Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408955

RESUMEN

The pineal hormone, melatonin, plays important roles in circadian rhythms and energy metabolism. The hepatic peptide hormone, hepcidin, regulates iron homeostasis by triggering the degradation of ferroportin (FPN), the protein that transfers cellular iron to the blood. However, the role of melatonin in the transcriptional regulation of hepcidin is largely unknown. Here, we showed that melatonin upregulates hepcidin gene expression by enhancing the melatonin receptor 1 (MT1)-mediated c-Jun N-terminal kinase (JNK) activation in hepatocytes. Interestingly, hepcidin gene expression was increased during the dark cycle in the liver of mice, whereas serum iron levels decreased following hepcidin expression. In addition, melatonin significantly induced hepcidin gene expression and secretion, as well as the subsequent FPN degradation in hepatocytes, which resulted in cellular iron accumulation. Melatonin-induced hepcidin expression was significantly decreased by the melatonin receptor antagonist, luzindole, and by the knockdown of MT1. Moreover, melatonin activated JNK signaling and upregulated hepcidin expression, both of which were significantly decreased by SP600125, a specific JNK inhibitor. Chromatin immunoprecipitation analysis showed that luzindole significantly blocked melatonin-induced c-Jun binding to the hepcidin promoter. Finally, melatonin induced hepcidin expression and secretion by activating the JNK-c-Jun pathway in mice, which were reversed by the luzindole treatment. These findings reveal a previously unrecognized role of melatonin in the circadian regulation of hepcidin expression and iron homeostasis.


Asunto(s)
Hepcidinas , Melatonina , Animales , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Homeostasis , Hierro/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Ratones , Receptores de Melatonina/genética , Receptores de Melatonina/metabolismo
2.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199599

RESUMEN

Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is an important transcription factor modulating gene transcription involved in endocrine control of liver metabolism. Transferrin receptor 2 (TFR2), a carrier protein for transferrin, is involved in hepatic iron overload in alcoholic liver disease (ALD). However, TFR2 gene transcriptional regulation in hepatocytes remains largely unknown. In this study, we described a detailed molecular mechanism of hepatic TFR2 gene expression involving ERRγ in response to an endocannabinoid 2-arachidonoylglycerol (2-AG). Treatment with 2-AG and arachidonyl-2'-chloroethylamide, a selective cannabinoid receptor type 1 (CB1) receptor agonist, increased ERRγ and TFR2 expression in hepatocytes. Overexpression of ERRγ was sufficient to induce TFR2 expression in both human and mouse hepatocytes. In addition, ERRγ knockdown significantly decreased 2-AG or alcohol-mediated TFR2 gene expression in cultured hepatocytes and mouse livers. Finally, deletion and mutation analysis of the TFR2 gene promoter demonstrated that ERRγ directly modulated TFR2 gene transcription via binding to an ERR-response element. This was further confirmed by chromatin immunoprecipitation assay. Taken together, these results reveal a previously unrecognized role of ERRγ in the transcriptional regulation of TFR2 gene expression in response to alcohol.


Asunto(s)
Hepatopatías Alcohólicas/genética , Hígado/efectos de los fármacos , Receptor Cannabinoide CB1/genética , Receptores de Estrógenos/genética , Receptores de Transferrina/genética , Alcoholes/farmacología , Animales , Ácidos Araquidónicos/farmacología , Endocannabinoides/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glicéridos/farmacología , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Hierro/metabolismo , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Regiones Promotoras Genéticas , Receptor Cannabinoide CB1/agonistas , Eliminación de Secuencia/genética , Transferrina/genética , Transferrina/metabolismo
3.
Steroids ; 211: 109500, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39159854

RESUMEN

Estrogen-related receptor gamma (ERRγ) is a member of the ERR orphan nuclear receptor family which possesses three subtypes, α, ß, and γ. ERRγ is reportedly predominantly expressed in metabolically active tissues and cells, which promotes positive and negative effects in different tissues. ERRγ overexpression in the liver, pancreas, and thyroid cells is related to liver cancer, oxidative stress, reactive oxygen species (ROS) regulation, and carcinoma. Reduced ERRγ expression in the brain, immune cells, tumor cells, and energy metabolism causes neurological dysfunction, gastric cancer, and obesity. ERRγ is a constitutive receptor; however, its transcriptional activity also depends on co-regulators, agonists, and antagonists, which, when after forming a complex, can play a role in targeting and treating diseases. Moreover, ERRγ has proven crucial in regulating cellular and metabolic activity. However, many functions mediated via ERRγ remain unknown and require further exploration. Hence, considering the importance of ERRγ, this review focuses on the critical findings and interactions between ERRγ and co-regulators, agonists, and antagonists alongside its relationship with downstream and upstream signaling pathways and diseases. This review highlights new findings and provides a path to understanding the current ideas and future studies on ERRγ-mediated cellular activity.


Asunto(s)
Receptores de Estrógenos , Humanos , Receptores de Estrógenos/metabolismo , Animales
4.
Insect Biochem Mol Biol ; 148: 103816, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926689

RESUMEN

Antimicrobial peptides (AMPs) are core components of innate immunity to protect insects against microbial infections. Nuclear receptors (NRs) are ligand-dependent transcription factors that can regulate the expression of genes critical for insect development including molting and metamorphosis. However, the role of NRs in host innate immune response to microbial infection remains poorly understood in Tribolium castaneum (T. castaneum). Here, we show that estrogen-related receptor (ERR), an insect ortholog of the mammalian ERR family of NRs, is a novel transcriptional regulator of AMP genes for innate immune response of T. castaneum. Tribolium ERR (TcERR) expression was induced by immune deficiency (IMD)-Relish signaling in response to infection by Escherichia coli (E. coli), a Gram-negative bacterium, as demonstrated in TcIMD-deficient beetles. Interestingly, genome-wide transcriptome analysis of TcERR-deficient old larvae using RNA-sequencing analysis showed that TcERR expression was positively correlated with gene transcription levels of AMPs including attacins, defensins, and coleoptericin. Moreover, chromatin immunoprecipitation analysis revealed that TcERR could directly bind to ERR-response elements on promoters of genes encoding defensin3 and coleoptericin, critical for innate immune response of T. castaneum. Finally, TcERR-deficient old larvae infected with E. coli displayed enhanced bacterial load and significantly less host survival. These findings suggest that TcERR can coordinate transcriptional regulation of AMPs and host innate immune response to bacterial infection.


Asunto(s)
Tribolium , Animales , Péptidos Antimicrobianos , Escherichia coli , Estrógenos/metabolismo , Inmunidad Innata/genética , Proteínas de Insectos/metabolismo , Larva , Mamíferos , Receptores Citoplasmáticos y Nucleares/metabolismo , Tribolium/genética , Tribolium/metabolismo
5.
Pest Manag Sci ; 78(1): 230-239, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34472702

RESUMEN

BACKGROUND: Red flour beetle, Tribolium castaneum (T. castaneum), is a major agricultural pest that causes significant damage to stored grains and products. Although hormone receptor 96 (HR96) is known to be the single ortholog corresponding to mammalian constitutive androstane receptor and pregnane X receptor, the structural features of Tribolium HR96 (TcHR96) and its role in insecticide-mediated transcription control of cytochrome P450 enzyme genes in T. castaneum have not been elucidated yet. RESULTS: We cloned full-length complementary DNA encoding TcHR96 and revealed the role of TcHR96 in transcriptional control of cytochrome P450 enzyme genes. Interestingly, genome-wide transcriptome analysis of HR96-deficient beetles using RNA sequencing showed a positive correlation between TcHR96 and gene transcription of metabolizing enzymes involved in phase I detoxification processes. Moreover, TcHR96 overexpression significantly increased the promoter activity of genes encoding phase I P450 enzymes such as CYP4Q4, CYP4G7, CYP4BR3, and CYP345A1. Chromatin immunoprecipitation analysis showed that TcHR96 could directly bind to the promoter of gene encoding CYP345A1, an enzyme for metabolizing insecticides in T. castaneum. Furthermore, imidacloprid, a neonicotinoid insecticide, significantly increased gene expression of phase I P450 enzymes in old larvae of T. castaneum, which were reversed by TcHR96 knockdown. Finally, TcHR96 knockdown significantly decreased the resistance of old larvae to imidacloprid concomitant with reduction of imidacloprid-mediated phase I P450 enzyme gene expression. CONCLUSION: TcHR96 plays a major role in transcriptional control of P450 enzyme for imidacloprid detoxification. Controlling TcHR96 might facilitate the regulation of insecticide tolerance in T. castaneum, thus providing a promising new strategy to manage pest beetle populations. © 2021 Society of Chemical Industry.


Asunto(s)
Insecticidas , Tribolium , Animales , Receptor de Androstano Constitutivo , Sistema Enzimático del Citocromo P-450/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Receptores Citoplasmáticos y Nucleares/genética , Tribolium/genética
6.
Pest Manag Sci ; 78(10): 4377-4387, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35759283

RESUMEN

BACKGROUND: Chitin, a major component of insect cuticles, plays a critical role in insect molting and morphogenesis. Thus, coordination of chitin remodeling during insect development requires tight transcriptional control of the chitin metabolism genes involved in chitin synthesis, assembly and degradation. However, the molecular mechanism underlying transcriptional coordination of chitin metabolism genes during beetle development is not yet completely understood. RESULTS: We cloned the full-length cDNA encoding hormone receptor 3 (TcHR3) from Tribolium castaneum and showed a critical role of TcHR3 in modulating chitin metabolism gene expression during molting. Genome-wide transcriptome analysis of HR3-deficient old larvae using RNA sequencing analysis revealed a positive correlation between TcHR3 and transcription of chitin metabolism genes involved in chitin synthesis and degradation. In addition, HR3 overexpression significantly induced the gene promoter activity of N-acetylglucosaminidase 1 (NAG1) involved in chitin degradation and UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) involved in chitin synthesis. Chromatin immunoprecipitation analysis revealed that HR3 could directly bind to HR3-response element of NAG1 and UAP1 promoters. Finally, HR3-deficient late instar larvae and prepupae exhibited defects in larval-larval and larval-pupal molting, respectively, leading to eventual larval death because developing larvae were trapped inside the old cuticle as a result of abnormal chitin metabolism. CONCLUSION: TcHR3 is a transcriptional regulator of chitin metabolic genes for molting of T. castaneum. Controlling the molting system by TcHR3 might be a new management strategy for selective control of red flour beetle infestation. © 2022 Society of Chemical Industry.


Asunto(s)
Tribolium , Animales , Quitina/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva , Muda/genética , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Tribolium/genética
7.
Antioxidants (Basel) ; 10(10)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34679725

RESUMEN

Hepcidin, a major regulator of systemic iron homeostasis, is mainly induced in hepatocytes by activating bone morphogenetic protein 6 (BMP-6) signaling in response to changes in the iron status. Small heterodimer partner-interacting leucine zipper protein (SMILE), a polyphenol-inducible transcriptional co-repressor, regulates hepatic gluconeogenesis and lipogenesis. Here, we examine the epigallocatechin-3-gallate (EGCG) effect on BMP-6-mediated SMAD1/5/8 transactivation of the hepcidin gene. EGCG treatment significantly decreased BMP-6-induced hepcidin gene expression and secretion in hepatocytes, which, in turn, abated ferroportin degradation. SMILE overexpression significantly decreased BMP receptor-induced hepcidin promoter activity. SMILE overexpression also significantly suppressed BMP-6-mediated induction of hepcidin mRNA and its secretion in HepG2 and AML12 cells. EGCG treatment inhibited BMP-6-mediated hepcidin gene expression and secretion, which were significantly reversed by SMILE knockdown in hepatocytes. Interestingly, SMILE physically interacted with SMAD1 in the nucleus and significantly blocked DNA binding of the SMAD complex to the BMP-response element on the hepcidin gene promoter. Taken together, these findings suggest that SMILE is a novel transcriptional repressor of BMP-6-mediated hepcidin gene expression, thus contributing to the control of iron homeostasis.

8.
J Clin Med ; 10(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071897

RESUMEN

We reviewed the clinical characteristics and treatment outcomes of patients with glomus tympanicum tumors (GTTs) presenting with pulsatile tinnitus (PT). We explored whether transcanal sound recording-spectro-temporal analysis (TSR-STA) usefully evaluated changes in PT. The medical records of 13 patients who underwent surgical removal of GTTs were reviewed retrospectively. Two patients underwent preoperative endovascular embolization. Changes in PT, pre- and postoperative audiometry data, TSR-STA results, and clinical outcomes were evaluated. PT was the chief complaint in eight patients (61.5%) and resolved immediately after surgical intervention in all. Two patients exhibited ipsilateral, pseudo-low-frequency hearing loss (PLFHL); surgical GTT removal elicited postoperative improvements in the ipsilesional low-frequency hearing thresholds. Five patients underwent TSR-STA using previously described methods. TSR-STA revealed definite rise-and-fall patterns; surgical tumor removal abated this pattern in one patient, but, for the other four, the patterns did not change greatly post-intervention. Thus, GTT-related PT can be treated successfully (via surgical GTT removal) without complications. In selected cases, preoperative embolization reduces intraoperative hemorrhage. In PT patients with PLFHL, a detailed otoendoscopic examination of the middle ear is required to rule out a GTT. TSR-STA may usefully (and objectively) assess postoperative improvements in GTT-related PT.

9.
J Audiol Otol ; 24(1): 29-34, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31852175

RESUMEN

BACKGROUND AND OBJECTIVES: Bilateral microphones with contralateral routing of signal (BiCROS) hearing aid is an option for hearing rehabilitation in individuals with asymmetric sensorineural hearing loss (ASNHL). The clinical factors influencing the trial and purchase of BiCROS were investigated. SUBJECTS AND METHODS: We reviewed the medical records of 78 patients with ASNHL who were recommended to use BiCROS and analyzed the demographic and audiological factors influencing the trial and purchase of BiCROS. RESULTS: Among the 78 patients, 52 (66.7%) availed of the free BiCROS trial and 21 (26.9%) purchased BiCROS. The mean pure tone audiometry (PTA) air conduction (AC) threshold of the better- and worse-hearing ears were 44.2±12.8 dB and 90.7±22.5 dB HL, respectively. The decision for trial or purchase of BiCROS was not influenced by age, sex, duration of hearing loss of the worse-hearing ear, or PTA AC threshold or speech discrimination score of both ears. The first and third quartiles of the PTA AC thresholds for the better-hearing ear of BiCROS buyers were 38.75 dB and 53.75 dB HL, respectively. The counterpart values for the worse-hearing ear were 72.50 dB and 118.75 dB HL, respectively. CONCLUSIONS: The clinical factors analyzed in this study were found to be irrelevant to the trial and purchase of BiCROS in patients with ASNHL. Nevertheless, the distribution range of the auditory thresholds of the subjects using BiCROS can be a useful basis for the counseling of patients with ASNHL and selection of candidates for BiCROS use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA