RESUMEN
Oxide semiconductors (OS) are attractive materials for memory and logic device applications owing to their low off-current, high field effect mobility, and superior large-area uniformity. Recently, successful research has reported the high field-effect mobility (µFE) of crystalline OS channel transistors (above 50 cm2 V-1 s-1). However, the memory and logic device application presents challenges in mobility and stability trade-offs. Here, we propose a method for achieving high-mobility and high-stability by lowering the grain boundary effect. A DBADMIn precursor was synthesized to deposit highly c-axis-aligned C(222) crystalline 3 nm thick In2O3 films. In this study, the 250 °C deposited 3 nm thick In2O3 channel transistor exhibited high µFE of 41.12 cm2 V-1 s-1, Vth of -0.50 V, and SS of 150 mV decade-1 with superior stability of 0.16 V positive shift during PBTS at 100 °C, 3 MV cm-1 stress conditions for 3 h.
RESUMEN
Organic/inorganic hybrid tincone films were deposited by molecular layer deposition (MLD) using N,N'-tert-butyl-1,1-dimethylethylenediamine stannylene(II) as a precursor and hydroquinone (HQ) as an organic reactant. From previous studies it is known that SnO can be fabricated through a reaction with H2O, which has low oxidizing power. Similarly, when combined with HQ having a bi-functional hydroxyl group, SnO-based 2D hybrid tincones can be produced. In most aromatic ring-based metalcones described in previous studies, graphitization by pyrolysis occurred during post-annealing. In this study of tincones fabricated with a divalent precursor after a vacuum post-annealing process, the structural rearrangement of the SnO and the benzene ring bonds proceeded to form a SnO-based hybrid 2D structure. The rearrangement of the resulting structure occurred through π-π stacking (without pyrolysis) of the benzene ring. To understand the mechanism of fabrication of 2D hybrid tincones by π-π stacking of the benzene ring and the increase of the crystallinity of SnO after the annealing process, the structural rearrangement was observed using X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), grazing-incidence wide-angle X-ray scattering (GIWAXS), and Raman spectroscopy. Thereafter, the design of the crystal structure was investigated.
RESUMEN
Atomic layer deposition (ALD) is a promising deposition method to precisely control the thickness and metal composition of oxide semiconductors, making them attractive materials for use in thin-film transistors because of their high mobility and stability. However, multicomponent deposition using ALD is difficult to control without understanding the growth mechanisms of the precursors and reactants. Thus, the adsorption and surface reactivity of various precursors must be investigated. In this study, InGaO (IGO) semiconductors were deposited by plasma-enhanced atomic layer deposition (PEALD) using two sets of In and Ga precursors. The first set of precursors consisted of In(CH3)3[CH3OCH2CH2NHtBu] (TMION) and Ga(CH3)3[CH3OCH2CH2NHtBu]) (TMGON), denoted as TM-IGO; the other set of precursors was (CH3)2In(CH2)3N(CH3)2 (DADI) and (CH3)3Ga (TMGa), denoted as DT-IGO. We varied the number of InO subcycles between 3 and 19 to control the chemical composition of the ALD-processed films. The indium compositions of TM-IGO and DT-IGO thin films increased as the InO subcycles increased. However, the indium/gallium metal ratios of TM-IGO and DT-IGO were quite different, despite having the same InO subcycles. The steric hindrance of the precursors and different densities of the adsorption sites contributed to the different TM-IGO and DT-IGO metal ratios. The electrical properties of the precursors, such as Hall characteristics and device parameters of the thin-film transistors, were also different, even though the same deposition process was used. These differences might have resulted from the growth behavior, anion/cation ratios, and binding states of the IGO thin films.
RESUMEN
Over the past several decades, tin monoxide (SnO) has been studied extensively as a p-type thin film transistor (TFT). However, its TFT performance is still insufficient for practical use. Many studies suggested that the instability of the valence state of Sn (Sn2+/Sn4+) is a critical reason for the poor performance such as limited mobility and low on/off ratio. For SnO, the Sn 5s-O 2p hybridized state is a key component for obtaining p-type conduction. Thus, a strategy for stabilizing the SnO phase is essential. In this study, we employ a variety of analytical methods such as X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and Hall measurement to identify the main contributors to the physical properties of SnO. It is revealed that precision control of the process temperature is needed to achieve both the crystallinity and thermal stability of SnO. In other words, it would be ideal to obtain high-quality SnO thin films at low temperature. We find that atomic layer deposition (ALD) is a quite advantageous process for obtaining high-quality SnO thin films by the following two-step process: (i) growth of highly c-axis oriented SnO at the initial stage and (ii) further crystallization along the in-plane direction by a postannealing process. Consequently, we obtained a highly dense SnO thin film (film density: 6.4 g/cm3) with a high Hall mobility of â¼5 cm2/(V·s). The fabricated SnO TFTs exhibit a field-effect mobility of â¼6.0 cm2/(V·s), which is a quite high value among the SnO TFTs reported to date, with long-term stability. We believe that this study demonstrates the validity of the ALD process for SnO TFTs.
RESUMEN
Traditionally, electronics have been designed with static form factors to serve designated purposes. This approach has been an optimal direction for maintaining the overall device performance and reliability for targeted applications. However, electronics capable of changing their shape, flexibility, and stretchability will enable versatile and accommodating systems for more diverse applications. Here, we report design concepts, materials, physics, and manufacturing strategies that enable these reconfigurable electronic systems based on temperature-triggered tuning of mechanical characteristics of device platforms. We applied this technology to create personal electronics with variable stiffness and stretchability, a pressure sensor with tunable bandwidth and sensitivity, and a neural probe that softens upon integration with brain tissue. Together, these types of transformative electronics will substantially broaden the use of electronics for wearable and implantable applications.
Asunto(s)
Técnicas Biosensibles , Electrónica , Dispositivos Electrónicos Vestibles , Animales , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/normas , Módulo de Elasticidad , Electrónica/instrumentación , Electrónica/métodos , Humanos , Masculino , Ratones , Especificidad de Órganos , Presión , Sensibilidad y Especificidad , Estrés Mecánico , TemperaturaRESUMEN
The high rate of exocytosis at the ribbon synapses is balanced by following compensatory endocytosis. Unlike conventional synaptic terminals where clathrin-mediated endocytosis (CME) is a predominant mechanism for membrane retrieval, CME is thought to be only a minor mechanism of endocytosis at the retinal ribbon synapses, but CME is present there and it works. We examined the clathrin expression in the FVB/N rd1 mouse, which is an animal model of retinitis pigmentosa. The broadly distributed pattern of clathrin immunoreactivity in the inner plexiform layer was similar in both the control and FVB/N mouse retinas, but the immunoreactive punta within the rod bipolar axon terminals located in the proximal IPL were decreased in number and reduced in size at postnatal days 14 and they came to disappear at postnatal days 21. This preferential decrease of the clathrin expression at ribbon synapses in the rod bipolar cell axon terminals of the FVB/N mouse retina demonstrates another plastic change after photoreceptor degeneration and this suggests that clathrin may be important for normal synaptic function at the rod bipolar ribbon synapses in the mammalian retina.
Asunto(s)
Clatrina/metabolismo , Endocitosis/fisiología , Células Bipolares de la Retina/fisiología , Degeneración Retiniana/patología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos , Proteína Quinasa C/metabolismo , Degeneración Retiniana/genética , Células Fotorreceptoras Retinianas Bastones/fisiologíaRESUMEN
Mast cell-mediated anaphylactic reaction is involved in many allergic diseases such as asthma and allergic rhinitis. Phellinus linteus has been used as a traditional herb medicine in oriental countries and is known to have anti-tumor, immunomodulatory, anti-inflammatory, and anti-allergic activities. However, roles of Phellinus linteus in the mast cell-mediated anaphylactic reactions have not fully been examined. In the present study, we have investigated the effects of water extract from the fruiting body of Phellinus linteus (WEPL) on mast cell-mediated anaphylaxis-like reactions. Oral administration of WEPL inhibited the compound 48/80-induced systemic anaphylaxis-like reaction and ear swelling response. WEPL also inhibited the anti-dinitrophenyl (DNP) IgE-mediated passive systemic and cutaneous anaphylaxis. WEPL had no cytotoxicity on rat peritoneal mast cells (RPMC). WEPL dose-dependently reduced histamine release from RPMC activated by compound 48/80 or anti-DNP IgE. Moreover, WEPL decreased the compound 48/80-induced calcium uptake into RPMC. Furthermore, WEPL increased the level of intracellular cAMP and significantly inhibited the compound 48/80-induced cAMP reduction in RPMC. These results suggest that WEPL may serve as an effective therapeutic agent for allergic diseases.