Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Immunol ; 22(12): 1503-1514, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34716452

RESUMEN

Prevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Sitios de Unión/genética , COVID-19/metabolismo , COVID-19/prevención & control , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Mapeo Epitopo , Epítopos/química , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Ratones Transgénicos , Pruebas de Neutralización , Unión Proteica , Conformación Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Homología de Secuencia de Aminoácido , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Análisis de Supervivencia
2.
Immunity ; 55(11): 2135-2148.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36306784

RESUMEN

Epstein-Barr virus (EBV) is nearly ubiquitous in adults. EBV causes infectious mononucleosis and is associated with B cell lymphomas, epithelial cell malignancies, and multiple sclerosis. The EBV gH/gL glycoprotein complex facilitates fusion of virus membrane with host cells and is a target of neutralizing antibodies. Here, we examined the sites of vulnerability for virus neutralization and fusion inhibition within EBV gH/gL. We developed a panel of human monoclonal antibodies (mAbs) that targeted five distinct antigenic sites on EBV gH/gL and prevented infection of epithelial and B cells. Structural analyses using X-ray crystallography and electron microscopy revealed multiple sites of vulnerability and defined the antigenic landscape of EBV gH/gL. One mAb provided near-complete protection against viremia and lymphoma in a humanized mouse EBV challenge model. Our findings provide structural and antigenic knowledge of the viral fusion machinery, yield a potential therapeutic antibody to prevent EBV disease, and emphasize gH/gL as a target for herpesvirus vaccines and therapeutics.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Cricetinae , Ratones , Animales , Humanos , Proteínas del Envoltorio Viral , Cricetulus , Glicoproteínas de Membrana , Células CHO
3.
Cell ; 166(6): 1471-1484.e18, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610571

RESUMEN

The design of immunogens that elicit broadly reactive neutralizing antibodies (bnAbs) has been a major obstacle to HIV-1 vaccine development. One approach to assess potential immunogens is to use mice expressing precursors of human bnAbs as vaccination models. The bnAbs of the VRC01-class derive from the IGHV1-2 immunoglobulin heavy chain and neutralize a wide spectrum of HIV-1 strains via targeting the CD4 binding site of the envelope glycoprotein gp120. We now describe a mouse vaccination model that allows a germline human IGHV1-2(∗)02 segment to undergo normal V(D)J recombination and, thereby, leads to the generation of peripheral B cells that express a highly diverse repertoire of VRC01-related receptors. When sequentially immunized with modified gp120 glycoproteins designed to engage VRC01 germline and intermediate antibodies, IGHV1-2(∗)02-rearranging mice, which also express a VRC01-antibody precursor light chain, can support the affinity maturation of VRC01 precursor antibodies into HIV-neutralizing antibody lineages.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , VIH-1/inmunología , Inmunización , Cadenas Pesadas de Inmunoglobulina/inmunología , Células Precursoras de Linfocitos B/inmunología , Animales , Anticuerpos Monoclonales/genética , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/inmunología , Anticuerpos Anti-VIH , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Concentración 50 Inhibidora , Ratones , Eliminación de Secuencia , Linfocitos T/inmunología
4.
J Virol ; 97(7): e0159622, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37395646

RESUMEN

Novel therapeutic monoclonal antibodies (MAbs) must accommodate comprehensive breadth of activity against diverse sarbecoviruses and high neutralization potency to overcome emerging variants. Here, we report the crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) in complex with MAb WRAIR-2063, a moderate-potency neutralizing antibody with exceptional sarbecovirus breadth, that targets the highly conserved cryptic class V epitope. This epitope overlaps substantially with the spike protein N-terminal domain (NTD) -interacting region and is exposed only when the spike is in the open conformation, with one or more RBDs accessible. WRAIR-2063 binds the RBD of SARS-CoV-2 WA-1, all variants of concern (VoCs), and clade 1 to 4 sarbecoviruses with high affinity, demonstrating the conservation of this epitope and potential resiliency against variation. We compare structural features of additional class V antibodies with their reported neutralization capacity to further explore the utility of the class V epitope as a pan-sarbecovirus vaccine and therapeutic target. IMPORTANCE Characterization of MAbs against SARS-CoV-2, elicited through vaccination or natural infection, has provided vital immunotherapeutic options for curbing the COVID-19 pandemic and has supplied critical insights into SARS-CoV-2 escape, transmissibility, and mechanisms of viral inactivation. Neutralizing MAbs that target the RBD but do not block ACE2 binding are of particular interest because the epitopes are well conserved within sarbecoviruses and MAbs targeting this area demonstrate cross-reactivity. The class V RBD-targeted MAbs localize to an invariant site of vulnerability, provide a range of neutralization potency, and exhibit considerable breadth against divergent sarbecoviruses, with implications for vaccine and therapeutic development.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Epítopos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Epítopos/química , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Dominios Proteicos , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , Modelos Moleculares , Línea Celular
5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34470866

RESUMEN

Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/virología , Macaca mulatta/inmunología , Nanopartículas/química , Receptores Virales/metabolismo , SARS-CoV-2/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Ferritinas/química , SARS-CoV-2/metabolismo , Linfocitos T/inmunología
6.
PLoS Pathog ; 17(6): e1009624, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34086838

RESUMEN

A primary goal of HIV-1 vaccine development is the consistent elicitation of protective, neutralizing antibodies. While highly similar neutralizing antibodies (nAbs) have been isolated from multiple HIV-infected individuals, it is unclear whether vaccination can consistently elicit highly similar nAbs in genetically diverse primates. Here, we show in three outbred rhesus macaques that immunization with Env elicits a genotypically and phenotypically conserved nAb response. From these vaccinated macaques, we isolated four antibody lineages that had commonalities in immunoglobulin variable, diversity, and joining gene segment usage. Atomic-level structures of the antigen binding fragments of the two most similar antibodies showed nearly identical paratopes. The Env binding modes of each of the four vaccine-induced nAbs were distinct from previously known monoclonal HIV-1 neutralizing antibodies, but were nearly identical to each other. The similarities of these antibodies show that the immune system in outbred primates can respond to HIV-1 Env vaccination with a similar structural and genotypic solution for recognizing a particular neutralizing epitope. These results support rational vaccine design for HIV-1 that aims to reproducibly elicit, in genetically diverse primates, nAbs with specific paratope structures capable of binding conserved epitopes.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Macaca mulatta
7.
J Virol ; 92(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29514901

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with ∼35% mortality. The potential for a future pandemic originating from animal reservoirs or health care-associated events is a major public health concern. There are no vaccines or therapeutic agents currently available for MERS-CoV. Using a probe-based single B cell cloning strategy, we have identified and characterized multiple neutralizing monoclonal antibodies (MAbs) specifically binding to the receptor-binding domain (RBD) or S1 (non-RBD) regions from a convalescent MERS-CoV-infected patient and from immunized rhesus macaques. RBD-specific MAbs tended to have greater neutralizing potency than non-RBD S1-specific MAbs. Six RBD-specific and five S1-specific MAbs could be sorted into four RBD and three non-RBD distinct binding patterns, based on competition assays, mapping neutralization escape variants, and structural analysis. We determined cocrystal structures for two MAbs targeting the RBD from different angles and show they can bind the RBD only in the "out" position. We then showed that selected RBD-specific, non-RBD S1-specific, and S2-specific MAbs given prophylactically prevented MERS-CoV replication in lungs and protected mice from lethal challenge. Importantly, combining RBD- and non-RBD MAbs delayed the emergence of escape mutations in a cell-based virus escape assay. These studies identify MAbs targeting different antigenic sites on S that will be useful for defining mechanisms of MERS-CoV neutralization and for developing more effective interventions to prevent or treat MERS-CoV infections.IMPORTANCE MERS-CoV causes a highly lethal respiratory infection for which no vaccines or antiviral therapeutic options are currently available. Based on continuing exposure from established reservoirs in dromedary camels and bats, transmission of MERS-CoV into humans and future outbreaks are expected. Using structurally defined probes for the MERS-CoV spike glycoprotein (S), the target for neutralizing antibodies, single B cells were sorted from a convalescent human and immunized nonhuman primates (NHPs). MAbs produced from paired immunoglobulin gene sequences were mapped to multiple epitopes within and outside the receptor-binding domain (RBD) and protected against lethal MERS infection in a murine model following passive immunization. Importantly, combining MAbs targeting distinct epitopes prevented viral neutralization escape from RBD-directed MAbs. These data suggest that antibody responses to multiple domains on CoV spike protein may improve immunity and will guide future vaccine and therapeutic development efforts.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Infecciones por Coronavirus/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Cristalografía por Rayos X , Humanos , Macaca mulatta , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Vacunación
8.
J Virol ; 90(13): 5899-5914, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27053554

RESUMEN

UNLABELLED: Extraordinary antibodies capable of near pan-neutralization of HIV-1 have been identified. One of the broadest is antibody 10E8, which recognizes the membrane-proximal external region (MPER) of the HIV-1 envelope and neutralizes >95% of circulating HIV-1 strains. If delivered passively, 10E8 might serve to prevent or treat HIV-1 infection. Antibody 10E8, however, is markedly less soluble than other antibodies. Here, we describe the use of both structural biology and somatic variation to develop optimized versions of 10E8 with increased solubility. From the structure of 10E8, we identified a prominent hydrophobic patch; reversion of four hydrophobic residues in this patch to their hydrophilic germ line counterparts resulted in an ∼10-fold decrease in turbidity. We also used somatic variants of 10E8, identified previously by next-generation sequencing, to optimize heavy and light chains; this process yielded several improved variants. Of these, variant 10E8v4 with 26 changes versus the parent 10E8 was the most soluble, with a paratope we showed crystallographically to be virtually identical to that of 10E8, a potency on a panel of 200 HIV-1 isolates also similar to that of 10E8, and a half-life in rhesus macaques of ∼10 days. An anomaly in 10E8v4 size exclusion chromatography that appeared to be related to conformational isomerization was resolved by engineering an interchain disulfide. Thus, by combining a structure-based approach with natural variation in potency and solubility from the 10E8 lineage, we successfully created variants of 10E8 which retained the potency and extraordinary neutralization breadth of the parent 10E8 but with substantially increased solubility. IMPORTANCE: Antibody 10E8 could be used to prevent HIV-1 infection, if manufactured and delivered economically. It suffers, however, from issues of solubility, which impede manufacturing. We hypothesized that the physical characteristic of 10E8 could be improved through rational design, without compromising breadth and potency. We used structural biology to identify hydrophobic patches on 10E8, which did not appear to be involved in 10E8 function. Reversion of hydrophobic residues in these patches to their hydrophilic germ line counterparts increased solubility. Next, clues from somatic variants of 10E8, identified by next-generation sequencing, were incorporated. A combination of structure-based design and somatic variant optimization led to 10E8v4, with substantially improved solubility and similar potency compared to the parent 10E8. The cocrystal structure of antibody 10E8v4 with its HIV-1 epitope was highly similar to that with the parent 10E8, despite 26 alterations in sequence and substantially improved solubility. Antibody 10E8v4 may be suitable for manufacturing.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Anti-VIH/química , VIH-1/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Técnicas de Química Analítica , Cristalografía por Rayos X , Disulfuros , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/metabolismo , Semivida , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Macaca mulatta , Modelos Moleculares , Solubilidad
9.
Bioconjug Chem ; 27(10): 2372-2385, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27583777

RESUMEN

Structure-based vaccine design has been used to develop immunogens that display conserved neutralization sites on pathogens such as HIV-1, respiratory syncytial virus (RSV), and influenza. Improving the immunogenicity of these designed immunogens with adjuvants will require formulations that do not alter protein antigenicity. Here, we show that nanoparticle-forming thermoresponsive polymers (TRP) allow for co-delivery of RSV fusion (F) protein trimers with Toll-like receptor 7 and 8 agonists (TLR-7/8a) to enhance protective immunity. Although primary amine conjugation of TLR-7/8a to F trimers severely disrupted the recognition of critical neutralizing epitopes, F trimers site-selectively coupled to TRP nanoparticles retained appropriate antigenicity and elicited high titers of prefusion-specific, TH1 isotype anti-RSV F antibodies following vaccination. Moreover, coupling F trimers to TRP delivering TLR-7/8a resulted in ∼3-fold higher binding and neutralizing antibody titers than soluble F trimers admixed with TLR-7/8a and conferred protection from intranasal RSV challenge. Overall, these data show that TRP nanoparticles may provide a broadly applicable platform for eliciting neutralizing antibodies to structure-dependent epitopes on RSV, influenza, HIV-1, or other pathogens.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Nanopartículas/administración & dosificación , Polímeros/química , Vacunas contra Virus Sincitial Respiratorio/farmacología , Proteínas Virales de Fusión/administración & dosificación , Animales , Anticuerpos Neutralizantes , Técnicas de Química Sintética , Sistemas de Liberación de Medicamentos/métodos , Femenino , Ratones Endogámicos , Nanopartículas/química , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/inmunología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/química , Proteínas Virales de Fusión/química
10.
J Immunol Methods ; 528: 113657, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479453

RESUMEN

Development of assays to reliably identify and characterize anti-drug antibodies (ADAs) depends on positive control anti-idiotype (anti-id) reagents, which are used to demonstrate that the standards recommended by regulatory authorities are met. This work employs a set of therapeutic antibodies under clinical development and their corresponding anti-ids to investigate how different positive control reagent properties impact ADA assay development. Positive controls exhibited different response profiles and apparent assay analytical sensitivity values depending on assay format. Neither anti-id affinity for drug, nor sensitivity in direct immunoassays related to sensitivity in ADA assays. Anti-ids were differentially able to detect damage to drug conjugates used in bridging assays and were differentially drug tolerant. These parameters also failed to relate to assay sensitivity, further complicating selection of anti-ids for use in ADA assay development based on functional characteristics. Given this variability among anti-ids, alternative controls that could be employed across multiple antibody drugs were investigated as a more uniform means to define ADA detection sensitivity across drug products and assay protocols, which could help better relate assay results to clinical risks of ADA responses. Overall, this study highlights the importance of positive control selection to reliable detection and clinical interpretation of the presence and magnitude of ADA responses.


Asunto(s)
Anticuerpos Monoclonales , Antígenos , Inmunoensayo/métodos
11.
Sci Transl Med ; 16(730): eadh9039, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38232141

RESUMEN

The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.15 and DF1W-a.01, to protect against simian-HIV (SHIV)BG505 challenge. VRC34.01 neutralized SHIVBG505 with a 50% inhibitory concentration (IC50) of 0.58 µg/ml, whereas DF1W-a.01 and DFPH-a.15 were 4- or 30-fold less potent, respectively. VRC34.01 was infused into four rhesus macaques at a dose of 10 mg/kg and four rhesus macaques at a dose of 2.5 mg/kg. The animals were intrarectally challenged 5 days later with SHIVBG505. In comparison with all 12 control animals that became infected, all four animals infused with VRC34.01 (10 mg/kg) and three out of four animals infused with VRC34.01 (2.5 mg/kg) remained uninfected. Because of the lower potency of DF1W-a.01 and DFPH-a.15 against SHIVBG505, we infused both Abs at a higher dose of 100 mg/kg into four rhesus macaques each, followed by SHIVBG505 challenge 5 days later. Three of four animals that received DF1W-a.01 were protected against infection, whereas all animals that received DFPH-a.15 were protected. Overall, the protective serum neutralization titers observed in these animals were similar to what has been observed for other bNAbs in similar SHIV infection models and in human clinical trials. In conclusion, FP-directed mAbs can thus provide dose-dependent in vivo protection against mucosal SHIV challenges, supporting the development of prophylactic vaccines targeting the HIV-1 Env FP.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca mulatta , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/prevención & control , Anticuerpos Monoclonales , Péptidos , Anticuerpos Neutralizantes
12.
Structure ; 32(2): 131-147.e7, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157856

RESUMEN

Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Sitios de Unión , Epítopos
13.
Cells ; 13(1)2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38201237

RESUMEN

Developing a preventative vaccine for HIV-1 has been a global priority. The elicitation of broadly neutralizing antibodies (bNAbs) against a broad range of HIV-1 envelopes (Envs) from various strains appears to be a critical requirement for an efficacious HIV-1 vaccine. To understand their ability to neutralize HIV-1, it is important to characterize the binding characteristics of bNAbs. Our work is the first to utilize microscale thermophoresis (MST), a rapid, economical, and flexible in-solution temperature gradient method to quantitatively determine the binding affinities of bNAbs and non-neutralizing monoclonal antibodies (mAbs) to HIV-1 recombinant envelope monomer and trimer proteins of different subtypes, pseudoviruses (PVs), infectious molecular clones (IMCs), and cells expressing the trimer. Our results demonstrate that the binding affinities were subtype-dependent. The bNAbs exhibited a higher affinity to IMCs compared to PVs and recombinant proteins. The bNAbs and mAbs bound with high affinity to native-like gp160 trimers expressed on the surface of CEM cells compared to soluble recombinant proteins. Interesting differences were seen with V2-specific mAbs. Although they recognize linear epitopes, one of the antibodies also bound to the Envs on PVs, IMCs, and a recombinant trimer protein, suggesting that the epitope was not occluded. The identification of epitopes on the envelope surface that can bind to high affinity mAbs could be useful for designing HIV-1 vaccines and for down-selecting vaccine candidates that can induce high affinity antibodies to the HIV-1 envelope in their native conformation.


Asunto(s)
Vacunas contra el SIDA , Enfermedades Transmisibles , Seropositividad para VIH , VIH-1 , Humanos , Anticuerpos ampliamente neutralizantes , Anticuerpos Monoclonales , Células Clonales , Epítopos , Proteínas Recombinantes , Glicoproteínas , Proteínas gp160 de Envoltorio del VIH
14.
NPJ Vaccines ; 8(1): 111, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553406

RESUMEN

While several COVID-19 vaccines have been in use, more effective and durable vaccines are needed to combat the ongoing COVID-19 pandemic. Here, we report highly immunogenic self-assembling SARS-CoV-2 spike-HBsAg nanoparticles displaying a six-proline-stabilized WA1 (wild type, WT) spike S6P on a HBsAg core. These S6P-HBsAgs bound diverse domain-specific SARS-CoV-2 monoclonal antibodies. In mice with and without a HBV pre-vaccination, DNA immunization with S6P-HBsAgs elicited significantly more potent and durable neutralizing antibody (nAb) responses against diverse SARS-CoV-2 strains than that of soluble S2P or S6P, or full-length S2P with its coding sequence matching mRNA-1273. The nAb responses elicited by S6P-HBsAgs persisted substantially longer than by soluble S2P or S6P and appeared to be enhanced by HBsAg pre-exposure. These data show that genetic delivery of SARS-CoV-2 S6P-HBsAg nanoparticles can elicit greater and more durable nAb responses than non-nanoparticle forms of stabilized spike. Our findings highlight the potential of S6P-HBsAgs as next generation genetic vaccine candidates against SARS-CoV-2.

15.
Vaccines (Basel) ; 12(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38250850

RESUMEN

The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a primary target of neutralizing antibodies and a key component of licensed vaccines. Substantial mutations in RBD, however, enable current variants to escape immunogenicity generated by vaccination with the ancestral (WA1) strain. Here, we produce and assess self-assembling nanoparticles displaying RBDs from WA1 and BA.5 strains by using the SpyTag:SpyCatcher system for coupling. We observed both WA1- and BA.5-RBD nanoparticles to degrade substantially after a few days at 37 °C. Incorporation of nine RBD-stabilizing mutations, however, increased yield ~five-fold and stability such that more than 50% of either the WA1- or BA.5-RBD nanoparticle was retained after one week at 37 °C. Murine immunizations revealed that the stabilized RBD-nanoparticles induced ~100-fold higher autologous neutralization titers than the prefusion-stabilized (S2P) spike at a 2 µg dose. Even at a 25-fold lower dose where S2P-induced neutralization titers were below the detection limit, the stabilized BA.5-RBD nanoparticle induced homologous titers of 12,795 ID50 and heterologous titers against WA1 of 1767 ID50. Assessment against a panel of ß-coronavirus variants revealed both the stabilized BA.5-RBD nanoparticle and the stabilized WA1-BA.5-(mosaic)-RBD nanoparticle to elicit much higher neutralization breadth than the stabilized WA1-RBD nanoparticle. The extraordinary titer and high neutralization breadth elicited by stabilized RBD nanoparticles from strain BA.5 make them strong candidates for next-generation COVID-19 vaccines.

16.
Nat Commun ; 14(1): 580, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737435

RESUMEN

Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Anticuerpos de Dominio Único , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Epítopos , Ferritinas/genética , Fragmentos Fc de Inmunoglobulinas , Ratones Transgénicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Tiburones
17.
Cell Rep ; 42(8): 112942, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37561630

RESUMEN

Zika virus (ZIKV) is an emerging pathogen that causes devastating congenital defects. The overlapping epidemiology and immunologic cross-reactivity between ZIKV and dengue virus (DENV) pose complex challenges to vaccine design, given the potential for antibody-dependent enhancement of disease. Therefore, classification of ZIKV-specific antibody targets is of notable value. From a ZIKV-infected rhesus macaque, we identify ZIKV-reactive B cells and isolate potent neutralizing monoclonal antibodies (mAbs) with no cross-reactivity to DENV. We group these mAbs into four distinct antigenic groups targeting ZIKV-specific cross-protomer epitopes on the envelope glycoprotein. Co-crystal structures of representative mAbs in complex with ZIKV envelope glycoprotein reveal envelope-dimer epitope and unique dimer-dimer epitope targeting. All four specificities are serologically identified in convalescent humans following ZIKV infection, and representative mAbs from all four groups protect against ZIKV replication in mice. These results provide key insights into ZIKV-specific antigenicity and have implications for ZIKV vaccine, diagnostic, and therapeutic development.


Asunto(s)
Virus del Dengue , Dengue , Vacunas Virales , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Epítopos , Macaca mulatta , Anticuerpos Antivirales , Anticuerpos Monoclonales , Vacunas Virales/uso terapéutico , Proteínas del Envoltorio Viral/química
18.
iScience ; 25(10): 105067, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36157588

RESUMEN

Broadly neutralizing antibodies (bNAbs) against HIV-1 are promising immunotherapeutic agents for treatment of HIV-1 infection. bNAbs can be administered to SHIV-infected rhesus macaques to assess their anti-viral efficacy; however, their delivery into macaques often leads to rapid formation of anti-drug antibody (ADA) responses limiting such assessment. Here, we depleted B cells in five SHIV-infected rhesus macaques by pretreatment with a depleting anti-CD20 antibody prior to bNAb infusions to reduce ADA. Peripheral B cells were depleted following anti-CD20 infusions and remained depleted for at least 9 weeks after the 1st anti-CD20 infusion. Plasma viremia dropped by more than 100-fold in viremic animals after the initial bNAb treatment. No significant humoral ADA responses were detected for as long as B cells remained depleted. Our results indicate that transient B cell depletion successfully inhibited emergence of ADA and improved the assessment of anti-viral efficacy of a bNAb in a SHIV-infected rhesus macaque model.

19.
Structure ; 30(9): 1233-1244.e7, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841885

RESUMEN

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike elicits diverse antibodies, but it is unclear if any of the antibodies can neutralize broadly against other beta-coronaviruses. Here, we report antibody WS6 from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, Middle East respiratory syndrome (MERS)-CoV, and hCoV-OC43. The crystal structure at 2 Å resolution of WS6 revealed recognition to center on a conserved S2 helix, which was occluded in both pre- and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion and post-viral attachment. Comparison of WS6 with other recently identified antibodies that broadly neutralize beta-coronaviruses indicated a stem-helical supersite-centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156-to be a promising target for vaccine design.


Asunto(s)
COVID-19 , Vacunas , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
20.
PLoS One ; 17(5): e0268767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35609088

RESUMEN

Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccine-elicited immunity, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring of vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Biotina , COVID-19/terapia , Humanos , Inmunización Pasiva , Sondas Moleculares , Pruebas de Neutralización , Pandemias , SARS-CoV-2/genética , Saccharomyces cerevisiae/genética , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA