Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 18(9): 985-994, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28714978

RESUMEN

Glutamine metabolism provides synergistic support for macrophage activation and elicitation of desirable immune responses; however, the underlying mechanisms regulated by glutamine metabolism to orchestrate macrophage activation remain unclear. Here we show that the production of α-ketoglutarate (αKG) via glutaminolysis is important for alternative (M2) activation of macrophages, including engagement of fatty acid oxidation (FAO) and Jmjd3-dependent epigenetic reprogramming of M2 genes. This M2-promoting mechanism is further modulated by a high αKG/succinate ratio, whereas a low ratio strengthens the proinflammatory phenotype in classically activated (M1) macrophages. As such, αKG contributes to endotoxin tolerance after M1 activation. This study reveals new mechanistic regulations by which glutamine metabolism tailors the immune responses of macrophages through metabolic and epigenetic reprogramming.


Asunto(s)
Reprogramación Celular/inmunología , Epigénesis Genética , Ácidos Cetoglutáricos/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Animales , Inmunoprecipitación de Cromatina , Ciclo del Ácido Cítrico/inmunología , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Glutamina/metabolismo , Glucólisis/inmunología , Ácidos Cetoglutáricos/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Metabolómica , Ratones , FN-kappa B/inmunología , Oxidación-Reducción , Fosforilación Oxidativa , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Ácido Succínico/metabolismo
2.
Nature ; 566(7744): 403-406, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728499

RESUMEN

Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Neoplasias/metabolismo , Neoplasias/patología , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Ácido Graso Desaturasas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ácidos Oléicos/metabolismo , Palmitatos/metabolismo , Ácidos Palmíticos/metabolismo , Estearoil-CoA Desaturasa/metabolismo
3.
J Biol Chem ; 298(5): 101852, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35331736

RESUMEN

AMP-activated protein kinase (AMPK) is a central energy sensor that coordinates the response to energy challenges to maintain cellular ATP levels. AMPK is a potential therapeutic target for treating metabolic disorders, and several direct synthetic activators of AMPK have been developed that show promise in preclinical models of type 2 diabetes. These compounds have been shown to regulate AMPK through binding to a novel allosteric drug and metabolite (ADaM)-binding site on AMPK, and it is possible that other molecules might similarly bind this site. Here, we performed a high-throughput screen with natural plant compounds to identify such direct allosteric activators of AMPK. We identified a natural plant dihydrophenathrene, Lusianthridin, which allosterically activates and protects AMPK from dephosphorylation by binding to the ADaM site. Similar to other ADaM site activators, Lusianthridin showed preferential activation of AMPKß1-containing complexes in intact cells and was unable to activate an AMPKß1 S108A mutant. Lusianthridin dose-dependently increased phosphorylation of acetyl-CoA carboxylase in mouse primary hepatocytes, which led to a corresponding decrease in de novo lipogenesis. This ability of Lusianthridin to inhibit lipogenesis was impaired in hepatocytes from ß1 S108A knock-in mice and mice bearing a mutation at the AMPK phosphorylation site of acetyl-CoA carboxylase 1/2. Finally, we show that activation of AMPK by natural compounds extends to several analogs of Lusianthridin and the related chemical series, phenanthrenes. The emergence of natural plant compounds that regulate AMPK through the ADaM site raises the distinct possibility that other natural compounds share a common mechanism of regulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Hepatocitos , Lípidos , Fenantrenos , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Diabetes Mellitus Tipo 2 , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Metabolismo de los Lípidos , Lípidos/biosíntesis , Ratones , Fenantrenos/farmacología , Fosforilación
4.
Mol Cell ; 57(1): 95-107, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25482511

RESUMEN

Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2 deletion affects proliferation and metabolism in nontransformed, nonimmortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis.


Asunto(s)
Fibroblastos/metabolismo , Metaboloma/genética , Nucleótidos/metabolismo , Piruvato Quinasa/genética , Animales , Ciclo Celular/genética , Proliferación Celular , ADN/biosíntesis , Embrión de Mamíferos , Fibroblastos/citología , Regulación de la Expresión Génica , Redes y Vías Metabólicas/genética , Ratones , Ratones Noqueados , Cultivo Primario de Células , Piruvato Quinasa/deficiencia , Transducción de Señal
5.
EMBO J ; 37(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29440228

RESUMEN

Although c-Myc is essential for melanocyte development, its role in cutaneous melanoma, the most aggressive skin cancer, is only partly understood. Here we used the NrasQ61KINK4a-/- mouse melanoma model to show that c-Myc is essential for tumor initiation, maintenance, and metastasis. c-Myc-expressing melanoma cells were preferentially found at metastatic sites, correlated with increased tumor aggressiveness and high tumor initiation potential. Abrogation of c-Myc caused apoptosis in primary murine and human melanoma cells. Mechanistically, c-Myc-positive melanoma cells activated and became dependent on the metabolic energy sensor AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase that plays an important role in energy and redox homeostasis under stress conditions. AMPK pathway inhibition caused apoptosis of c-Myc-expressing melanoma cells, while AMPK activation protected against cell death of c-Myc-depleted melanoma cells through suppression of oxidative stress. Furthermore, TCGA database analysis of early-stage human melanoma samples revealed an inverse correlation between C-MYC and patient survival, suggesting that C-MYC expression levels could serve as a prognostic marker for early-stage disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Transformación Celular Neoplásica/genética , Melanoma/patología , Estrés Oxidativo/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , GTP Fosfohidrolasas/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Melanocitos/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal
6.
Nature ; 520(7546): 192-197, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25830893

RESUMEN

The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.


Asunto(s)
Carbono/metabolismo , Células Endoteliales/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Nucleótidos/biosíntesis , Ácido Acético/farmacología , Adenosina Trifosfato/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclo del Ácido Cítrico , ADN/biosíntesis , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Silenciador del Gen , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Nucleótidos/química , Nucleótidos/farmacología , Oxidación-Reducción/efectos de los fármacos , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología
7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638936

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD+ also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) in health and disease, studying NAD+ metabolism has become essential to monitor genetic- and/or drug-induced perturbations related to metabolic status and diseases (such as ageing, cancer or obesity), and its possible therapies. Here, we present a strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of the NAD+ metabolome in biological samples. In this method, hydrophilic interaction chromatography (HILIC) was used to separate a total of 18 metabolites belonging to pathways leading to NAD+ biosynthesis, including precursors, intermediates and catabolites. As redox cofactors are known for their instability, a sample preparation procedure was developed to handle a variety of biological matrices: cell models, rodent tissues and biofluids, as well as human biofluids (urine, plasma, serum, whole blood). For clinical applications, quantitative LC-MS/MS for a subset of metabolites was demonstrated for the analysis of the human whole blood of nine volunteers. Using this developed workflow, our methodology allows studying NAD+ biology from mechanistic to clinical applications.


Asunto(s)
Metaboloma , NAD/biosíntesis , Plasma/metabolismo , Suero/metabolismo , Espectrometría de Masas en Tándem/métodos , Orina/fisiología , Animales , Donantes de Sangre , Cromatografía Liquida/métodos , Células Hep G2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Monitoreo Fisiológico/métodos , Oxidación-Reducción , Proyectos Piloto , Plasma/química , Suero/química , Orina/química
8.
Diabetologia ; 63(12): 2628-2640, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32960311

RESUMEN

AIMS/HYPOTHESIS: In islets from individuals with type 2 diabetes and in islets exposed to chronic elevated glucose, mitochondrial energy metabolism is impaired. Here, we studied early metabolic changes and mitochondrial adaptations in human beta cells during chronic glucose stress. METHODS: Respiration and cytosolic ATP changes were measured in human islet cell clusters after culture for 4 days in 11.1 mmol/l glucose. Metabolomics was applied to analyse intracellular metabolite changes as a result of glucose stress conditions. Alterations in beta cell function were followed using insulin secretion assays or cytosolic calcium signalling after expression of the calcium probe YC3.6 specifically in beta cells of islet clusters. RESULTS: At early stages of glucose stress, mitochondrial energy metabolism was augmented in contrast to the previously described mitochondrial dysfunction in beta cells from islets of diabetic donors. Following chronic glucose stress, mitochondrial respiration increased (by 52.4%, p < 0.001) and, as a consequence, the cytosolic ATP/ADP ratio in resting human pancreatic islet cells was elevated (by 27.8%, p < 0.05). Because of mitochondrial overactivation in the resting state, nutrient-induced beta cell activation was reduced. In addition, chronic glucose stress caused metabolic adaptations that resulted in the accumulation of intermediates of the glycolytic pathway, the pentose phosphate pathway and the TCA cycle; the most strongly augmented metabolite was glycerol 3-phosphate. The changes in metabolites observed are likely to be due to the inability of mitochondria to cope with continuous nutrient oversupply. To protect beta cells from chronic glucose stress, we inhibited mitochondrial pyruvate transport. Metabolite concentrations were partially normalised and the mitochondrial respiratory response to nutrients was markedly improved. Furthermore, stimulus-secretion coupling as assessed by cytosolic calcium signalling, was restored. CONCLUSION/INTERPRETATION: We propose that metabolic changes and associated mitochondrial overactivation are early adaptations to glucose stress, and may reflect what happens as a result of poor blood glucose control. Inhibition of mitochondrial pyruvate transport reduces mitochondrial nutrient overload and allows beta cells to recover from chronic glucose stress. Graphical abstract.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Humanos , Metabolómica/métodos
9.
Proc Natl Acad Sci U S A ; 113(7): 1778-83, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831078

RESUMEN

Cancer cells reprogram their metabolism to promote growth and proliferation. The genetic evidence pointing to the importance of the amino acid serine in tumorigenesis is striking. The gene encoding the enzyme 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the first committed step of serine biosynthesis, is overexpressed in tumors and cancer cell lines via focal amplification and nuclear factor erythroid-2-related factor 2 (NRF2)-mediated up-regulation. PHGDH-overexpressing cells are exquisitely sensitive to genetic ablation of the pathway. Here, we report the discovery of a selective small molecule inhibitor of PHGDH, CBR-5884, identified by screening a library of 800,000 drug-like compounds. CBR-5884 inhibited de novo serine synthesis in cancer cells and was selectively toxic to cancer cell lines with high serine biosynthetic activity. Biochemical characterization of the inhibitor revealed that it was a noncompetitive inhibitor that showed a time-dependent onset of inhibition and disrupted the oligomerization state of PHGDH. The identification of a small molecule inhibitor of PHGDH not only enables thorough preclinical evaluation of PHGDH as a target in cancers, but also provides a tool with which to study serine metabolism.


Asunto(s)
Neoplasias/metabolismo , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Serina/biosíntesis , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias/patología
10.
Metab Eng ; 43(Pt B): 187-197, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27847310

RESUMEN

Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function, and whether this contributes to the peculiarity of tumor development versus neurodegeneration. We addressed this question by decoupling loss of SDH and complex I activity in cancer cells and neurons. We found that sole loss of SDH activity was not sufficient to recapitulate the metabolic phenotype of SDH mutant tumors, because it failed to decrease mitochondrial respiration and to activate reductive glutamine metabolism. These metabolic phenotypes were only induced upon the additional loss of complex I activity. Thus, we show that complex I function defines the metabolic differences between SDH mutation associated tumors and neurodegenerative diseases, which could open novel therapeutic options against both diseases.


Asunto(s)
Complejo I de Transporte de Electrón , Mutación , Proteínas de Neoplasias , Neoplasias , Succinato Deshidrogenasa , Línea Celular Tumoral , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Neuronas/enzimología , Neuronas/patología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
11.
Europace ; 19(7): 1220-1226, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27702858

RESUMEN

AIMS: Elderly patients with sinus node dysfunction (SND) are at increased risk of falls with possible injuries. However, the incidence of these adverse events and its reduction after permanent pacemaker (PPM) implantation are not known. METHODS AND RESULTS: Eighty-seven patients (mean [SD] age 75.4 [8.3] years, 51% women) with SND and an indication for cardiac pacing were included and were examined by a standardized interview targeting fall history. The incidence and total number of falls, falls with injury, falls requiring treatment, and falls resulting in a fracture were assessed for the time period of 12 months before (retrospectively) and after PPM implantation (prospectively). Furthermore, symptoms such as syncope, dizziness, and dyspnea were evaluated before and after PPM implantation. The implantation of a PPM was associated with a reduced proportion of patients experiencing at least one fall by 71% (from 53 to 15%, P < 0.001) and a reduction of the absolute number of falls by 90% (from 127 to 13, P < 0.001) during the 12 months before vs. after PPM implant. Falls with injury (28 vs. 10%, P = 0.005), falls requiring medical attention (31 vs. 8%, P < 0.001), and falls leading to fracture (8 vs. 0%, P = 0.013) were similarly reduced. Notably, fewer patients had syncope (4 vs. 45%, P < 0.001) and dizziness after PPM implantation (12 vs. 45%, P < 0.001). CONCLUSION: Falls, fall-related injuries, and fall-related fractures are frequent in SND patients. Permanent pacemaker implantation is associated with a significantly reduced risk of these adverse events, although no causal relationship could be established due to the study design.


Asunto(s)
Accidentes por Caídas/prevención & control , Estimulación Cardíaca Artificial , Marcapaso Artificial , Síndrome del Seno Enfermo/terapia , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento , Femenino , Humanos , Masculino , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo , Síndrome del Seno Enfermo/complicaciones , Síndrome del Seno Enfermo/diagnóstico , Síndrome del Seno Enfermo/fisiopatología , Suiza , Factores de Tiempo , Resultado del Tratamiento
12.
Mol Syst Biol ; 11(4): 802, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25888284

RESUMEN

Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN de Hongos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Causalidad , Ciclo Celular , Simulación por Computador , Medios de Cultivo/farmacología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Metaboloma , Modelos Biológicos , Nitrógeno/metabolismo , Probabilidad , Proteoma , ARN de Hongos/genética , Saccharomyces cerevisiae/efectos de los fármacos , Transducción de Señal
13.
Biol Cell ; 107(8): 251-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25913226

RESUMEN

Metabolic alterations have emerged as an important hallmark in the development of various diseases. Thus, understanding the complex interplay of metabolism with other cellular processes such as cell signalling is critical to rationally control and modulate cellular physiology. Here, we review in the context of mammalian target of rapamycin, AMP-activated protein kinase and p53, the orchestrated interplay between metabolism and cellular signalling as well as transcriptional regulation. Moreover, we discuss recent discoveries in auto-regulation of metabolism (i.e. how metabolic parameters such as metabolite levels activate or inhibit enzymes and thus metabolic pathways). Finally, we review functional consequences of post-translational modification on metabolic enzyme abundance and/or activities.


Asunto(s)
Regulación de la Expresión Génica , Redes y Vías Metabólicas , Transducción de Señal , Animales , Humanos , Procesamiento Proteico-Postraduccional
15.
Handb Exp Pharmacol ; 233: 321-53, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25912014

RESUMEN

Targeting cancer metabolism has the potential to lead to major advances in tumor therapy. Numerous promising metabolic drug targets have been identified. Yet, it has emerged that there is no singular metabolism that defines the oncogenic state of the cell. Rather, the metabolism of cancer cells is a function of the requirements of a tumor. Hence, the tissue of origin, the (epi)genetic drivers, the aberrant signaling, and the microenvironment all together define these metabolic requirements. In this chapter we discuss in light of (epi)genetic, signaling, and environmental factors the diversity in cancer metabolism based on triple-negative and estrogen receptor-positive breast cancer, early- and late-stage prostate cancer, and liver cancer. These types of cancer all display distinct and partially opposing metabolic behaviors (e.g., Warburg versus reverse Warburg metabolism). Yet, for each of the cancers, their distinct metabolism supports the oncogenic phenotype. Finally, we will assess the therapeutic potential of metabolism based on the concepts of metabolic normalization and metabolic depletion.


Asunto(s)
Neoplasias/metabolismo , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Neoplasias/tratamiento farmacológico , Especificidad de Órganos , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral
16.
Dev Biol ; 381(1): 97-106, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23773803

RESUMEN

In Drosophila, growth takes place during the larval stages until the formation of the pupa. Starvation delays pupariation to allow prolonged feeding, ensuring that the animal reaches an appropriate size to form a fertile adult. Pupariation is induced by a peak of the steroid hormone ecdysone produced by the prothoracic gland (PG) after larvae have reached a certain body mass. Local downregulation of the insulin/insulin-like growth factor signaling (IIS) activity in the PG interferes with ecdysone production, indicating that IIS activity in the PG couples the nutritional state to development. However, the underlying mechanism is not well understood. In this study we show that the secreted Imaginal morphogenesis protein-Late 2 (Imp-L2), a growth inhibitor in Drosophila, is involved in this process. Imp-L2 inhibits the activity of the Drosophila insulin-like peptides by direct binding and is expressed by specific cells in the brain, the ring gland, the gut and the fat body. We demonstrate that Imp-L2 is required to regulate and adapt developmental timing to nutritional conditions by regulating IIS activity in the PG. Increasing Imp-L2 expression at its endogenous sites using an Imp-L2-Gal4 driver delays pupariation, while Imp-L2 mutants exhibit a slight acceleration of development. These effects are strongly enhanced by starvation and are accompanied by massive alterations of ecdysone production resulting most likely from increased Imp-L2 production by neurons directly contacting the PG and not from elevated Imp-L2 levels in the hemolymph. Taken together our results suggest that Imp-L2-expressing neurons sense the nutritional state of Drosophila larvae and coordinate dietary information and ecdysone production to adjust developmental timing under starvation conditions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas de Drosophila/genética , Ecdisona/metabolismo , Ecdisterona/metabolismo , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Larva/crecimiento & desarrollo , Mutación , Neuronas/metabolismo , Isoformas de Proteínas , Transducción de Señal , Factores de Transcripción/genética , Transgenes
17.
Nat Commun ; 15(1): 4083, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744825

RESUMEN

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Asunto(s)
Acetil-CoA Carboxilasa , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Supervivencia Celular , Ácidos Grasos , Glucosa , Diana Mecanicista del Complejo 1 de la Rapamicina , Animales , Humanos , Ratones , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , NADP/metabolismo , Estrés Oxidativo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Biosíntesis de Proteínas
18.
Nat Metab ; 6(3): 433-447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38504132

RESUMEN

Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.


Asunto(s)
Alcaloides , Sarcopenia , Humanos , Masculino , Ratones , Animales , Sarcopenia/tratamiento farmacológico , Sarcopenia/prevención & control , Sarcopenia/metabolismo , NAD/metabolismo , Caenorhabditis elegans , Envejecimiento , Músculo Esquelético/metabolismo , Alcaloides/farmacología , Alcaloides/uso terapéutico , Alcaloides/metabolismo
19.
Oncogenesis ; 11(1): 57, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115843

RESUMEN

Glioblastoma is a highly aggressive brain tumor for which there is no cure. The metabolic enzyme 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4) is essential for glioblastoma stem-like cell (GSC) survival but its mode of action is unclear. Understanding the role of PFKFB4 in tumor cell survival could allow it to be leveraged in a cancer therapy. Here, we show the importance of PFKFB4 for glioblastoma growth in vivo in an orthotopic patient derived mouse model. In an evaluation of patient tumor samples of different cancer entities, PFKFB4 protein was found to be overexpressed in prostate, lung, colon, mammary and squamous cell carcinoma, with expression level correlating with tumor grade. Gene expression profiling in PFKFB4-silenced GSCs revealed a downregulation of hypoxia related genes and Western blot analysis confirmed a dramatic reduction of HIF (hypoxia inducible factor) protein levels. Through mass spectrometric analysis of immunoprecipitated PFKFB4, we identified the ubiquitin E3 ligase, F-box only protein 28 (FBXO28), as a new interaction partner of PFKFB4. We show that PFKFB4 regulates the ubiquitylation and subsequent proteasomal degradation of HIF-1α, which is mediated by the ubiquitin ligase activity of FBXO28. This newly discovered function of PFKFB4, coupled with its cancer specificity, provides a new strategy for inhibiting HIF-1α in cancer cells.

20.
Mol Syst Biol ; 6: 432, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21119627

RESUMEN

Which transcription factors control the distribution of metabolic fluxes under a given condition? We address this question by systematically quantifying metabolic fluxes in 119 transcription factor deletion mutants of Saccharomyces cerevisiae under five growth conditions. While most knockouts did not affect fluxes, we identified 42 condition-dependent interactions that were mediated by a total of 23 transcription factors that control almost exclusively the cellular decision between respiration and fermentation. This relatively sparse, condition-specific network of active metabolic control contrasts with the much larger gene regulation network inferred from expression and DNA binding data. Based on protein and transcript analyses in key mutants, we identified three enzymes in the tricarboxylic acid cycle as the key targets of this transcriptional control. For the transcription factor Gcn4, we demonstrate that this control is mediated through the PKA and Snf1 signaling cascade. The discrepancy between flux response predictions, based on the known regulatory network architecture and our functional (13)C-data, demonstrates the importance of identifying and quantifying the extent to which regulatory effectors alter cellular functions.


Asunto(s)
Redes Reguladoras de Genes/fisiología , Redes y Vías Metabólicas/genética , Factores de Transcripción/fisiología , Levaduras/genética , Levaduras/metabolismo , Ciclo del Ácido Cítrico/genética , Ambiente , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Análisis por Micromatrices , Modelos Biológicos , Modelos Genéticos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Estudios de Validación como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA