Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 19(5): e3001221, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33939688

RESUMEN

Premature termination codons (PTC) cause over 10% of genetic disease cases. Some aminoglycosides that bind to the ribosome decoding center can induce PTC readthrough and restore low levels of full-length functional proteins. However, concomitant inhibition of protein synthesis limits the extent of PTC readthrough that can be achieved by aminoglycosides like G418. Using a cell-based screen, we identified a small molecule, the phenylpyrazoleanilide Y-320, that potently enhances TP53, DMD, and COL17A1 PTC readthrough by G418. Unexpectedly, Y-320 increased cellular protein levels and protein synthesis, measured by SYPRO Ruby protein staining and puromycin labeling, as well as ribosome biogenesis measured using antibodies to rRNA and ribosomal protein S6. Y-320 did not increase the rate of translation elongation and it exerted its effects independently of mTOR signaling. At the single cell level, exposure to Y-320 and G418 increased ribosome content and protein synthesis which correlated strongly with PTC readthrough. As a single agent, Y-320 did not affect translation fidelity measured using a luciferase reporter gene but it enhanced misincorporation by G418. RNA-seq data showed that Y-320 up-regulated the expression of CXC chemokines CXCL10, CXCL8, CXCL2, CXCL11, CXCL3, CXCL1, and CXCL16. Several of these chemokines exert their cellular effects through the receptor CXCR2 and the CXCR2 antagonist SB225002 reduced cellular protein levels and PTC readthrough in cells exposed to Y-320 and G418. These data show that the self-limiting nature of PTC readthrough by G418 can be compensated by Y-320, a potent enhancer of PTC readthrough that increases ribosome biogenesis and protein synthesis. They also support a model whereby increased PTC readthrough is enabled by increased protein synthesis mediated by an autocrine chemokine signaling pathway. The findings also raise the possibility that inflammatory processes affect cellular propensity to readthrough agents and that immunomodulatory drugs like Y-320 might find application in PTC readthrough therapy.


Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido/genética , Ribosomas/metabolismo , Aminoglicósidos/metabolismo , Aminoglicósidos/fisiología , Línea Celular , Quimiocinas CXC/efectos de los fármacos , Quimiocinas CXC/metabolismo , Codón sin Sentido/metabolismo , Codón de Terminación , Gentamicinas/farmacología , Humanos , Mutación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína , Ribosomas/efectos de los fármacos
2.
J Biol Chem ; 298(2): 101546, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34999117

RESUMEN

Nonsense mutations, which occur in ∼11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as G418 permit PTC readthrough and so may be used to address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we tested whether TRPC nonselective cation channels contribute to the variable PTC readthrough effect of aminoglycosides by controlling their cellular uptake. Indeed, a recently reported selective TRPC5 inhibitor, AC1903, consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cancer cell line and junctional epidermolysis bullosa (JEB) patient-derived keratinocytes. Interestingly, the effect of AC1903 in DMS-114 cells was mimicked by nonselective TRPC inhibitors, but not by well-characterized inhibitors of TRPC1/4/5 (Pico145, GFB-8438) or TRPC3/6/7 (SAR7334), suggesting that AC1903 may work through additional or undefined targets. Indeed, in our experiments, AC1903 inhibited multiple TRPC channels including TRPC3, TRPC4, TRPC5, TRPC6, TRPC4-C1, and TRPC5-C1, as well as endogenous TRPC1:C4 channels in A498 renal cancer cells, all with low micromolar IC50 values (1.8-18 µM). We also show that AC1903 inhibited TRPV4 channels, but had weak or no effects on TRPV1 and no effect on the nonselective cation channel PIEZO1. Our study reveals that AC1903 has previously unrecognized targets, which need to be considered when interpreting results from experiments with this compound. In addition, our data strengthen the hypothesis that nonselective calcium channels are involved in aminoglycoside uptake.


Asunto(s)
Aminoglicósidos , Codón sin Sentido , Indazoles , Canales Catiónicos TRPC , Aminoglicósidos/farmacología , Codón sin Sentido/efectos de los fármacos , Humanos , Indazoles/farmacología , Inhibidores de la Síntesis de la Proteína , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo
3.
Nucleic Acids Res ; 49(7): 3692-3708, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33764477

RESUMEN

Premature termination codon (PTC) readthrough is considered a potential treatment for genetic diseases caused by nonsense mutations. High concentrations of aminoglycosides induce low levels of PTC readthrough but also elicit severe toxicity. Identifying compounds that enhance PTC readthrough by aminoglycosides or reduce their toxicity is a continuing challenge. In humans, a binary complex of eukaryotic release factors 1 (eRF1) and 3 (eRF3a or eRF3b) mediates translation termination. They also participate in the SURF (SMG1-UPF1-eRF1-eRF3) complex assembly involved in nonsense-mediated mRNA decay (NMD). We show that PTC readthrough by aminoglycoside G418 is considerably enhanced by eRF3a and eRF3b siRNAs and cereblon E3 ligase modulators CC-885 and CC-90009, which induce proteasomal degradation of eRF3a and eRF3b. eRF3 degradation also reduces eRF1 levels and upregulates UPF1 and selectively stabilizes TP53 transcripts bearing a nonsense mutation over WT, indicating NMD suppression. CC-90009 is considerably less toxic than CC-885 and it enhances PTC readthrough in combination with aminoglycosides in mucopolysaccharidosis type I-Hurler, late infantile neuronal ceroid lipofuscinosis, Duchenne muscular dystrophy and junctional epidermolysis bullosa patient-derived cells with nonsense mutations in the IDUA, TPP1, DMD and COL17A1 genes, respectively. Combination of CC-90009 with aminoglycosides such as gentamicin or ELX-02 may have potential for PTC readthrough therapy.


Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido , Enfermedades Genéticas Congénitas , Factores de Terminación de Péptidos/metabolismo , Línea Celular , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Humanos , Tripeptidil Peptidasa 1
4.
Proc Natl Acad Sci U S A ; 114(13): 3479-3484, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289221

RESUMEN

Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy. In this study we show that the major components of pharmaceutical gentamicin lack PTC readthrough activity but the minor component gentamicin B1 (B1) is a potent readthrough inducer. Molecular dynamics simulations reveal the importance of ring I of B1 in establishing a ribosome configuration that permits pairing of a near-cognate complex at a PTC. B1 induced readthrough at all three nonsense codons in cultured cancer cells with TP53 (tumor protein p53) mutations, in cells from patients with nonsense mutations in the TPP1 (tripeptidyl peptidase 1), DMD (dystrophin), SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), and COL7A1 (collagen type VII alpha 1 chain) genes, and in an in vivo tumor xenograft model. The B1 content of pharmaceutical gentamicin is highly variable and major gentamicins suppress the PTC readthrough activity of B1. Purified B1 provides a consistent and effective source of PTC readthrough activity to study the potential of nonsense suppression for treatment of rare genetic disorders.


Asunto(s)
Antibacterianos/farmacología , Codón sin Sentido/genética , Gentamicinas/farmacología , Mutación/efectos de los fármacos , Aminopeptidasas/genética , Antibacterianos/química , Línea Celular Tumoral , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Distrofina/genética , Gentamicinas/química , Humanos , Serina Proteasas/genética , Tripeptidil Peptidasa 1 , Proteína p53 Supresora de Tumor/genética
5.
Nucleic Acids Res ; 44(14): 6583-98, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27407112

RESUMEN

Nonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast. Chemical optimization generated phthalimide derivative CDX5-1 with activity in human cells. Alone, CDX5-1 did not induce readthrough or increase TP53 mRNA levels in HDQ-P1 cancer cells with a homozygous TP53 nonsense mutation. However, in combination with aminoglycoside G418, it enhanced readthrough up to 180-fold over G418 alone. The combination also increased readthrough at all three nonsense codons in cancer cells with other TP53 nonsense mutations, as well as in cells from rare genetic disease patients with nonsense mutations in the CLN2, SMARCAL1 and DMD genes. These findings open up the possibility of treating patients across a spectrum of genetic diseases caused by nonsense mutations.


Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido/genética , Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Alelos , Aminoglicósidos/química , Enfermedades Genéticas Congénitas/genética , Células HCT116 , Homocigoto , Humanos , Paromomicina/farmacología , Ftalimidas/química , Ftalimidas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Factores de Tiempo , Tripeptidil Peptidasa 1 , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
J Neurosci ; 34(37): 12527-37, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25209290

RESUMEN

Math1 is the defining molecule of the cerebellar rhombic lip and Pax6 is downstream in the Math1 pathway. In the present study, we discover that Wntless (Wls) is a novel molecular marker of the cells in the interior face of the rhombic lip throughout normal mouse cerebellar development. Wls expression is found complementary to the expression of Math1 and Pax6, which are localized to the exterior face of the rhombic lip. To determine the interaction between these molecules, we examine the loss-of-Math1 or loss-of-Pax6 in the cerebellum, i.e., the Math1-null and Pax6-null (Sey) mutant cerebella. The presence of Wls-positive cells in the Math1-null rhombic lip indicates that Wls expression is independent of Math1. In the Sey mutant cerebellum, there is an expansion of Wls-expressing cells into regions that are normally colonized by Pax6-expressing cells. The ectopic expression of Wls in the Pax6-null cerebellum suggests a negative interaction between Wls-expressing cells and Pax6-positive cells. These findings suggest that the rhombic lip is dynamically patterned by the expression of Wls, Math1, and Pax6. We also examine five rhombic lip cell markers (Wls, Math1, Pax6, Lmx1a, and Tbr2) to identify four molecularly distinct compartments in the rhombic lip during cerebellar development. The existence of spatial compartmentation in the rhombic lip and the interplay between Wls, Math1, and Pax6 in the rhombic lip provides novel views of early cerebellar development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/fisiología , Cerebelo/embriología , Cerebelo/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción Paired Box/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Represoras/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Factor de Transcripción PAX6 , Distribución Tisular
7.
Clin Immunol ; 161(2): 355-65, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26499378

RESUMEN

Schimke immuno-osseous dysplasia (SIOD) is an autosomal recessive, fatal childhood disorder associated with skeletal dysplasia, renal dysfunction, and T-cell immunodeficiency. This disease is linked to biallelic loss-of-function mutations of the SMARCAL1 gene. Although recurrent infection, due to T-cell deficiency, is a leading cause of morbidity and mortality, the etiology of the T-cell immunodeficiency is unclear. Here, we demonstrate that the T cells of SIOD patients have undetectable levels of protein and mRNA for the IL-7 receptor alpha chain (IL7Rα) and are unresponsive to stimulation with IL-7, indicating a loss of functional receptor. No pathogenic mutations were detected in the exons of IL7R in these patients; however, CpG sites in the IL7R promoter were hypermethylated in SIOD T cells. We propose therefore that the lack of IL7Rα expression, associated with hypermethylation of the IL7R promoter, in T cells and possibly their earlier progenitors, restricts T-cell development in SIOD patients.


Asunto(s)
Arteriosclerosis/genética , Síndromes de Inmunodeficiencia/genética , Síndrome Nefrótico/genética , Osteocondrodisplasias/genética , Embolia Pulmonar/genética , Receptores de Interleucina-7/genética , Linfocitos T/metabolismo , Adolescente , Adulto , Arteriosclerosis/metabolismo , Arteriosclerosis/patología , Células Cultivadas , Niño , Preescolar , ADN Helicasas/genética , Metilación de ADN , Citometría de Flujo , Expresión Génica , Humanos , Inmunohistoquímica , Síndromes de Inmunodeficiencia/metabolismo , Síndromes de Inmunodeficiencia/patología , Interleucina-17/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Mutación , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Enfermedades de Inmunodeficiencia Primaria , Regiones Promotoras Genéticas/genética , Embolia Pulmonar/metabolismo , Embolia Pulmonar/patología , Receptores de Interleucina-7/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Adulto Joven
8.
Hum Mol Genet ; 21(11): 2572-87, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22378147

RESUMEN

Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila and mouse models, we show that the proteins encoded by SMARCAL1 orthologs localize to transcriptionally active chromatin and modulate gene expression. We also show that, as found in SIOD patients, deficiency of the SMARCAL1 orthologs alone is insufficient to cause disease in fruit flies and mice, although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.


Asunto(s)
Alelos , Arteriosclerosis/genética , ADN Helicasas/genética , Expresión Génica , Síndromes de Inmunodeficiencia/genética , Mutación , Síndrome Nefrótico/genética , Osteocondrodisplasias/genética , Embolia Pulmonar/genética , Animales , Arteriosclerosis/metabolismo , Cromatina/metabolismo , ADN Helicasas/metabolismo , Modelos Animales de Enfermedad , Drosophila/enzimología , Embrión no Mamífero/metabolismo , Ambiente , Humanos , Síndromes de Inmunodeficiencia/metabolismo , Ratones , Síndrome Nefrótico/metabolismo , Osteocondrodisplasias/metabolismo , Penetrancia , Enfermedades de Inmunodeficiencia Primaria , Embolia Pulmonar/metabolismo
9.
Eur J Neurosci ; 36(7): 2888-98, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22817342

RESUMEN

The Pax6 transcription factor is expressed in cerebellar granule cells and when mutated, as in the Sey/Sey mouse, produces granule cells with disturbed survival and migration and with defects in neurite extension. The impact of Pax6 on other genes in the context of cerebellar development has not been identified. In this study, we performed transcriptome comparisons between wildtype and Pax6-null whole cerebellar tissue at embryonic day (E) 13.5, 15.5 and 18.5 using Affymetrix arrays (U74Av2). Statistical analyses identified 136 differentially regulated transcripts (FDR 0.05, 1.2-fold change cutoff) over time in Pax6-null cerebellar tissue. In parallel we examined the Math1-null granuloprival cerebellum and identified 228 down-regulated transcripts (FDR 0.05, 1.2-fold change cutoff). The intersection of these two microarray datasets produced a total of 21 differentially regulated transcripts. For a subset of the identified transcripts, we used qRT-PCR to validate the microarray data and demonstrated the expression in the rhombic lip lineage and differential expression in Pax6-null cerebellum with in situ hybridisation analysis. The candidate genes identified in this way represent direct or indirect Pax6-downstream genes involved in cerebellar development.


Asunto(s)
Cerebelo/metabolismo , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Transcriptoma/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cerebelo/embriología , Hibridación Genómica Comparativa , Proteínas del Ojo/metabolismo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo
10.
Am J Med Genet A ; 158A(9): 2204-13, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22888040

RESUMEN

Schimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder with prominent skeletal, renal, immunological, and ectodermal abnormalities. It is caused by mutations of SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), which encodes a DNA stress response protein. To determine the relationship of this function to the SIOD phenotype, we profiled the cancer prevalence in SIOD and assessed if defects of nucleotide excision repair (NER) and nonhomologous end joining (NHEJ), respectively, explained the ectodermal and immunological features of SIOD. Finally, we determined if Smarcal1(del/del) mice had hypersensitivity to irinotecan (CPT-11), etoposide, and hydroxyurea (HU) and whether exposure to these agents induced features of SIOD. Among 71 SIOD patients, three had non-Hodgkin lymphoma (NHL) and one had osteosarcoma. We did not find evidence of defective NER or NHEJ; however, Smarcal1-deficient mice were hypersensitive to several genotoxic agents. Also, CPT-11, etoposide, and HU caused decreased growth and loss of growth plate chondrocytes. These data, which identify an increased prevalence of NHL in SIOD and confirm hypersensitivity to DNA damaging agents in vivo, provide guidance for the management of SIOD patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , ADN Helicasas/genética , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/genética , Animales , Línea Celular , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Humanos , Etiquetado Corte-Fin in Situ , Ratones
11.
EMBO J ; 26(22): 4732-43, 2007 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-17948061

RESUMEN

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) cleaves the phosphodiester bond between a covalently stalled topoisomerase I (Topo I) and the 3' end of DNA. Stalling of Topo I at DNA strand breaks is induced by endogenous DNA damage and the Topo I-specific anticancer drug camptothecin (CPT). The H493R mutation of Tdp1 causes the neurodegenerative disorder spinocerebellar ataxia with axonal neuropathy (SCAN1). Contrary to the hypothesis that SCAN1 arises from catalytically inactive Tdp1, Tdp1-/- mice are indistinguishable from wild-type mice, physically, histologically, behaviorally, and electrophysiologically. However, compared to wild-type mice, Tdp1-/- mice are hypersensitive to CPT and bleomycin but not to etoposide. Consistent with earlier in vitro studies, we show that the H493R Tdp1 mutant protein retains residual activity and becomes covalently trapped on the DNA after CPT treatment of SCAN1 cells. This result provides a direct demonstration that Tdp1 repairs Topo I covalent lesions in vivo and suggests that SCAN1 arises from the recessive neomorphic mutation H493R. This is a novel mechanism for disease since neomorphic mutations are generally dominant.


Asunto(s)
Hidrolasas Diéster Fosfóricas/metabolismo , Ataxias Espinocerebelosas/genética , Animales , Antineoplásicos/farmacología , Axones , Bleomicina/farmacología , Encéfalo/metabolismo , Camptotecina/análogos & derivados , Camptotecina/farmacología , Células Cultivadas , Ensayo Cometa , Embrión de Mamíferos/citología , Etopósido/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Genes Recesivos , Humanos , Irinotecán , Ratones , Ratones Noqueados , Mutación , Hidrolasas Diéster Fosfóricas/deficiencia , Hidrolasas Diéster Fosfóricas/genética , Polineuropatías/genética , Polineuropatías/metabolismo , ARN Mensajero/metabolismo , Ataxias Espinocerebelosas/metabolismo , Topotecan/farmacología
12.
J Neuropathol Exp Neurol ; 67(6): 565-77, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18520775

RESUMEN

Schimke immuno-osseous dysplasia (OMIM 242900) is an uncommon autosomal-recessive multisystem disease caused by mutations in SMARCAL1 (swi/snf-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), a gene encoding a putative chromatin remodeling protein. Neurologic manifestations identified to date relate to enhanced atherosclerosis and cerebrovascular disease. Based on a clinical survey, we determined that half of Schimke immuno-osseous dysplasia patients have a small head circumference, and 15% have social, language, motor, or cognitive abnormalities. Postmortem examination of 2 Schimke immuno-osseous dysplasia patients showed low brain weights and subtle brain histologic abnormalities suggestive of perturbed neuron-glial migration such as heterotopia, irregular cortical thickness, incomplete gyral formation, and poor definition of cortical layers. We found that SMARCAL1 is highly expressed in the developing and adult mouse and human brain, including neural precursors and neuronal lineage cells. These observations suggest that SMARCAL1 deficiency may influence brain development and function in addition to its previously recognized effect on cerebral circulation.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/patología , ADN Helicasas/biosíntesis , Síndromes de Inmunodeficiencia/metabolismo , Osteocondrodisplasias/metabolismo , Animales , Northern Blotting , Western Blotting , Encéfalo/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunohistoquímica , Síndromes de Inmunodeficiencia/complicaciones , Síndromes de Inmunodeficiencia/patología , Hibridación in Situ , Ratones , Microcefalia/etiología , Osteocondrodisplasias/complicaciones , Osteocondrodisplasias/patología , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Sci Rep ; 8(1): 4304, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523818

RESUMEN

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a nuclear and mitochondrial protein that in nuclei and in vitro repairs blocked 3' DNA termini such as 3' phosphotyrosine conjugates resulting from stalling of topoisomerase I-DNA intermediates. Its mutation also causes spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1). Because Tdp1 colocalizes with mitochondria following oxidative stress, we hypothesized that Tdp1 repairs mitochondrial DNA (mtDNA) and that mtDNA damage mediates entry of Tdp1 into the mitochondria. To test this, we used S. cerevisiae mutants, cultured mouse and human cells, and a Tdp1 knockout mouse. H2O2- and rotenone-induced cellular and intramitochondrial reactive oxygen species (ROS) activated oxidant-responsive kinases P38 and ERK1, and the translocation of Tdp1 from the nucleus to the mitochondria via the TIM/TOM complex. This translocation occurred independently of mtDNA. Within the mitochondria, Tdp1 interacted with Ligase III and reduced mtDNA mutations. Tdp1-deficient tissues had impaired mitochondrial respiration and decreased viability. These observations suggest that Tdp1 maintains mtDNA integrity and support the hypothesis that mitochondrial dysfunction contributes to the pathology of SCAN1.


Asunto(s)
Mitocondrias/metabolismo , Estrés Oxidativo , Hidrolasas Diéster Fosfóricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Núcleo Celular/metabolismo , Respiración de la Célula , Células Cultivadas , Humanos , Ratones , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Saccharomyces cerevisiae , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Hum Mutat ; 28(3): 273-83, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17089404

RESUMEN

Schimke immunoosseous dysplasia (SIOD), which is characterized by prominent spondyloepiphyseal dysplasia, T-cell deficiency, and focal segmental glomerulosclerosis, is a panethnic autosomal recessive multisystem disorder with variable expressivity. Biallelic mutations in switch/sucrose nonfermenting (swi/snf) related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1 (SMARCAL1) are the only identified cause of SIOD. However, among 72 patients from different families, we identified only 38 patients with biallelic mutations in the coding exons and splice junctions of the SMARCAL1 gene. This observation, the variable expressivity, and poor genotype-phenotype correlation led us to test several hypotheses including modifying haplotypes, oligogenic inheritance, or locus heterogeneity in SIOD. Haplotypes associated with the two more common mutations, R820H and E848X, did not correlate with phenotype. Also, contrary to monoallelic SMARCAL1 coding mutations indicating oligogenic inheritance, we found that all these patients did not express RNA and/or protein from the other allele and thus have biallelic SMARCAL1 mutations. We hypothesize therefore that the variable expressivity among patients with biallelic SMARCAL1 mutations arises from environmental, genetic, or epigenetic modifiers. Among patients without detectable SMARCAL1 coding mutations, our analyses of cell lines from four of these patients showed that they expressed normal levels of SMARCAL1 mRNA and protein. This is the first evidence for nonallelic heterogeneity in SIOD. From analysis of the postmortem histopathology from two patients and the clinical data from most patients, we propose the existence of endophenotypes of SIOD.


Asunto(s)
Variación Genética , Síndromes de Inmunodeficiencia/genética , Osteocondrodisplasias/genética , Algoritmos , Niño , Preescolar , ADN Helicasas/genética , Análisis Mutacional de ADN , Femenino , Pruebas Genéticas , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo
15.
Nucleus ; 7(6): 560-571, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27813696

RESUMEN

Mutations in SMARCAL1, which encodes a DNA annealing helicase with roles in DNA replication fork restart, DNA repair, and gene expression modulation, cause Schimke immuno-osseous dysplasia (SIOD), an autosomal recessive disease characterized by skeletal dysplasia, renal disease, T-cell immunodeficiency, and arteriosclerosis. The clinical features of SIOD arise from pathological changes in gene expression; however, the underlying mechanism for these gene expression alterations remains unclear. We hypothesized that changes of the epigenome alter gene expression in SIOD. To test this, we performed a genetic screen for interaction between Marcal1, the Drosophila melanogaster ortholog of SMARCAL1, and the genes of the trithorax group (trxG) and Polycomb group (PcG), which encode epigenetic regulators. SMARCAL1 and Marcal1 genetically interacted with trxG and PcG members. A homozygous null mutation of Marcal1 suppressed the wing-to-haltere transformation, ectopic Ultrabithorax (Ubx) expression, and ectopic Ubx minigene expression caused by PcG deficiency. The suppression of ectopic Ubx expression correlated with reduced chromatin accessibility of the Ubx promoter. To our knowledge, this is the first in vivo evidence for deficiency of a SMARCAL1 ortholog altering the chromatin structure of a gene.


Asunto(s)
Arteriosclerosis/genética , Arteriosclerosis/metabolismo , Cromatina/metabolismo , ADN Helicasas/deficiencia , Regulación de la Expresión Génica , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Embolia Pulmonar/genética , Embolia Pulmonar/metabolismo , Animales , ADN Helicasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas del Grupo Polycomb/metabolismo , Enfermedades de Inmunodeficiencia Primaria , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/metabolismo
16.
Orphanet J Rare Dis ; 11(1): 149, 2016 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-27816064

RESUMEN

BACKGROUND: Schimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder caused by biallelic mutations in the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1) gene. Changes in gene expression underlie the arteriosclerosis and T-cell immunodeficiency of SIOD; therefore, we hypothesized that SMARCAL1 deficiency causes the focal segmental glomerulosclerosis (FSGS) of SIOD by altering renal gene expression. We tested this hypothesis by gene expression analysis of an SIOD patient kidney and verified these findings through immunofluorescent analysis in additional SIOD patients and a genetic interaction analysis in Drosophila. RESULTS: We found increased expression of components and targets of the Wnt and Notch signaling pathways in the SIOD patient kidney, increased levels of unphosphorylated ß-catenin and Notch1 intracellular domain in the glomeruli of most SIOD patient kidneys, and genetic interaction between the Drosophila SMARCAL1 homologue Marcal1 and genes of the Wnt and Notch signaling pathways. CONCLUSIONS: We conclude that increased Wnt and Notch activity result from SMARCAL1 deficiency and, as established causes of FSGS, contribute to the renal disease of most SIOD patients. This further clarifies the pathogenesis of SIOD and will hopefully direct potential therapeutic approaches for SIOD patients.


Asunto(s)
Arteriosclerosis/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Síndromes de Inmunodeficiencia/metabolismo , Enfermedades Renales/metabolismo , Síndrome Nefrótico/metabolismo , Osteocondrodisplasias/metabolismo , Embolia Pulmonar/metabolismo , Receptores Notch/metabolismo , Proteínas Wnt/metabolismo , Animales , Arteriosclerosis/genética , Niño , Preescolar , ADN Helicasas/genética , ADN Helicasas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Glomeruloesclerosis Focal y Segmentaria/genética , Humanos , Síndromes de Inmunodeficiencia/genética , Enfermedades Renales/genética , Masculino , Síndrome Nefrótico/genética , Osteocondrodisplasias/genética , Enfermedades de Inmunodeficiencia Primaria , Embolia Pulmonar/genética , Proteínas Wnt/genética
17.
J Biomol Screen ; 19(10): 1372-82, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25117203

RESUMEN

Mutations of DNA repair pathways contribute to tumorigenesis and provide a therapeutic target for synthetic lethal interactions in tumor cells. Given that tyrosyl-DNA phosphodiesterase 1 (Tdp1) repairs stalled topoisomerase-I DNA complexes, we hypothesized that inhibition of Tdp1 has synthetic lethal effects in some cancers. To test this, we screened tumor arrays for Tdp1 expression and observed that Tdp1 is expressed in many tumors, including more than 90% of human breast tumors. Subsequent chemical screening identified putative Tdp1 inhibitors. Treatment of control human mammary epithelial cells and the breast cancer cell line MCF-7 with compound CD00509 preferentially sensitized MCF-7 cells to camptothecin and decreased cell proliferation 25% more than camptothecin treatment alone. This suggests that CD00509 specifically targeted Tdp1 in vitro, and CD00509 increased the sensitivity of wild-type murine embryonic fibroblasts (MEFs) to camptothecin to a degree comparable to that of Tdp1(-/-) MEFs. In addition, consistent with poly ADP-ribose polymerase-1 (PARP-1) collaborating with Tdp1 in DNA repair, combined Tdp1 and PARP-1 inhibition was more detrimental to MCF-7 cells than either treatment alone, whereas the combination was not additively harmful to control mammary cells. We conclude that targeting Tdp1 in anticancer therapy preferentially enhances the sensitivity of some breast cancer cells to camptothecin and may be an effective adjuvant for breast cancer therapy.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Neoplasias/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Piranos/farmacología , Tiobarbitúricos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Simulación por Computador , Daño del ADN/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Técnicas In Vitro , Células MCF-7/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Análisis de Matrices Tisulares , Inhibidores de Topoisomerasa I/farmacología
18.
Orphanet J Rare Dis ; 9: 94, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24961299

RESUMEN

Desmosterolosis is an autosomal recessive disorder of cholesterol biosynthesis caused by biallelic mutations of DHCR24 (homozygous or compound heterozygous), which encodes 3-ß-hydroxysterol Δ-24-reductase. We report two sisters homozygous for the 571G>A (E191K) DHCR24 mutation. Comparison of the propositae to other reported individuals shows that psychomotor developmental delay, failure to thrive, dysgenesis of the corpus callosum, cerebral white matter atrophy and spasticity likely constitute the minimal desmosterolosis phenotype. The nonspecific features of desmosterolosis make it difficult to suspect clinically and therefore screening for it should be entertained early in the diagnostic evaluation.


Asunto(s)
Anomalías Múltiples/diagnóstico , Colesterol/biosíntesis , Errores Innatos del Metabolismo Lipídico/diagnóstico , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Diagnóstico Diferencial , Femenino , Humanos , Errores Innatos del Metabolismo Lipídico/metabolismo , Errores Innatos del Metabolismo Lipídico/patología
19.
J Mol Histol ; 44(4): 481-94, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23536040

RESUMEN

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that processes blocked 3' ends of DNA breaks. Functional loss of Tdp1 causes spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1). Based on the prominent cytoplasmic expression of Tdp1 in the neurons presumably affected in SCAN1, we hypothesized that Tdp1 participates in the repair of mitochondrial DNA. As a step toward testing this hypothesis, we profiled Tdp1 expression in different human tissues by immunohistochemistry and immunofluorescence respectively and determined whether Tdp1 was expressed in the cytoplasm of tissues other than the neurons. We found that Tdp1 was ubiquitously expressed and present in the cytoplasm of many cell types. Within human skeletal muscle and multiple mouse tissues, Tdp1 partially colocalized with the mitochondria. In cultured human dermal fibroblasts, Tdp1 redistributed to the cytoplasm and partially colocalized with mitochondria following oxidative stress. These studies suggest that one role of cytoplasmic Tdp1 is the repair of mitochondrial DNA lesions arising from oxidative stress.


Asunto(s)
Mitocondrias/enzimología , Especificidad de Órganos , Hidrolasas Diéster Fosfóricas/metabolismo , Adolescente , Animales , Núcleo Celular/metabolismo , Dermis/citología , Femenino , Fibroblastos/citología , Fibroblastos/enzimología , Humanos , Inmunohistoquímica , Recién Nacido , Masculino , Ratones , Estrés Oxidativo , Transporte de Proteínas
20.
Mol Cancer Res ; 11(10): 1179-92, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23913164

RESUMEN

UNLABELLED: Rhabdomyosarcoma is the most common soft tissue sarcoma in children. Metastatic rhabdomyosarcoma in children has a 5-year event-free survival rate of <30%, and a recent clinical trial with irinotecan, a topoisomerase I inhibitor, failed to improve outcome. Therefore, it was surmised that failure of irinotecan may be the result of overexpression of the DNA repair enzyme tyrosyl-DNA phosphodiesterase (TDP1), which processes topoisomerase I-DNA complexes resulting from topoisomerase I inhibitor treatment. Using human tissue microarrays and gene expression arrays, a marked overexpression of TDP1 protein and mRNA in RMS tumors was observed. Critically, knockdown of TDP1 or inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme in the same complex as TDP1, sensitized rhabdomyosarcoma cell lines to analogues of irinotecan. Interestingly, BRCA1/2 mutations or altered expression was not detectable in rhabdomyosarcoma cells; however, TDP1 knockdown and PARP-1 inhibition alone were cytotoxic to a subset of rhabdomyosarcoma cells, suggesting that they harbor genetic lesions in DNA repair components that have synthetic lethal interactions with loss of TDP1 or PARP1 function. Furthermore, culturing embryonal rhabdomyosarcoma cells in serum/nutrient-restricted medium increased cellular cytotoxicity upon PARP-1 inhibition and was intrinsically cytotoxic to alveolar, though not embryonal rhabdomyosarcoma cells. The results of these studies suggest a compensatory role for TDP1 in rhabdomyosarcoma after topoisomerase-I based therapy and further demonstrate that TDP1 knockdown, PARP-1 inhibition, and dietary restriction have therapeutic validity. IMPLICATIONS: Selective targeting of TDP1 and/or PARP-1 in rhabdomyosarcoma induces cytotoxicity and sensitizes to DNA damaging agents.


Asunto(s)
Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Rabdomiosarcoma/genética , Antineoplásicos/farmacología , Proteína BRCA1/genética , Proteína BRCA2/genética , Camptotecina/análogos & derivados , Camptotecina/farmacología , Línea Celular Tumoral , Niño , Reparación del ADN , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Humanos , Mutación , Mioblastos Esqueléticos/fisiología , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Suero/metabolismo , Análisis de Matrices Tisulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA