Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35202563

RESUMEN

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Asunto(s)
Histonas , Pez Cebra , Animales , Cromatina , ADN , Histonas/metabolismo , Humanos , Síndrome , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Am J Hum Genet ; 108(6): 1138-1150, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33909992

RESUMEN

ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.


Asunto(s)
Anomalías Craneofaciales/etiología , Heterocigoto , Discapacidad Intelectual/etiología , Trastornos del Desarrollo del Lenguaje/etiología , Mutación con Pérdida de Función , Proteínas de Unión al ARN/genética , Adolescente , Adulto , Niño , Preescolar , Anomalías Craneofaciales/patología , Femenino , Haploinsuficiencia , Humanos , Lactante , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/patología , Masculino , Linaje , Fenotipo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Síndrome , Adulto Joven
3.
Genet Med ; 26(3): 101035, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059438

RESUMEN

PURPOSE: Clinically ascertained variants are under-utilized in neurodevelopmental disorder research. We established the Brain Gene Registry (BGR) to coregister clinically identified variants in putative brain genes with participant phenotypes. Here, we report 179 genetic variants in the first 179 BGR registrants and analyze the proportion that were novel to ClinVar at the time of entry and those that were absent in other disease databases. METHODS: From 10 academically affiliated institutions, 179 individuals with 179 variants were enrolled into the BGR. Variants were cross-referenced for previous presence in ClinVar and for presence in 6 other genetic databases. RESULTS: Of 179 variants in 76 genes, 76 (42.5%) were novel to ClinVar, and 62 (34.6%) were absent from all databases analyzed. Of the 103 variants present in ClinVar, 37 (35.9%) were uncertain (ClinVar aggregate classification of variant of uncertain significance or conflicting classifications). For 5 variants, the aggregate ClinVar classification was inconsistent with the interpretation from the BGR site-provided classification. CONCLUSION: A significant proportion of clinical variants that are novel or uncertain are not shared, limiting the evidence base for new gene-disease relationships. Registration of paired clinical genetic test results with phenotype has the potential to advance knowledge of the relationships between genes and neurodevelopmental disorders.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Humanos , Variación Genética/genética , Pruebas Genéticas/métodos , Fenotipo , Encéfalo
4.
Am J Med Genet A ; 191(8): 2015-2044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392087

RESUMEN

Phelan-McDermid syndrome (PMS) is a genetic condition caused by SHANK3 haploinsufficiency and characterized by a wide range of neurodevelopmental and systemic manifestations. The first practice parameters for assessment and monitoring in individuals with PMS were published in 2014; recently, knowledge about PMS has grown significantly based on data from longitudinal phenotyping studies and large-scale genotype-phenotype investigations. The objective of these updated clinical management guidelines was to: (1) reflect the latest in knowledge in PMS and (2) provide guidance for clinicians, researchers, and the general community. A taskforce was established with clinical experts in PMS and representatives from the parent community. Experts joined subgroups based on their areas of specialty, including genetics, neurology, neurodevelopment, gastroenterology, primary care, physiatry, nephrology, endocrinology, cardiology, gynecology, and dentistry. Taskforce members convened regularly between 2021 and 2022 and produced specialty-specific guidelines based on iterative feedback and discussion. Taskforce leaders then established consensus within their respective specialty group and harmonized the guidelines. The knowledge gained over the past decade allows for improved guidelines to assess and monitor individuals with PMS. Since there is limited evidence specific to PMS, intervention mostly follows general guidelines for treating individuals with developmental disorders. Significant evidence has been amassed to guide the management of comorbid neuropsychiatric conditions in PMS, albeit mainly from caregiver report and the experience of clinical experts. These updated consensus guidelines on the management of PMS represent an advance for the field and will improve care in the community. Several areas for future research are also highlighted and will contribute to subsequent updates with more refined and specific recommendations as new knowledge accumulates.


Asunto(s)
Trastornos de los Cromosomas , Humanos , Fenotipo , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/epidemiología , Trastornos de los Cromosomas/genética , Deleción Cromosómica , Proteínas del Tejido Nervioso/genética , Cromosomas Humanos Par 22/genética
5.
Am J Hum Genet ; 104(2): 319-330, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639322

RESUMEN

ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutations that affect key protein regions, including a SUMO acceptor site, a central disordered alanine-rich motif, a proline-rich domain, and a transactivation domain. All identified variants were absent from all available exome and genome databases. In vitro, ZMIZ1 showed impaired coactivation of the androgen receptor. In vivo, overexpression of ZMIZ1 mutant alleles in developing mouse brains using in utero electroporation resulted in abnormal pyramidal neuron morphology, polarization, and positioning, underscoring the importance of ZMIZ1 in neural development and supporting mutations in ZMIZ1 as the cause of a rare neurodevelopmental syndrome.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación Puntual , Factores de Transcripción/genética , Alelos , Animales , Niño , Preescolar , Discapacidades del Desarrollo/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Ratones , Síndrome , Factores de Transcripción/química , Factores de Transcripción/metabolismo
6.
Clin Genet ; 100(4): 468-477, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212383

RESUMEN

We describe the clinical features of nine unrelated individuals with rare de novo missense or in-frame deletions/duplications within the "HX motif" of exon 7 of ATN1. We previously proposed that individuals with such variants should be considered as being affected by the syndromic condition of congenital hypotonia, epilepsy, developmental delay, and digital anomalies (CHEDDA), distinct from dentatorubral-pallidoluysian atrophy (DRPLA) secondary to expansion variants in exon 5 of ATN1. We confirm that the universal phenotypic features of CHEDDA are distinctive facial features and global developmental delay. Infantile hypotonia and minor hand and feet differences are common and can present as arthrogryposis. Common comorbidities include severe feeding difficulties, often requiring gastrostomy support, as well as visual and hearing impairments. Epilepsy and congenital malformations of the brain, heart, and genitourinary systems are frequent but not universal. Our study confirms the clinical entity of CHEDDA secondary to a mutational signature restricted to exon 7 of ATN1. We propose a clinical schedule for assessment upon diagnosis, surveillance, and early intervention including the potential of neuroimaging for prognostication.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Preescolar , Facies , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Síndrome
7.
Am J Hum Genet ; 98(4): 772-81, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27040692

RESUMEN

Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126(∗)] and c.1363A>T [p.Lys455(∗)]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume.


Asunto(s)
Encefalopatías/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Alelos , Secuencia de Aminoácidos , Encefalopatías/diagnóstico , Niño , Preescolar , Cuerpo Calloso/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Conformación Proteica , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
9.
Genet Med ; 20(9): 1061-1068, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29215649

RESUMEN

PURPOSE: The craniosynostoses are characterized by premature fusion of one or more cranial sutures. The relative contribution of previously reported genes to craniosynostosis in large cohorts is unclear. Here we report on the use of a massively parallel sequencing panel in individuals with craniosynostosis without a prior molecular diagnosis. METHODS: A 20-gene panel was designed based on the genes' association with craniosynostosis, and clinically validated through retrospective testing of an Australian and New Zealand cohort of 233 individuals with craniosynostosis in whom previous testing had not identified a causative variant within FGFR1-3 hot-spot regions or the TWIST1 gene. An additional 76 individuals were tested prospectively. RESULTS: Pathogenic or likely pathogenic variants in non-FGFR genes were identified in 43 individuals, with diagnostic yields of 14% and 15% in retrospective and prospective cohorts, respectively. Variants were identified most frequently in TCF12 (N = 22) and EFNB1 (N = 8), typically in individuals with nonsyndromic coronal craniosynostosis or TWIST1-negative clinically suspected Saethre-Chotzen syndrome. Clinically significant variants were also identified in ALX4, EFNA4, ERF, and FGF10. CONCLUSION: These findings support the clinical utility of a massively parallel sequencing panel for craniosynostosis. TCF12 and EFNB1 should be included in genetic testing for nonsyndromic coronal craniosynostosis or clinically suspected Saethre-Chotzen syndrome.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Craneosinostosis/genética , Efrina-B1/genética , Australia , Estudios de Cohortes , Suturas Craneales/patología , Proteínas de Unión al ADN/genética , Femenino , Factor 10 de Crecimiento de Fibroblastos/genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Nueva Zelanda , Proteínas Nucleares/genética , Estudios Prospectivos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Proteínas Represoras/genética , Estudios Retrospectivos , Factores de Transcripción/genética , Proteína 1 Relacionada con Twist/genética
10.
BMC Med Genet ; 19(1): 90, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29843636

RESUMEN

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder characterized by the development of hamartomas in multiple organs, including the brain, heart, skin, kidney, lung and retina. A diagnosis of TSC is established with a recently revised clinical/radiological set of criteria and/or a causative mutation in TSC1 or TSC2 gene. CASE PRESENTATION: We report a Chinese TSC family with two siblings presenting with multiple hypomelanotic macules, cardiac rhabdomyomas and cortical tubers associated with a small subependymal nodule. The older child had seizures. A novel heterozygous missense variant in the TSC2 gene (c.899G > T, p.G300 V) was identified and shown to be inherited from their father as well as paternal grandfather, both of whom presented with variable TSC-associated signs and symptoms. CONCLUSION: We identified a novel heterozygous TSC2 variant c.899G > T as the causative mutation in a Chinese family with TSC, resulting in wide intrafamilial phenotypic variability. Our study illustrates the importance of clinical evaluation and genetic testing for family members of the patient affected with TSC.


Asunto(s)
Pueblo Asiatico/genética , Mutación Missense , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Niño , Preescolar , Femenino , Humanos , Recién Nacido , Masculino , Linaje , Pronóstico
11.
Am J Med Genet A ; 176(1): 181-186, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29159987

RESUMEN

We report two unrelated patients with Pierre Robin sequence (PRS) and a strikingly similar combination of associated features. Whole exome sequencing was performed for both patients. No single gene containing likely pathogenic point mutations in both patients could be identified, but the finding of an essential splice site mutation in mediator complex subunit 13 like (MED13L) in one patient prompted the investigation of copy number variants in MED13L in the other, leading to the identification of an intragenic deletion. Disruption of MED13L, encoding a component of the Mediator complex, is increasingly recognized as the cause of an intellectual disability syndrome with associated facial dysmorphism. Our findings suggest that MED13L-related disorders are a possible differential diagnosis for syndromic PRS.


Asunto(s)
Mutación con Pérdida de Función , Complejo Mediador/genética , Síndrome de Pierre Robin/diagnóstico , Síndrome de Pierre Robin/genética , Encéfalo/anomalías , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Imagen por Resonancia Magnética/métodos , Masculino , Fenotipo , Análisis de Secuencia de ADN
12.
Prenat Diagn ; 37(10): 975-982, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28685502

RESUMEN

OBJECTIVE: The aim of this study was to (1) examine the psychological impact of non-invasive prenatal testing (NIPT) in women with a high-risk (≥1 : 300) and low-risk (≤1 : 301) result on combined first trimester screening (cFTS) and (2) to examine factors influencing anxiety and decision-making in both risk populations. METHOD: Questionnaires and structured interviews were administered to low (n = 50) and high (n = 63) risk women at the time of NIPT blood draw (point A) and again at least 1 week after receiving their NIPT result (point B). Anxiety levels were measured at these two time points using the State-Trait Anxiety Inventory. RESULTS: Both high-risk and low-risk cFTS groups demonstrated similar intrinsic (trait) anxiety levels (36 ± 10 vs 35 ± 10; p = 0.70). High-risk women had significantly higher levels of state anxiety at point A than low-risk women (42 ± 11 vs 36 ± 11; p < 0.01). Both groups had a statistically significant reduction (p < 0.01), to similar final levels of state anxiety at point B (30 ± 11 vs 29 ± 8; p = 0.61). CONCLUSION: Women receiving a high-risk result on cFTS have higher levels of state anxiety than their low-risk counterparts. Following a low-risk NIPT result, the anxiety levels in both populations are reduced to similar levels. © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Aneuploidia , Ansiedad/epidemiología , Diagnóstico Prenatal/métodos , Diagnóstico Prenatal/psicología , Adulto , Ansiedad/prevención & control , Ansiedad/psicología , ADN/sangre , Toma de Decisiones , Femenino , Edad Gestacional , Humanos , Nueva Gales del Sur/epidemiología , Medida de Translucencia Nucal , Polimorfismo de Nucleótido Simple/genética , Embarazo , Complicaciones del Embarazo/psicología , Primer Trimestre del Embarazo , Factores de Riesgo , Encuestas y Cuestionarios
13.
Genome Res ; 23(1): 23-33, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23034409

RESUMEN

An unanticipated and tremendous amount of the noncoding sequence of the human genome is transcribed. Long noncoding RNAs (lncRNAs) constitute a significant fraction of non-protein-coding transcripts; however, their functions remain enigmatic. We demonstrate that deletions of a small noncoding differentially methylated region at 16q24.1, including lncRNA genes, cause a lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), with parent-of-origin effects. We identify overlapping deletions 250 kb upstream of FOXF1 in nine patients with ACD/MPV that arose de novo specifically on the maternally inherited chromosome and delete lung-specific lncRNA genes. These deletions define a distant cis-regulatory region that harbors, besides lncRNA genes, also a differentially methylated CpG island, binds GLI2 depending on the methylation status of this CpG island, and physically interacts with and up-regulates the FOXF1 promoter. We suggest that lung-transcribed 16q24.1 lncRNAs may contribute to long-range regulation of FOXF1 by GLI2 and other transcription factors. Perturbation of lncRNA-mediated chromatin interactions may, in general, be responsible for position effect phenomena and potentially cause many disorders of human development.


Asunto(s)
Variaciones en el Número de Copia de ADN , Metilación de ADN , Síndrome de Circulación Fetal Persistente/genética , ARN Largo no Codificante/genética , Cromatina/metabolismo , Cromosomas Humanos Par 16/genética , Islas de CpG , Elementos de Facilitación Genéticos , Resultado Fatal , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Impresión Genómica , Células HEK293 , Humanos , Recién Nacido , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Nucleares/metabolismo , Síndrome de Circulación Fetal Persistente/diagnóstico , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Eliminación de Secuencia , Transcripción Genética , Proteína Gli2 con Dedos de Zinc
14.
J Pediatr ; 164(5): 1195-200, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24518170

RESUMEN

OBJECTIVES: To evaluate the efficacy and side effects of oral mammalian target of rapamycin (mTOR) inhibitors in children and adolescents with tuberous sclerosis complex (TSC) and intractable epilepsy or subependymal giant cell astrocytoma (SEGA). STUDY DESIGN: Single-center series of 13 children and adolescents with TSC who received sirolimus or everolimus (mTOR inhibitors). The anticonvulsant response was evaluated in 7 patients with TSC and refractory seizures. Six patients with SEGAs were treated with either sirolimus or everolimus for nonsurgical management. SEGA volumes were assessed longitudinally using 1.5-T magnetic resonance imaging. RESULTS: Of the intractable seizure group (7 patients), 1 patient had >90% reduction, 4 had 50%-90% reduction, and 2 had <50% reduction. Three reported subjective improvements in learning. By 12 months of treatment, there were statistically significant reductions in the SEGA volumes in 4 patients who received mTOR inhibitors (P < .04). The mean SEGA volume after 6 months of treatment was 2.18 cm(3), which represents 33% reduction in the mean baseline volume of 3.26 cm(3). The mTOR inhibitors were well tolerated. Adverse effects include dyslipidaemia (3 of 13), gingivitis (1 of 13), anorexia (1 of 13), and mild gastrointestinal side effects (1 of 13). CONCLUSION: This case series suggests that mTOR inhibitors can improve seizures in those with TSC and refractory epilepsy. They are also an effective treatment for reducing the volume of SEGAs in patients with TSC not amenable to surgery with an acceptable side effect profile.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Antineoplásicos/uso terapéutico , Astrocitoma/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Sirolimus/análogos & derivados , Sirolimus/uso terapéutico , Esclerosis Tuberosa/complicaciones , Adolescente , Astrocitoma/etiología , Niño , Preescolar , Epilepsia/etiología , Everolimus , Femenino , Humanos , Masculino , Estudios Prospectivos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Resultado del Tratamiento
15.
Ann Clin Transl Neurol ; 11(2): 251-262, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168508

RESUMEN

OBJECTIVE: Evaluation of the clinical utility of a genetic diagnosis in CP remains limited. We aimed to characterize the clinical utility of a genetic diagnosis by exome sequencing (ES) in patients with CP and related motor disorders. METHODS: We enrolled participants with CP and "CP masquerading" conditions in an institutional ES initiative. In those with genetic diagnoses who had clinical visits to discuss results, we retrospectively reviewed medical charts, evaluating recommendations based on the genetic diagnosis pertaining to medication intervention, surveillance initiation, variant-specific testing, and patient education. RESULTS: We included 30 individuals with a molecular diagnosis and clinical follow-up. Nearly all (28 out of 30) had clinical impact resulting from the genetic diagnosis. Medication interventions included recommendation of mitochondrial multivitamin supplementation (6.67%, n = 2), ketogenic diet (3.33%, n = 1), and fasting avoidance (3.33%, n = 1). Surveillance-related actions included recommendations for investigating systemic complications (40%, n = 12); referral to new specialists to screen for systemic manifestations (33%, n = 10); continued follow-up with established specialists to focus on specific manifestations (16.67%, n = 5); referral to clinical genetics (16.67%, n = 5) to oversee surveillance recommendations. Variant-specific actions included carrier testing (10%, n = 3) and testing of potentially affected relatives (3.33%, n = 1). Patient education-specific actions included referral to experts in the genetic disorder (30%, n = 9); and counseling about possible changes in prognosis, including recognition of disease progression and early mortality (36.67%, n = 11). INTERPRETATION: This study highlights the clinical utility of a genetic diagnosis for CP and "CP masquerading" conditions, evident by medication interventions, surveillance impact, family member testing, and patient education, including possible prognostic changes.


Asunto(s)
Parálisis Cerebral , Dieta Cetogénica , Trastornos Motores , Humanos , Estudios Retrospectivos , Cognición
16.
Genes (Basel) ; 15(4)2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674358

RESUMEN

Pathogenic ASH1L variants have been reported in probands with broad phenotypic presentations, including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, seizures, congenital anomalies, and other skeletal, muscular, and sleep differences. Here, we review previously published individuals with pathogenic ASH1L variants and report three further probands with novel ASH1L variants and previously unreported phenotypic features, including mixed receptive language disorder and gait disturbances. These novel data from the Brain Gene Registry, an accessible repository of clinically derived genotypic and phenotypic data, have allowed for the expansion of the phenotypic and genotypic spectrum of this condition.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Trastornos del Neurodesarrollo , Fenotipo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Masculino , N-Metiltransferasa de Histona-Lisina/genética , Femenino , Niño , Genotipo , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Factores de Transcripción/genética , Preescolar , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Mutación , Adolescente
17.
J Neurodev Disord ; 16(1): 17, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632549

RESUMEN

Monogenic disorders account for a large proportion of population-attributable risk for neurodevelopmental disabilities. However, the data necessary to infer a causal relationship between a given genetic variant and a particular neurodevelopmental disorder is often lacking. Recognizing this scientific roadblock, 13 Intellectual and Developmental Disabilities Research Centers (IDDRCs) formed a consortium to create the Brain Gene Registry (BGR), a repository pairing clinical genetic data with phenotypic data from participants with variants in putative brain genes. Phenotypic profiles are assembled from the electronic health record (EHR) and a battery of remotely administered standardized assessments collectively referred to as the Rapid Neurobehavioral Assessment Protocol (RNAP), which include cognitive, neurologic, and neuropsychiatric assessments, as well as assessments for attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Co-enrollment of BGR participants in the Clinical Genome Resource's (ClinGen's) GenomeConnect enables display of variant information in ClinVar. The BGR currently contains data on 479 participants who are 55% male, 6% Asian, 6% Black or African American, 76% white, and 12% Hispanic/Latine. Over 200 genes are represented in the BGR, with 12 or more participants harboring variants in each of these genes: CACNA1A, DNMT3A, SLC6A1, SETD5, and MYT1L. More than 30% of variants are de novo and 43% are classified as variants of uncertain significance (VUSs). Mean standard scores on cognitive or developmental screens are below average for the BGR cohort. EHR data reveal developmental delay as the earliest and most common diagnosis in this sample, followed by speech and language disorders, ASD, and ADHD. BGR data has already been used to accelerate gene-disease validity curation of 36 genes evaluated by ClinGen's BGR Intellectual Disability (ID)-Autism (ASD) Gene Curation Expert Panel. In summary, the BGR is a resource for use by stakeholders interested in advancing translational research for brain genes and continues to recruit participants with clinically reported variants to establish a rich and well-characterized national resource to promote research on neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Masculino , Femenino , Trastorno del Espectro Autista/genética , Encéfalo , Sistema de Registros , Metiltransferasas
18.
medRxiv ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38496416

RESUMEN

The ADAT2/ADAT3 complex catalyzes the adenosine to inosine modification at the wobble position of eukaryotic tRNAs. Mutations in ADAT3 , the catalytically inactive subunit of the ADAT2/ADAT3 complex, have been identified in patients presenting with severe neurodevelopmental disorders (NDDs). Yet, the physiological function of ADAT2/ADAT3 complex during brain development remains totally unknown. Here we showed that maintaining a proper level of ADAT2/ADAT3 catalytic activity is required for correct radial migration of projection neurons in the developing mouse cortex. In addition, we not only reported 7 new NDD patients carrying biallelic variants in ADAT3 but also deeply characterize the impact of those variants on ADAT2/ADAT3 structure, biochemical properties, enzymatic activity and tRNAs editing and abundance. We demonstrated that all the identified variants alter both the expression and the activity of the complex leading to a significant decrease of I 34 with direct consequence on their steady-state. Using in vivo complementation assays, we correlated the severity of the migration phenotype with the degree of the loss of function caused by the variants. Altogether, our results indicate a critical role of ADAT2/ADAT3 during cortical development and provide cellular and molecular insights into the pathogenicity of ADAT3-related neurodevelopmental disorder.

19.
Mol Genet Genomic Med ; 12(1): e2363, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284452

RESUMEN

INTRODUCTION AND METHODS: We report two series of individuals with DDX3X variations, one (48 individuals) from physicians and one (44 individuals) from caregivers. RESULTS: These two series include several symptoms in common, with fairly similar distribution, which suggests that caregivers' data are close to physicians' data. For example, both series identified early childhood symptoms that were not previously described: feeding difficulties, mean walking age, and age at first words. DISCUSSION: Each of the two datasets provides complementary knowledge. We confirmed that symptoms are similar to those in the literature and provides more details on feeding difficulties. Caregivers considered that the symptom attention-deficit/hyperactivity disorder were most worrisome. Both series also reported sleep disturbance. Recently, anxiety has been reported in individuals with DDX3X variants. We strongly suggest that attention-deficit/hyperactivity disorder, anxiety, and sleep disorders need to be treated.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Cuidadores , Preescolar , Humanos , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/terapia , ARN Helicasas DEAD-box , Autoinforme , Lactante
20.
Hum Mutat ; 34(1): 237-47, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23033313

RESUMEN

OFD1, now recognized as a ciliopathy, is characterized by malformations of the face, oral cavity and digits, and is transmitted as an X-linked condition with lethality in males. Mutations in OFD1 also cause X-linked Joubert syndrome (JBTS10) and Simpson-Golabi-Behmel syndrome type 2 (SGBS2). We have studied 55 sporadic and six familial cases of suspected OFD1. Comprehensive mutation analysis in OFD1 revealed mutations in 37 female patients from 30 families; 22 mutations have not been previously described including two heterozygous deletions spanning OFD1 and neighbouring genes. Analysis of clinical findings in patients with mutations revealed that oral features are the most reliable diagnostic criteria. A first, detailed evaluation of brain MRIs from seven patients with cognitive defects illustrated extensive variability with the complete brain phenotype consisting of complete agenesis of the corpus callosum, large single or multiple interhemispheric cysts, striking cortical infolding of gyri, ventriculomegaly, mild molar tooth malformation and moderate to severe cerebellar vermis hypoplasia. Although the OFD1 gene apparently escapes X-inactivation, skewed inactivation was observed in seven of 14 patients. The direction of skewing did not correlate with disease severity, reinforcing the hypothesis that additional factors contribute to the extensive intrafamilial variability.


Asunto(s)
Eliminación de Gen , Mutación , Síndromes Orofaciodigitales/genética , Proteínas/genética , Adolescente , Empalme Alternativo/genética , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/patología , Niño , Análisis Mutacional de ADN , Exones/genética , Salud de la Familia , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Intrones/genética , Imagen por Resonancia Magnética , Masculino , Síndromes Orofaciodigitales/patología , Linaje , Inactivación del Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA