Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38315959

RESUMEN

RATIONALE: Progressive lung function loss is recognized in COPD; however, no study concurrently evaluates how accelerated lung function decline relates to mucus properties and the microbiome in COPD. OBJECTIVE: Longitudinal assessment of mucus and microbiome changes accompanying accelerated lung function decline in COPD patients. METHODS: Prospective, longitudinal assessment of the London COPD cohort exhibiting the greatest FEV1 decline (n=30; "accelerated decline"; 156 mL/year FEV1 loss) and with no FEV1 decline (n=28; "non-decline"; 49 mL/year FEV1 gain) over time. Lung microbiomes from "paired" sputum (total 116 specimens) were assessed by shotgun metagenomics and corresponding mucus profiles evaluated for biochemical and biophysical properties. RESULTS: Biochemical and biophysical mucus properties are significantly altered in the accelerated decline group. Unsupervised principal component analysis showed clear separation, with mucus biochemistry associated with accelerated decline, while biophysical mucus characteristics contributed to inter-individual variability. When mucus and microbes are considered together, an accelerated decline mucus-microbiome association emerges, characterized by increased mucin (MUC5AC and MUC5B) concentration and the presence of Achromobacter and Klebsiella. As COPD progresses, mucus-microbiome shifts occur, initially characterized by low mucin concentration and transition from viscous to elastic dominance accompanied by the commensals Veillonella, Gemella, Rothia and Prevotella (GOLD A and B) before transition to increased mucus viscosity, mucins, and DNA concentration along with the emergence of pathogenic microorganisms including Haemophilus, Moraxella and Pseudomonas (GOLD E). CONCLUSION: Mucus-microbiome associations evolve over time with accelerated lung function decline, symptom progression and exacerbations affording fresh therapeutic opportunities for early intervention. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2.
Am J Respir Crit Care Med ; 210(1): 47-62, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271608

RESUMEN

Rationale: Chronic infection and inflammation shapes the airway microbiome in bronchiectasis. Utilizing whole-genome shotgun metagenomics to analyze the airway resistome provides insight into interplay between microbes, resistance genes, and clinical outcomes. Objectives: To apply whole-genome shotgun metagenomics to the airway microbiome in bronchiectasis to highlight a diverse pool of antimicrobial resistance genes: the "resistome," the clinical significance of which remains unclear. Methods: Individuals with bronchiectasis were prospectively recruited into cross-sectional and longitudinal cohorts (n = 280), including the international multicenter cross-sectional Cohort of Asian and Matched European Bronchiectasis 2 (CAMEB 2) study (n = 251) and two independent cohorts, one describing patients experiencing acute exacerbation and a further cohort of patients undergoing Pseudomonas aeruginosa eradication treatment. Sputum was subjected to metagenomic sequencing, and the bronchiectasis resistome was evaluated in association with clinical outcomes and underlying host microbiomes. Measurements and Main Results: The bronchiectasis resistome features a unique resistance gene profile and increased counts of aminoglycoside, bicyclomycin, phenicol, triclosan, and multidrug resistance genes. Longitudinally, it exhibits within-patient stability over time and during exacerbations despite between-patient heterogeneity. Proportional differences in baseline resistome profiles, including increased macrolide and multidrug resistance genes, associate with shorter intervals to the next exacerbation, whereas distinct resistome archetypes associate with frequent exacerbations, poorer lung function, geographic origin, and the host microbiome. Unsupervised analysis of resistome profiles identified two clinically relevant "resistotypes," RT1 and RT2, the latter characterized by poor clinical outcomes, increased multidrug resistance, and P. aeruginosa. Successful targeted eradication in P. aeruginosa-colonized individuals mediated reversion from RT2 to RT1, a more clinically favorable resistome profile demonstrating reduced resistance gene diversity. Conclusions: The bronchiectasis resistome associates with clinical outcomes, geographic origin, and the underlying host microbiome. Bronchiectasis resistotypes link to clinical disease and are modifiable through targeted antimicrobial therapy.


Asunto(s)
Bronquiectasia , Bronquiectasia/fisiopatología , Bronquiectasia/microbiología , Bronquiectasia/tratamiento farmacológico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Transversales , Estudios Longitudinales , Antibacterianos/uso terapéutico , Estudios Prospectivos , Microbiota/genética , Pseudomonas aeruginosa/genética , Esputo/microbiología , Metagenómica/métodos , Adulto , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/complicaciones
3.
Gut ; 73(5): 751-769, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331563

RESUMEN

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN: Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS: FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION: The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Animales , Enfermedad Pulmonar Obstructiva Crónica/etiología , Pulmón/metabolismo , Pulmón/patología , Neumonía/etiología , Inflamación/metabolismo , Carbohidratos/farmacología
4.
Eur Respir J ; 63(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423624

RESUMEN

BACKGROUND: The International Society for Human and Animal Mycology (ISHAM) working group proposed recommendations for managing allergic bronchopulmonary aspergillosis (ABPA) a decade ago. There is a need to update these recommendations due to advances in diagnostics and therapeutics. METHODS: An international expert group was convened to develop guidelines for managing ABPA (caused by Aspergillus spp.) and allergic bronchopulmonary mycosis (ABPM; caused by fungi other than Aspergillus spp.) in adults and children using a modified Delphi method (two online rounds and one in-person meeting). We defined consensus as ≥70% agreement or disagreement. The terms "recommend" and "suggest" are used when the consensus was ≥70% and <70%, respectively. RESULTS: We recommend screening for A. fumigatus sensitisation using fungus-specific IgE in all newly diagnosed asthmatic adults at tertiary care but only difficult-to-treat asthmatic children. We recommend diagnosing ABPA in those with predisposing conditions or compatible clinico-radiological presentation, with a mandatory demonstration of fungal sensitisation and serum total IgE ≥500 IU·mL-1 and two of the following: fungal-specific IgG, peripheral blood eosinophilia or suggestive imaging. ABPM is considered in those with an ABPA-like presentation but normal A. fumigatus-IgE. Additionally, diagnosing ABPM requires repeated growth of the causative fungus from sputum. We do not routinely recommend treating asymptomatic ABPA patients. We recommend oral prednisolone or itraconazole monotherapy for treating acute ABPA (newly diagnosed or exacerbation), with prednisolone and itraconazole combination only for treating recurrent ABPA exacerbations. We have devised an objective multidimensional criterion to assess treatment response. CONCLUSION: We have framed consensus guidelines for diagnosing, classifying and treating ABPA/M for patient care and research.


Asunto(s)
Aspergilosis Broncopulmonar Alérgica , Aspergilosis Pulmonar Invasiva , Adulto , Niño , Humanos , Aspergilosis Broncopulmonar Alérgica/diagnóstico , Aspergilosis Broncopulmonar Alérgica/tratamiento farmacológico , Inmunoglobulina E , Aspergilosis Pulmonar Invasiva/diagnóstico , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Itraconazol/uso terapéutico , Micología , Prednisolona
5.
Am J Respir Crit Care Med ; 207(7): 908-920, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36288294

RESUMEN

Rationale: Emerging data support the existence of a microbial "gut-lung" axis that remains unexplored in bronchiectasis. Methods: Prospective and concurrent sampling of gut (stool) and lung (sputum) was performed in a cohort of n = 57 individuals with bronchiectasis and subjected to bacteriome (16S rRNA) and mycobiome (18S Internal Transcribed Spacer) sequencing (total, 228 microbiomes). Shotgun metagenomics was performed in a subset (n = 15; 30 microbiomes). Data from gut and lung compartments were integrated by weighted similarity network fusion, clustered, and subjected to co-occurrence analysis to evaluate gut-lung networks. Murine experiments were undertaken to validate specific Pseudomonas-driven gut-lung interactions. Results: Microbial communities in stable bronchiectasis demonstrate a significant gut-lung interaction. Multibiome integration followed by unsupervised clustering reveals two patient clusters, differing by gut-lung interactions and with contrasting clinical phenotypes. A high gut-lung interaction cluster, characterized by lung Pseudomonas, gut Bacteroides, and gut Saccharomyces, is associated with increased exacerbations and greater radiological and overall bronchiectasis severity, whereas the low gut-lung interaction cluster demonstrates an overrepresentation of lung commensals, including Prevotella, Fusobacterium, and Porphyromonas with gut Candida. The lung Pseudomonas-gut Bacteroides relationship, observed in the high gut-lung interaction bronchiectasis cluster, was validated in a murine model of lung Pseudomonas aeruginosa infection. This interaction was abrogated after antibiotic (imipenem) pretreatment in mice confirming the relevance and therapeutic potential of targeting the gut microbiome to influence the gut-lung axis. Metagenomics in a subset of individuals with bronchiectasis corroborated our findings from targeted analyses. Conclusions: A dysregulated gut-lung axis, driven by lung Pseudomonas, associates with poorer clinical outcomes in bronchiectasis.


Asunto(s)
Bronquiectasia , Microbiota , Animales , Ratones , Estudios Prospectivos , ARN Ribosómico 16S/genética , Pulmón/microbiología , Bronquiectasia/tratamiento farmacológico
6.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099560

RESUMEN

Allergic asthma, driven by T helper 2 cell-mediated immune responses to common environmental antigens, remains the most common respiratory disease in children. Perfluorinated chemicals (PFCs) are environmental contaminants of great concern, because of their wide application, persistence in the environment, and bioaccumulation. PFCs associate with immunological disorders including asthma and attenuate immune responses to vaccines. The influence of PFCs on the immunological response to allergens during childhood is unknown. We report here that a major PFC, perfluorooctane sulfonate (PFOS), inactivates house dust mite (HDM) to dampen 5-wk-old, early weaned mice from developing HDM-induced allergic asthma. PFOS further attenuates the asthma protective effect of the microbial product lipopolysaccharide (LPS). We demonstrate that PFOS prevents desensitization of lung epithelia by LPS, thus abolishing the latter's protective effect. A close mechanistic study reveals that PFOS specifically binds the major HDM allergen Der p1 with high affinity as well as the lipid A moiety of LPS, leading to the inactivation of both antigens. Moreover, PFOS at physiological human (nanomolar) concentrations inactivates Der p1 from HDM and LPS in vitro, although higher doses did not cause further inactivation because of possible formation of PFOS aggregates. This PFOS-induced neutralization of LPS has been further validated in primary human cell models and extended to an in vivo bacterial infection mouse model. This study demonstrates that early life exposure of mice to a PFC blunts airway antigen bioactivity to modulate pulmonary inflammatory responses, which may adversely affect early pulmonary health.


Asunto(s)
Ácidos Alcanesulfónicos/farmacología , Antígenos Dermatofagoides/inmunología , Asma/inmunología , Asma/parasitología , Fluorocarburos/farmacología , Hipersensibilidad/inmunología , Hipersensibilidad/parasitología , Ácidos Alcanesulfónicos/química , Animales , Antígenos Dermatofagoides/química , Asma/complicaciones , Asma/genética , Células Dendríticas/inmunología , Escherichia coli , Femenino , Fluorocarburos/química , Perfilación de la Expresión Génica , Hipersensibilidad/complicaciones , Hipersensibilidad/genética , Inmunomodulación/efectos de los fármacos , Inmunomodulación/genética , Lipopolisacáridos , Pulmón/inmunología , Pulmón/microbiología , Pulmón/parasitología , Pulmón/patología , Ratones Endogámicos BALB C , Modelos Moleculares , Pseudomonas aeruginosa/fisiología , Pyroglyphidae/fisiología
7.
Eur Respir J ; 61(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926878

RESUMEN

BACKGROUND: Variable clinical outcomes are reported with fungal sensitisation in chronic obstructive pulmonary disease (COPD), and it remains unclear which fungi and what allergens associate with the poorest outcomes. The use of recombinant as opposed to crude allergens for such assessment is unknown. METHODS: A prospective multicentre assessment of stable COPD (n=614) was undertaken in five hospitals across three countries: Singapore, Malaysia and Hong Kong. Clinical and serological assessment was performed against a panel of 35 fungal allergens including crude and recombinant Aspergillus and non-Aspergillus allergens. Unsupervised clustering and topological data analysis (TDA) approaches were employed using the measured sensitisation responses to elucidate if sensitisation subgroups exist and their related clinical outcomes. RESULTS: Aspergillus fumigatus sensitisation was associated with increased exacerbations in COPD. Unsupervised cluster analyses revealed two "fungal sensitisation" groups. The first was characterised by Aspergillus sensitisation and increased exacerbations, poorer lung function and worse prognosis. Polysensitisation in this group conferred even poorer outcome. The second group, characterised by Cladosporium sensitisation, was more symptomatic. Significant numbers of individuals demonstrated sensitisation responses to only recombinant (as opposed to crude) A. fumigatus allergens f 1, 3, 5 and 6, and exhibited increased exacerbations, poorer lung function and an overall worse prognosis. TDA validated these findings and additionally identified a subgroup within Aspergillus-sensitised COPD of patients with frequent exacerbations. CONCLUSION: Aspergillus sensitisation is a treatable trait in COPD. Measuring sensitisation responses to recombinant Aspergillus allergens identifies an important patient subgroup with poor COPD outcomes that remains overlooked by assessment of only crude Aspergillus allergens.


Asunto(s)
Aspergillus fumigatus , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Aspergillus fumigatus/genética , Alérgenos , Estudios Prospectivos , Inmunoglobulina E , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Aspergillus
8.
Allergy ; 78(11): 2906-2920, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37287344

RESUMEN

BACKGROUND: Because of altered airway microbiome in asthma, we analysed the bacterial species in sputum of patients with severe asthma. METHODS: Whole genome sequencing was performed on induced sputum from non-smoking (SAn) and current or ex-smoker (SAs/ex) severe asthma patients, mild/moderate asthma (MMA) and healthy controls (HC). Data were analysed by asthma severity, inflammatory status and transcriptome-associated clusters (TACs). RESULTS: α-diversity at the species level was lower in SAn and SAs/ex, with an increase in Haemophilus influenzae and Moraxella catarrhalis, and Haemophilus influenzae and Tropheryma whipplei, respectively, compared to HC. In neutrophilic asthma, there was greater abundance of Haemophilus influenzae and Moraxella catarrhalis and in eosinophilic asthma, Tropheryma whipplei was increased. There was a reduction in α-diversity in TAC1 and TAC2 that expressed high levels of Haemophilus influenzae and Tropheryma whipplei, and Haemophilus influenzae and Moraxella catarrhalis, respectively, compared to HC. Sputum neutrophils correlated positively with Moraxella catarrhalis and negatively with Prevotella, Neisseria and Veillonella species and Haemophilus parainfluenzae. Sputum eosinophils correlated positively with Tropheryma whipplei which correlated with pack-years of smoking. α- and ß-diversities were stable at one year. CONCLUSIONS: Haemophilus influenzae and Moraxella catarrhalis were more abundant in severe neutrophilic asthma and TAC2 linked to inflammasome and neutrophil activation, while Haemophilus influenzae and Tropheryma whipplei were highest in SAs/ex and in TAC1 associated with highest expression of IL-13 type 2 and ILC2 signatures with the abundance of Tropheryma whipplei correlating positively with sputum eosinophils. Whether these bacterial species drive the inflammatory response in asthma needs evaluation.


Asunto(s)
Asma , Haemophilus influenzae , Humanos , Moraxella catarrhalis , Esputo/microbiología , Inflamasomas , Inmunidad Innata , Activación Neutrófila , Linfocitos , Asma/diagnóstico , Asma/microbiología , Bacterias
9.
Am J Respir Crit Care Med ; 205(3): 275-287, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34672872

RESUMEN

Chronic obstructive pulmonary disease (COPD) is the end result of a series of dynamic and cumulative gene-environment interactions over a lifetime. The evolving understanding of COPD biology provides novel opportunities for prevention, early diagnosis, and intervention. To advance these concepts, we propose therapeutic trials in two major groups of subjects: "young" individuals with COPD and those with pre-COPD. Given that lungs grow to about 20 years of age and begin to age at approximately 50 years, we consider "young" patients with COPD those patients in the age range of 20-50 years. Pre-COPD relates to individuals of any age who have respiratory symptoms with or without structural and/or functional abnormalities, in the absence of airflow limitation, and who may develop persistent airflow limitation over time. We exclude from the current discussion infants and adolescents because of their unique physiological context and COPD in older adults given their representation in prior randomized controlled trials (RCTs). We highlight the need of RCTs focused on COPD in young patients or pre-COPD to reduce disease progression, providing innovative approaches to identifying and engaging potential study subjects. We detail approaches to RCT design, including potential outcomes such as lung function, patient-reported outcomes, exacerbations, lung imaging, mortality, and composite endpoints. We critically review study design components such as statistical powering and analysis, duration of study treatment, and formats to trial structure, including platform, basket, and umbrella trials. We provide a call to action for treatment RCTs in 1) young adults with COPD and 2) those with pre-COPD at any age.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Proyectos de Investigación , Adulto , Factores de Edad , Progresión de la Enfermedad , Diagnóstico Precoz , Humanos , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud/métodos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico
10.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769278

RESUMEN

Microbiomics have significantly advanced over the last decade, driven by the widespread availability of next-generation sequencing (NGS) and multi-omic technologies. Integration of NGS and multi-omic datasets allow for a holistic assessment of endophenotypes across a range of chronic respiratory disease states, including chronic obstructive pulmonary disease (COPD). Valuable insight has been attained into the nature, function, and significance of microbial communities in disease onset, progression, prognosis, and response to treatment in COPD. Moving beyond single-biome assessment, there now exists a growing literature on functional assessment and host-microbe interaction and, in particular, their contribution to disease progression, severity, and outcome. Identifying specific microbes and/or metabolic signatures associated with COPD can open novel avenues for therapeutic intervention and prognosis-related biomarkers. Despite the promise and potential of these approaches, the large amount of data generated by such technologies can be challenging to analyze and interpret, and currently, there remains a lack of standardized methods to address this. This review outlines the current use and proposes future avenues for the application of NGS and multi-omic technologies in the endophenotyping, prognostication, and treatment of COPD.


Asunto(s)
Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Multiómica , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/terapia , Microbiota/genética , Interacciones Microbiota-Huesped , Secuenciación de Nucleótidos de Alto Rendimiento
11.
Eur Respir J ; 60(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35896203

RESUMEN

BACKGROUND: There are few data to support accurate interpretation of spirometry data in South Asia, a major global region with a high reported burden of chronic respiratory disease. METHOD: We measured lung function in 7453 healthy men and women aged ≥18 years, from Bangladesh, North India, South India, Pakistan and Sri Lanka, as part of the South Asia Biobank study. First, we assessed the accuracy of existing equations for predicting normal forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and FEV1/FVC ratio. Then, we used our data to derive (n=5589) and internally validate (n=1864) new prediction equations among South Asians, with further external validation among 339 healthy South Asians living in Singapore. RESULTS: The Global Lung Initiative (GLI) and National Health and Nutrition Examination Survey consistently overestimated expiratory volumes (best fit GLI-African American, mean±sd z-score: FEV1 -0.94±1.05, FVC -0.91±1.10; n=7453). Age, height and weight were strong predictors of lung function in our participants (p<0.001), and sex-specific reference equations using these three variables were highly accurate in both internal validation (z-scores: FEV1 0.03±0.99, FVC 0.04±0.97, FEV1/FVC -0.03±0.99) and external validation (z-scores: FEV1 0.31±0.99, FVC 0.24±0.97, FEV1/FVC 0.16±0.91). Further adjustment for study regions improves the model fit, with highest accuracy for estimation of region-specific lung function in South Asia. CONCLUSION: We present improved equations for predicting lung function in South Asians. These offer the opportunity to enhance diagnosis and management of acute and chronic lung diseases in this major global population.


Asunto(s)
Pueblo Asiatico , Pulmón , Masculino , Femenino , Humanos , Adolescente , Adulto , Encuestas Nutricionales , Valores de Referencia , Espirometría , Volumen Espiratorio Forzado , India , Capacidad Vital
12.
Curr Opin Pulm Med ; 28(2): 121-133, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839338

RESUMEN

PURPOSE OF REVIEW: Next-generation sequencing (NGS) has deepened our understanding of the respiratory microbiome in health and disease. The number of microbiome studies employing sputum as an airway surrogate has continued to increase over the past decade to include multiple large multicentre and longitudinal studies of the microbiome in chronic obstructive pulmonary disease (COPD). In this review, we summarize the recent advances to our understanding of the bacteriome, virome and mycobiome in COPD. RECENT FINDINGS: Diverse microbiome profiles are reported in COPD. The neutrophilic Haemophilus-predominant bacteriome remains a prominent COPD phenotype, relatively stable over time and during exacerbations. Studies of the virome remain limited but reveal a potential involvement of viruses and bacteriophages particularly during COPD exacerbations and advancing disease severity. Mycobiome signatures, even in stable COPD are associated with poorer clinical outcomes including mortality. SUMMARY: The sputum microbiome in COPD is being increasingly recognized for its clinical relevance, even in the stable state. Future studies integrating microbial kingdoms holistically (i.e. bacterial, viral and fungal) will provide deeper insight into its functionality including the relevance of microbial interactions and effect of treatment on microbiome-associated clinical outcomes.


Asunto(s)
Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudios Longitudinales , Índice de Severidad de la Enfermedad , Esputo
13.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35336338

RESUMEN

Smart wearable sensors are essential for continuous health-monitoring applications and detection accuracy of symptoms and energy efficiency of processing algorithms are key challenges for such devices. While several machine-learning-based algorithms for the detection of abnormal breath sounds are reported in literature, they are either too computationally expensive to implement into a wearable device or inaccurate in multi-class detection. In this paper, a kernel-like minimum distance classifier (K-MDC) for acoustic signal processing in wearable devices was proposed. The proposed algorithm was tested with data acquired from open-source databases, participants, and hospitals. It was observed that the proposed K-MDC classifier achieves accurate detection in up to 91.23% of cases, and it reaches various detection accuracies with a fewer number of features compared with other classifiers. The proposed algorithm's low computational complexity and classification effectiveness translate to great potential for implementation in health-monitoring wearable devices.


Asunto(s)
Tos , Dispositivos Electrónicos Vestibles , Algoritmos , Tos/diagnóstico , Humanos , Ruidos Respiratorios/diagnóstico , Procesamiento de Señales Asistido por Computador
14.
Eur Respir J ; 57(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32972986

RESUMEN

INTRODUCTION: The chronic obstructive pulmonary disease (COPD) bacteriome associates with disease severity, exacerbations and mortality. While COPD patients are susceptible to fungal sensitisation, the role of the fungal mycobiome remains uncertain. METHODS: We report the largest multicentre evaluation of the COPD airway mycobiome to date, including participants from Asia (Singapore and Malaysia) and the UK (Scotland) when stable (n=337) and during exacerbations (n=66) as well as nondiseased (healthy) controls (n=47). Longitudinal mycobiome analysis was performed during and following COPD exacerbations (n=34), and examined in terms of exacerbation frequency, 2-year mortality and occurrence of serum specific IgE (sIgE) against selected fungi. RESULTS: A distinct mycobiome profile is observed in COPD compared with controls as evidenced by increased α-diversity (Shannon index; p<0.001). Significant airway mycobiome differences, including greater interfungal interaction (by co-occurrence), characterise very frequent COPD exacerbators (three or more exacerbations per year) (permutational multivariate ANOVA; adjusted p<0.001). Longitudinal analyses during exacerbations and following treatment with antibiotics and corticosteroids did not reveal any significant change in airway mycobiome profile. Unsupervised clustering resulted in two clinically distinct COPD groups: one with increased symptoms (COPD Assessment Test score) and Saccharomyces dominance, and another with very frequent exacerbations and higher mortality characterised by Aspergillus, Curvularia and Penicillium with a concomitant increase in serum sIgE levels against the same fungi. During acute exacerbations of COPD, lower fungal diversity associates with higher 2-year mortality. CONCLUSION: The airway mycobiome in COPD is characterised by specific fungal genera associated with exacerbations and increased mortality.


Asunto(s)
Micobioma , Enfermedad Pulmonar Obstructiva Crónica , Asia , Progresión de la Enfermedad , Humanos , Malasia , Escocia , Singapur
15.
Semin Respir Crit Care Med ; 42(4): 556-566, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34261180

RESUMEN

Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence "endophenotypes" in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.


Asunto(s)
Aspergilosis Broncopulmonar Alérgica , Aspergilosis , Bronquiectasia , Aspergilosis Pulmonar , Aspergillus , Endofenotipos , Humanos
16.
Am J Respir Crit Care Med ; 202(3): 433-447, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320621

RESUMEN

Rationale: Long-term antibiotic use for managing chronic respiratory disease is increasing; however, the role of the airway resistome and its relationship to host microbiomes remains unknown.Objectives: To evaluate airway resistomes and relate them to host and environmental microbiomes using ultradeep metagenomic shotgun sequencing.Methods: Airway specimens from 85 individuals with and without chronic respiratory disease (severe asthma, chronic obstructive pulmonary disease, and bronchiectasis) were subjected to metagenomic sequencing to an average depth exceeding 20 million reads. Respiratory and device-associated microbiomes were evaluated on the basis of taxonomical classification and functional annotation including the Comprehensive Antibiotic Resistance Database to determine airway resistomes. Co-occurrence networks of gene-microbe association were constructed to determine potential microbial sources of the airway resistome. Paired patient-inhaler metagenomes were compared (n = 31) to assess for the presence of airway-environment overlap in microbiomes and/or resistomes.Measurements and Main Results: Airway metagenomes exhibit taxonomic and metabolic diversity and distinct antimicrobial resistance patterns. A "core" airway resistome dominated by macrolide but with high prevalence of ß-lactam, fluoroquinolone, and tetracycline resistance genes exists and is independent of disease status or antibiotic exposure. Streptococcus and Actinomyces are key potential microbial reservoirs of macrolide resistance including the ermX, ermF, and msrD genes. Significant patient-inhaler overlap in airway microbiomes and their resistomes is identified where the latter may be a proxy for airway microbiome assessment in chronic respiratory disease.Conclusions: Metagenomic analysis of the airway reveals a core macrolide resistome harbored by the host microbiome.


Asunto(s)
Asma/microbiología , Bronquiectasia/microbiología , Farmacorresistencia Bacteriana/genética , Disbiosis/microbiología , Macrólidos , Metagenómica , Microbiota/genética , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos , Estudios de Casos y Controles , Femenino , Fluoroquinolonas , Humanos , Masculino , Persona de Mediana Edad , Nebulizadores y Vaporizadores/microbiología , Índice de Severidad de la Enfermedad , Resistencia a la Tetraciclina/genética , Resistencia betalactámica/genética
17.
Mycopathologia ; 186(2): 155-162, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33704625

RESUMEN

The 2020 COVID-19 pandemic had a profound impact on the publishing landscape. The 'pre-peer-review' publication model is likely to become common as a lag in publishing is not acceptable in a pandemic or other time! Mycopathologia is well placed to adopt such changes with its improved editorial processes, article formats, author engagements, and published articles' access and citation. Mycopathologia had an improved journal impact factor and article downloads in 2018-2019. A limited sampling suggested a slight decrease in the total submissions in 2019 (352 articles) compared to 2018 (371 articles). However, the acceptance rate improved to 30% in 2019 from 19% in 2018. Nearly half of all submissions in 2019 were rejected before peer-review or transferred to other Springer Nature journals. The published articles were contributed from 34 different countries, with authors from China, the USA, and Brazil among the top three contributors. An enhanced editorial oversight allowed peer-reviewers to focus on fewer articles that were well-matched to their expertise, which led to lower rejection rates post-peer-review. The introduction of MycopathologiaGENOME and MycopathologiaIMAGE article types received a good reception with notable downloads and citations.


Asunto(s)
COVID-19 , Micología , Patología , Revisión de la Investigación por Pares/normas , Publicaciones Periódicas como Asunto/estadística & datos numéricos , Publicaciones Periódicas como Asunto/normas , Informe de Investigación/normas , Guías como Asunto , Humanos , Factor de Impacto de la Revista , Pandemias , SARS-CoV-2
18.
Mycopathologia ; 186(5): 623-638, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33709335

RESUMEN

Chronic obstructive pulmonary disease (COPD) and bronchiectasis represent chronic airway diseases associated with significant morbidity and mortality. Bacteria and viruses are commonly implicated in acute exacerbations; however the significance of fungi in these airways remains poorly defined. While COPD and bronchiectasis remain recognized risk factors for the occurrence of Aspergillus-associated disease including chronic and invasive aspergillosis, underlying mechanisms that lead to the progression from colonization to invasive disease remain uncertain. Nonetheless, advances in molecular technologies have improved our detection, identification and understanding of resident fungi characterizing these airways. Mycobiome sequencing has revealed the complex varied and myriad profile of airway fungi in COPD and bronchiectasis, including their association with disease presentation, progression, and mortality. In this review, we outline the emerging evidence for the clinical importance of fungi in COPD and bronchiectasis, available diagnostic modalities, mycobiome sequencing approaches and association with clinical outcomes.


Asunto(s)
Bronquiectasia , Micosis , Aspergilosis Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Aspergillus , Bronquiectasia/complicaciones , Humanos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
19.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206113

RESUMEN

Airway inflammation plays a central role in bronchiectasis. Protease-antiprotease balance is crucial in bronchiectasis pathophysiology and increased presence of unopposed proteases activity may contribute to bronchiectasis onset and progression. Proteases' over-reactivity and antiprotease deficiency may have a role in increasing inflammation in bronchiectasis airways and may lead to extracellular matrix degradation and tissue damage. Imbalances in serine proteases and matrix-metallo proteinases (MMPs) have been associated to bronchiectasis. Active neutrophil elastase has been associated with disease severity and poor long-term outcomes in this disease. Moreover, high levels of MMPs have been associated with radiological and disease severity. Finally, severe deficiency of α1-antitrypsin (AAT), as PiSZ and PiZZ (proteinase inhibitor SZ and ZZ) phenotype, have been associated with bronchiectasis development. Several treatments are under study to reduce protease activity in lungs. Molecules to inhibit neutrophil elastase activity have been developed in both oral or inhaled form, along with compounds inhibiting dipeptydil-peptidase 1, enzyme responsible for the activation of serine proteases. Finally, supplementation with AAT is in use for patients with severe deficiency. The identification of different targets of therapy within the protease-antiprotease balance contributes to a precision medicine approach in bronchiectasis and eventually interrupts and disrupts the vicious vortex which characterizes the disease.


Asunto(s)
Bronquiectasia/metabolismo , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/metabolismo , Deficiencia de alfa 1-Antitripsina/metabolismo , Bronquiectasia/enzimología , Bronquiectasia/genética , Bronquiectasia/patología , Humanos , Elastasa de Leucocito , Pulmón/metabolismo , Pulmón/patología , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología , Serina Proteasas/genética , Serina Proteasas/metabolismo , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/patología
20.
Eur Respir J ; 56(2)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32341102

RESUMEN

INTRODUCTION: Allergic sensitisation to fungi such as Aspergillus are associated to poor clinical outcomes in asthma, bronchiectasis and cystic fibrosis; however, clinical relevance in COPD remains unclear. METHODS: Patients with stable COPD (n=446) and nondiseased controls (n=51) were prospectively recruited across three countries (Singapore, Malaysia and Hong Kong) and screened against a comprehensive allergen panel including house dust mites, pollens, cockroach and fungi. For the first time, using a metagenomics approach, we assessed outdoor and indoor environmental allergen exposure in COPD. We identified key fungi in outdoor air and developed specific-IgE assays against the top culturable fungi, linking sensitisation responses to COPD outcomes. Indoor air and surface allergens were prospectively evaluated by metagenomics in the homes of 11 COPD patients and linked to clinical outcome. RESULTS: High frequencies of sensitisation to a broad range of allergens occur in COPD. Fungal sensitisation associates with frequent exacerbations, and unsupervised clustering reveals a "highly sensitised fungal predominant" subgroup demonstrating significant symptomatology, frequent exacerbations and poor lung function. Outdoor and indoor environments serve as important reservoirs of fungal allergen exposure in COPD and promote a sensitisation response to outdoor air fungi. Indoor (home) environments with high fungal allergens associate with greater COPD symptoms and poorer lung function, illustrating the importance of environmental exposures on clinical outcomes in COPD. CONCLUSION: Fungal sensitisation is prevalent in COPD and associates with frequent exacerbations representing a potential treatable trait. Outdoor and indoor (home) environments represent a key source of fungal allergen exposure, amenable to intervention, in "sensitised" COPD.


Asunto(s)
Contaminación del Aire Interior , Enfermedad Pulmonar Obstructiva Crónica , Contaminación del Aire Interior/análisis , Alérgenos , Hongos , Hong Kong , Humanos , Malasia/epidemiología , Singapur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA