885

RESUMEN

The emergence of two-dimensional electronic materials has stimulated proposals of novel electronic and photonic devices based on the heterostructures of transition metal dichalcogenides. Here we report the determination of band offsets in the heterostructures of transition metal dichalcogenides by using microbeam X-ray photoelectron spectroscopy and scanning tunnelling microscopy/spectroscopy. We determine a type-II alignment between MoS2 and WSe2 with a valence band offset value of 0.83 eV and a conduction band offset of 0.76 eV. First-principles calculations show that in this heterostructure with dissimilar chalcogen atoms, the electronic structures of WSe2 and MoS2 are well retained in their respective layers due to a weak interlayer coupling. Moreover, a valence band offset of 0.94 eV is obtained from density functional theory, consistent with the experimental determination.

18.
ACS Nano ; 8(3): 2951-8, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24568359

RESUMEN

Optical second harmonic generation (SHG) is known as a sensitive probe to the crystalline symmetry of few-layer transition metal dichalcogenides (TMDs). Layer-number dependent and polarization resolved SHG have been observed for the special case of Bernal stacked few-layer TMDs, but it remains largely unexplored for structures deviated from this ideal stacking order. Here we report on the SHG from homo- and heterostructural TMD bilayers formed by artificial stacking with an arbitrary stacking angle. The SHG from the twisted bilayers is a coherent superposition of the SH fields from the individual layers, with a phase difference depending on the stacking angle. Such an interference effect is insensitive to the constituent layered materials and thus applicable to hetero-stacked bilayers. A proof-of-concept demonstration of using the SHG to probe the domain boundary and crystal polarity of mirror twins formed in chemically grown TMDs is also presented. We show here that the SHG is an efficient, sensitive, and nondestructive characterization for the stacking orientation, crystal polarity, and domain boundary of van der Waals heterostructures made of noncentrosymmetric layered materials.

19.
ACS Nano ; 8(8): 8653-61, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25106792

RESUMEN

Phototransistors based on monolayer transition metal dichalcogenides (TMD) have high photosensitivity due to their direct band gap transition. However, there is a lack of understanding of the effect of metal contacts on the performance of atomically thin TMD phototransistors. Here, we fabricate phototransistors based on large-area chemical vapor deposition (CVD) tungsten diselenide (WSe2) monolayers contacted with the metals of different work function values. We found that the low Schottky-contact WSe2 phototransistors exhibit a very high photo gain (10(5)) and specific detectivity (10(14)Jones), values higher than commercial Si- and InGaAs-based photodetectors; however, the response speed is longer than 5 s in ambient air. In contrast, the high Schottky-contact phototransistors display a fast response time shorter than 23 ms, but the photo gain and specific detectivity decrease by several orders of magnitude. Moreover, the fast response speed of the high Schottky-contact devices is maintained for a few months in ambient air. This study demonstrates that the contact plays an important role in TMD phototransistors, and barrier height tuning is critical for optimizing the photoresponse and photoresponsivity.

20.
ACS Nano ; 8(9): 9649-56, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25196077

RESUMEN

Stacking of MoS2 and WSe2 monolayers is conducted by transferring triangular MoS2 monolayers on top of WSe2 monolayers, all grown by chemical vapor deposition (CVD). Raman spectroscopy and photoluminescence (PL) studies reveal that these mechanically stacked monolayers are not closely coupled, but after a thermal treatment at 300 °C, it is possible to produce van der Waals solids consisting of two interacting transition metal dichalcogenide (TMD) monolayers. The layer-number sensitive Raman out-of-plane mode A(2)1g for WSe2 (309 cm(-1)) is found sensitive to the coupling between two TMD monolayers. The presence of interlayer excitonic emissions and the changes in other intrinsic Raman modes such as E″ for MoS2 at 286 cm(-1) and A(2)1g for MoS2 at around 463 cm(-1) confirm the enhancement of the interlayer coupling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA