Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Plant J ; 112(4): 881-896, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36164819

RESUMEN

Narrow odd dwarf (nod) and Liguleless narrow (Lgn) are pleiotropic maize mutants that both encode plasma membrane proteins, cause similar developmental patterning defects, and constitutively induce stress signaling pathways. To investigate how these mutants coordinate maize development and physiology, we screened for protein interactors of NOD by affinity purification. LGN was identified by this screen as a strong candidate interactor, and we confirmed the NOD-LGN molecular interaction through orthogonal experiments. We further demonstrated that LGN, a receptor-like kinase, can phosphorylate NOD in vitro, hinting that they could act in intersecting signal transduction pathways. To test this hypothesis, we generated Lgn-R;nod mutants in two backgrounds (B73 and A619), and found that these mutations enhance each other, causing more severe developmental defects than either single mutation on its own, with phenotypes including very narrow leaves, increased tillering, and failure of the main shoot. Transcriptomic and metabolomic analyses of the single and double mutants in the two genetic backgrounds revealed widespread induction of pathogen defense genes and a shift in resource allocation away from primary metabolism in favor of specialized metabolism. These effects were similar in each single mutant and heightened in the double mutant, leading us to conclude that NOD and LGN act cumulatively in overlapping signaling pathways to coordinate growth-defense tradeoffs in maize.


Asunto(s)
Proteínas de Plantas , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Fenotipo , Mutación , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 112(1): 207-220, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35960639

RESUMEN

Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate-derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co-factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense-related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth.


Asunto(s)
Geraniltranstransferasa , Sesquiterpenos , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Fosfatos de Poliisoprenilo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Ubiquinona/metabolismo , Zea mays/genética , Zea mays/metabolismo , Fitoalexinas
3.
Mol Plant Microbe Interact ; 34(10): 1157-1166, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34165327

RESUMEN

Seed maceration and contamination with mycotoxin fumonisin inflicted by Fusarium verticillioides is a major disease concern for maize producers worldwide. Meta-analyses of quantitative trait loci for Fusarium ear rot resistance uncovered several ethylene (ET) biosynthesis and signaling genes within them, implicating ET in maize interactions with F. verticillioides. We tested this hypothesis using maize knockout mutants of the 1-aminocyclopropane-1-carboxylate (ACC) synthases ZmACS2 and ZmACS6. Infected wild-type seed emitted five-fold higher ET levels compared with controls, whereas ET was abolished in the acs2 and acs6 single and double mutants. The mutants supported reduced fungal biomass, conidia, and fumonisin content. Normal susceptibility was restored in the acs6 mutant with exogenous treatment of ET precursor ACC. Subsequently, we showed that fungal G-protein signaling is required for virulence via induction of maize-produced ET. F. verticillioides Gß subunit and two regulators of G-protein signaling mutants displayed reduced seed colonization and decreased ET levels. These defects were rescued by exogenous application of ACC. We concluded that pathogen-induced ET facilitates F. verticillioides colonization of seed, and, in turn, host ET production is manipulated via G-protein signaling of F. verticillioides to facilitate pathogenesis.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Fumonisinas , Fusarium , Etilenos , Proteínas de Unión al GTP , Virulencia , Zea mays
4.
Planta ; 254(4): 73, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34529190

RESUMEN

MAIN CONCLUSION: A maize receptor kinase controls defense response to fungal pathogens by regulating jasmonic acid and antimicrobial phytoalexin production. Plants use a range of pattern recognition receptors to detect and respond to biotic threats. Some of these receptors contain leucine-rich repeat (LRR) domains that recognize microbial proteins or peptides. Maize (Zea mays) has 226 LRR-receptor like kinases, making it challenging to identify those important for pathogen recognition. In this study, co-expression analysis with genes for jasmonic acid and phytoalexin biosynthesis was used to identify a fungal induced-receptor like protein kinase (FI-RLPK) likely involved in the response to fungal pathogens. Loss-of-function mutants in fi-rlpk displayed enhanced susceptibility to the necrotrophic fungal pathogen Cochliobolus heterostrophus and reduced accumulation of jasmonic acid and the anti-microbial phytoalexins -kauralexins and zealexins- in infected tissues. In contrast, fi-rlpk mutants displayed increased resistance to stem inoculation with the hemibiotrophic fungal pathogen Fusarium graminearum. These data indicate that FI-RLPK is important for fungal recognition and activation of defenses, and that F. graminearum may be able to exploit FI-RLPK function to increase its virulence.


Asunto(s)
Ascomicetos , Zea mays , Bipolaris , Fusarium , Leucina , Enfermedades de las Plantas , Proteínas Quinasas , Zea mays/genética
5.
Metabolomics ; 17(1): 6, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33400019

RESUMEN

INTRODUCTION: Studies investigating crop resistance to abiotic and biotic stress have largely focused on plant responses to singular forms of stress and individual biochemical pathways that only partially represent stress responses. Thus, combined abiotic and biotic stress treatments and the global assessment of their elicited metabolic expression remains largely unexplored. In this study, we employed targeted and untargeted metabolomics to investigate the molecular responses of maize (Zea mays) to abiotic, biotic, and combinatorial stress. OBJECTIVE: We compared the inducible metabolomes of heat-stressed (abiotic) and C. heterostrophus-infected (biotic) maize and examined the effects of heat stress on the ability of maize to defend itself against C. heterostrophus. METHODS: Ultra-high-performance liquid chromatography-high-resolution mass spectrometry was performed on plants grown under control conditions (28 °C), heat stress (38 °C), Cochliobolus heterostrophus infection, or combinatorial stress [heat (38 °C) + C. heterostrophus infection]. RESULTS: Multivariate analyses revealed differential metabolite expression between heat stress, C. heterostrophus infection, and their respective controls. In combinatorial experiments, treatment with heat stress prior to fungal inoculation negatively impacted maize disease resistance against C. heterostrophus, and distinct metabolome separation between combinatorial stressed plants and the non-heat-stressed infected controls was observed. Targeted analysis revealed inducible primary and secondary metabolite responses to abiotic/biotic stress, and combinatorial experiments indicated that deficiency in the hydroxycinnamic acid, p-coumaric acid, may contribute to the heat-induced susceptibility of maize to C. heterostrophus. CONCLUSION: These findings demonstrate that abiotic stress can predispose crops to more severe disease symptoms, underlining the increasing need to investigate defense chemistry in plants under combinatorial stress.


Asunto(s)
Respuesta al Choque Térmico , Metaboloma , Metabolómica , Enfermedades de las Plantas/inmunología , Zea mays/inmunología , Zea mays/metabolismo , Cromatografía Líquida de Alta Presión , Interacciones Huésped-Patógeno , Espectrometría de Masas , Metabolómica/métodos , Enfermedades de las Plantas/microbiología , Zea mays/microbiología
6.
Planta ; 252(4): 62, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32965567

RESUMEN

MAIN CONCLUSION: Linolenic acid produced by the ω-3 fatty acid desaturase MSD3 in sorghum is used for insect-induced jasmonic acid production and is important for resistance against Spodoptera frugiperda. Jasmonic acid (JA) is a phytohormone that regulates both plant development and stress responses. In sorghum (Sorghum bicolor), the ω-3 fatty acid desaturase Multiseeded3 (MSD3) and the 13-lipoxygenase Multiseeded2 (MSD2) are important for producing JA to regulate panicle development and spikelet fertility, but their function in plant defense remains unknown. In this study, we examined whether these genes are important for the production of JA in response to herbivory by the insect pest Spodoptera frugiperda. Compared to wild-type controls, the msd3 mutant accumulated less JA in leaves of both infested and uninfested plants, revealing that MSD3 is involved in stress-induced JA production. In contrast, herbivore-induced JA production in the msd2 mutant was indistinguishable from wild type, indicating that MSD2 does not function in herbivore-induced JA production. An increase of S. frugiperda growth was observed on both the msd3 and msd2 mutants, hinting at roles for both JA and additional oxylipins in sorghum's defense responses.


Asunto(s)
Ácido Graso Desaturasas , Lipooxigenasa , Defensa de la Planta contra la Herbivoria , Sorghum , Spodoptera , Animales , Ácido Graso Desaturasas/metabolismo , Herbivoria , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Mutación , Oxilipinas/metabolismo , Defensa de la Planta contra la Herbivoria/genética , Sorghum/enzimología , Sorghum/genética , Sorghum/parasitología , Spodoptera/fisiología
7.
Plant Cell Environ ; 43(1): 223-234, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411732

RESUMEN

To grow and thrive plants must be able to adapt to both adverse environmental conditions and attack by a variety of pests. Elucidating the sophisticated mechanisms plants have developed to achieve this has been the focus of many studies. What is less well understood is how plants respond when faced with multiple stressors simultaneously. In this study, we assess the response of Zea mays (maize) to the combinatorial stress of flooding and infestation with the insect pest Spodoptera frugiperda (fall armyworm). This combined stress leads to elevated production of the defence hormone salicylic acid, which does not occur in the individual stresses, and the resultant salicylic acid-dependent increase in S. frugiperda resistance. Remodelling of phenylpropanoid pathways also occurs in response to this combinatorial stress leading to increased production of the anti-insect C-glycosyl flavones (maysins) and the herbivore-induced volatile phenolics, benzyl acetate, and phenethyl acetate. Furthermore, changes in cellular redox status also occur, as indicated by reductions in peroxidase and polyphenol oxidase activity. These data suggest that metabolite changes important for flooding tolerance and anti-insect defence may act both additively and synergistically to provide extra protection to the plant.


Asunto(s)
Resistencia a la Enfermedad/fisiología , Inundaciones , Insectos/fisiología , Zea mays/metabolismo , Animales , Catecol Oxidasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria/fisiología , Larva/fisiología , Peroxidasa/metabolismo , Enfermedades de las Plantas , Ácido Salicílico/metabolismo , Spodoptera/fisiología
8.
Plant J ; 93(5): 799-813, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29315977

RESUMEN

Maize white seedling 3 (w3) has been used to study carotenoid deficiency for almost 100 years, although the molecular basis of the mutation has remained unknown. Here we show that the w3 phenotype is caused by disruption of the maize gene for homogentisate solanesyl transferase (HST), which catalyzes the first and committed step in plastoquinone-9 (PQ-9) biosynthesis in the plastid. The resulting PQ-9 deficiency prohibits photosynthetic electron transfer and eliminates PQ-9 as an oxidant in the enzymatic desaturation of phytoene during carotenoid synthesis. As a result, light-grown w3 seedlings are albino, deficient in colored carotenoids and accumulate high levels of phytoene. However, despite the absence of PQ-9 for phytoene desaturation, dark-grown w3 seedlings can produce abscisic acid (ABA) and homozygous w3 kernels accumulate sufficient carotenoids to generate ABA needed for seed maturation. The presence of ABA and low levels of carotenoids in w3 nulls indicates that phytoene desaturase is able to use an alternate oxidant cofactor, albeit less efficiently than PQ-9. The observation that tocopherols and tocotrienols are modestly affected in w3 embryos and unaffected in w3 endosperm indicates that, unlike leaves, grain tissues deficient in PQ-9 are not subject to severe photo-oxidative stress. In addition to identifying the molecular basis for the maize w3 mutant, we: (1) show that low levels of phytoene desaturation can occur in w3 seedlings in the absence of PQ-9; and (2) demonstrate that PQ-9 and carotenoids are not required for vitamin E accumulation.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas de Plantas/metabolismo , Plastoquinona/metabolismo , Tocoferoles/metabolismo , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Transferasas Alquil y Aril/genética , Carotenoides/genética , Carotenoides/metabolismo , Mutación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fenotipo , Fotosíntesis , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plastidios/genética , Plastidios/metabolismo , Semillas/genética , Semillas/metabolismo , Vitamina E/genética , Vitamina E/metabolismo , Zea mays/genética
9.
BMC Plant Biol ; 19(1): 310, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307401

RESUMEN

BACKGROUND: The hypersensitive defense response (HR) in plants is a fast, localized necrotic response around the point of pathogen ingress. HR is usually triggered by a pathogen recognition event mediated by a nucleotide-binding site, leucine-rich repeat (NLR) protein. The autoactive maize NLR gene Rp1-D21 confers a spontaneous HR response in the absence of pathogen recognition. Previous work identified a set of loci associated with variation in the strength of Rp1-D21-induced HR. A polygalacturonase gene homolog, here termed ZmPGH1, was identified as a possible causal gene at one of these loci on chromosome 7. RESULTS: Expression of ZmPGH1 inhibited the HR-inducing activity of both Rp1-D21 and that of another autoactive NLR, RPM1(D505V), in a Nicotiana benthamiana transient expression assay system. Overexpression of ZmPGH1 in a transposon insertion line of maize was associated with suppression of chemically-induced programmed cell death and with suppression of HR induced by Rp1-D21 in maize plants grown in the field. CONCLUSIONS: ZmPGH1 functions as a suppressor of programmed cell death induced by at least two autoactive NLR proteins and by two chemical inducers. These findings deepen our understanding of the control of the HR in plants.


Asunto(s)
Apoptosis/fisiología , Proteínas de Plantas/fisiología , Poligalacturonasa/fisiología , Zea mays/fisiología , Apoptosis/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Genes de Plantas , Leucina , Proteínas de Plantas/química , Proteínas de Plantas/genética , Poligalacturonasa/química , Poligalacturonasa/genética , Recombinación Genética , Secuencias Repetitivas de Aminoácido , Nicotiana/genética , Zea mays/enzimología , Zea mays/genética , Zea mays/inmunología
10.
Planta ; 249(1): 21-30, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30187155

RESUMEN

MAIN CONCLUSION: Maize produces an array of herbivore-induced terpene volatiles that attract parasitoids to infested plants and a suite of pathogen-induced non-volatile terpenoids with antimicrobial activity to defend against pests. Plants rely on complex blends of constitutive and dynamically produced specialized metabolites to mediate beneficial ecological interactions and protect against biotic attack. One such class of metabolites are terpenoids, a large and structurally diverse class of molecules shown to play significant defensive and developmental roles in numerous plant species. Despite this, terpenoids have only recently been recognized as significant contributors to pest resistance in maize (Zea mays), a globally important agricultural crop. The current review details recent advances in our understanding of biochemical structures, pathways and functional roles of maize terpenoids. Dependent upon the lines examined, maize can harbor more than 30 terpene synthases, underlying the inherent diversity of maize terpene defense systems. Part of this defensive arsenal is the inducible production of volatile bouquets that include monoterpenes, homoterpenes and sesquiterpenes, which often function in indirect defense by enabling the attraction of parasitoids and predators. More recently discovered are a subset of sesquiterpene and diterpene hydrocarbon olefins modified by cytochrome P450s to produce non-volatile end-products such kauralexins, zealexins, dolabralexins and ß-costic acid. These non-volatile terpenoid phytoalexins often provide effective defense against both microbial and insect pests via direct antimicrobial and anti-feedant activity. The diversity and promiscuity of maize terpene synthases, coupled with a variety of secondary modifications, results in elaborate defensive layers whose identities, regulation and precise functions are continuing to be elucidated.


Asunto(s)
Terpenos/metabolismo , Zea mays/metabolismo , Zea mays/parasitología , Animales , Regulación de la Expresión Génica de las Plantas , Insectos/patogenicidad , Enfermedades de las Plantas/parasitología , Sesquiterpenos/metabolismo , Fitoalexinas
11.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661847

RESUMEN

Grain number per panicle is an important component of grain yield in sorghum (Sorghum bicolor (L.)) and other cereal crops. Previously, we reported that mutations in multi-seeded 1 (MSD1) and MSD2 genes result in a two-fold increase in grain number per panicle due to the restoration of the fertility of the pedicellate spikelets, which invariably abort in natural sorghum accessions. Here, we report the identification of another gene, MSD3, which is also involved in the regulation of grain numbers in sorghum. Four bulked F2 populations from crosses between BTx623 and each of the independent msd mutants p6, p14, p21, and p24 were sequenced to 20× coverage of the whole genome on a HiSeq 2000 system. Bioinformatic analyses of the sequence data showed that one gene, Sorbi_3001G407600, harbored homozygous mutations in all four populations. This gene encodes a plastidial ω-3 fatty acid desaturase that catalyzes the conversion of linoleic acid (18:2) to linolenic acid (18:3), a substrate for jasmonic acid (JA) biosynthesis. The msd3 mutants had reduced levels of linolenic acid in both leaves and developing panicles that in turn decreased the levels of JA. Furthermore, the msd3 panicle phenotype was reversed by treatment with methyl-JA (MeJA). Our characterization of MSD1, MSD2, and now MSD3 demonstrates that JA-regulated processes are critical to the msd phenotype. The identification of the MSD3 gene reveals a new target that could be manipulated to increase grain number per panicle in sorghum, and potentially other cereal crops, through the genomic editing of MSD3 functional orthologs.


Asunto(s)
Productos Agrícolas/enzimología , Ciclopentanos/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Oxilipinas/metabolismo , Sorghum/enzimología , Alelos , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Ciclopentanos/farmacología , Grano Comestible/efectos de los fármacos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Mutación , Oxilipinas/farmacología , Fenotipo , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Sorghum/genética , Sorghum/metabolismo , Ácido alfa-Linolénico/biosíntesis , Ácido alfa-Linolénico/química
12.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597271

RESUMEN

As in other cereal crops, the panicles of sorghum (Sorghum bicolor (L.) Moench) comprise two types of floral spikelets (grass flowers). Only sessile spikelets (SSs) are capable of producing viable grains, whereas pedicellate spikelets (PSs) cease development after initiation and eventually abort. Consequently, grain number per panicle (GNP) is lower than the total number of flowers produced per panicle. The mechanism underlying this differential fertility is not well understood. To investigate this issue, we isolated a series of ethyl methane sulfonate (EMS)-induced multiseeded (msd) mutants that result in full spikelet fertility, effectively doubling GNP. Previously, we showed that MSD1 is a TCP (Teosinte branched/Cycloidea/PCF) transcription factor that regulates jasmonic acid (JA) biosynthesis, and ultimately floral sex organ development. Here, we show that MSD2 encodes a lipoxygenase (LOX) that catalyzes the first committed step of JA biosynthesis. Further, we demonstrate that MSD1 binds to the promoters of MSD2 and other JA pathway genes. Together, these results show that a JA-induced module regulates sorghum panicle development and spikelet fertility. The findings advance our understanding of inflorescence development and could lead to new strategies for increasing GNP and grain yield in sorghum and other cereal crops.


Asunto(s)
Ciclopentanos/metabolismo , Fertilidad , Oxilipinas/metabolismo , Desarrollo de la Planta , Sorghum/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Grano Comestible , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Sorghum/clasificación , Factores de Transcripción/metabolismo
13.
Plant J ; 89(4): 746-763, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27862526

RESUMEN

We used a systems genetics approach to elucidate the molecular mechanisms of the responses of maize to grey leaf spot (GLS) disease caused by Cercospora zeina, a threat to maize production globally. Expression analysis of earleaf samples in a subtropical maize recombinant inbred line population (CML444 × SC Malawi) subjected in the field to C. zeina infection allowed detection of 20 206 expression quantitative trait loci (eQTLs). Four trans-eQTL hotspots coincided with GLS disease QTLs mapped in the same field experiment. Co-expression network analysis identified three expression modules correlated with GLS disease scores. The module (GY-s) most highly correlated with susceptibility (r = 0.71; 179 genes) was enriched for the glyoxylate pathway, lipid metabolism, diterpenoid biosynthesis and responses to pathogen molecules such as chitin. The GY-s module was enriched for genes with trans-eQTLs in hotspots on chromosomes 9 and 10, which also coincided with phenotypic QTLs for susceptibility to GLS. This transcriptional network has significant overlap with the GLS susceptibility response of maize line B73, and may reflect pathogen manipulation for nutrient acquisition and/or unsuccessful defence responses, such as kauralexin production by the diterpenoid biosynthesis pathway. The co-expression module that correlated best with resistance (TQ-r; 1498 genes) was enriched for genes with trans-eQTLs in hotspots coinciding with GLS resistance QTLs on chromosome 9. Jasmonate responses were implicated in resistance to GLS through co-expression of COI1 and enrichment of genes with the Gene Ontology term 'cullin-RING ubiquitin ligase complex' in the TQ-r module. Consistent with this, JAZ repressor expression was highly correlated with the severity of GLS disease in the GY-s susceptibility network.


Asunto(s)
Hojas de la Planta/genética , Hojas de la Planta/microbiología , Zea mays/genética , Zea mays/microbiología , Ascomicetos/patogenicidad , Cromosomas de las Plantas/genética , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética
14.
Planta ; 248(1): 105-116, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29616394

RESUMEN

MAIN CONCLUSION: The maize inbred line W22 has lower herbivore-induced volatile production than B73 but both fall armyworm larvae and the wasps that parasitize them prefer W22 over B73. Maize inbred line W22 is an important resource for genetic studies due to the availability of the UniformMu mutant population and a complete genome sequence. In this study, we assessed the suitability of W22 as a model for tritrophic interactions between maize, Spodoptera frugiperda (fall armyworm) and the parasitoid wasp Cotesia marginiventris. W22 was found to be a good model for studying the interaction as S. frugiperda prefers W22 over B73 and a higher parasitism rate by C. marginiventris was observed on W22 compared to the inbred line B73. W22 also produced lower amounts of many herbivore-induced volatile terpenes and indole emission upon treatment with S. frugiperda oral secretions. We propose that some of the major herbivore-induced terpene volatiles are perhaps impeding S. frugiperda and C. marginiventris preference and that as yet unidentified compounds are produced at low abundance may be positively impacting these interactions.


Asunto(s)
Herbivoria , Feromonas/metabolismo , Spodoptera , Compuestos Orgánicos Volátiles/metabolismo , Avispas , Zea mays/metabolismo , Animales , Benzoxazinas/metabolismo , Perfilación de la Expresión Génica , Indoles/metabolismo , Modelos Biológicos , Spodoptera/parasitología , Terpenos/metabolismo , Avispas/fisiología , Zea mays/parasitología
15.
Planta ; 247(4): 863-873, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29260396

RESUMEN

MAIN CONCLUSION: Chemical isolation and NMR-based structure elucidation revealed a novel keto-acidic sesquiterpenoid, termed zealexin A4 (ZA4). ZA4 is elicited by pathogens and herbivory, but attenuated by heightened levels of CO 2 . The identification of the labdane-related diterpenoids, termed kauralexins and acidic sesquiterpenoids, termed zealexins, demonstrated the existence of at least ten novel stress-inducible maize metabolites with diverse antimicrobial activity. Despite these advances, the identity of co-occurring and predictably related analytes remains largely unexplored. In the current effort, we identify and characterize the first sesquiterpene keto acid derivative of ß-macrocarpene, named zealexin A4 (ZA4). Evaluation of diverse maize inbreds revealed that ZA4 is commonly produced in maize scutella during the first 14 days of seedling development; however, ZA4 production in the scutella was markedly reduced in seedlings grown in sterile soil. Elevated ZA4 production was observed in response to inoculation with adventitious fungal pathogens, such as Aspergillus flavus and Rhizopus microsporus, and a positive relationship between ZA4 production and expression of the predicted zealexin biosynthetic genes, terpene synthases 6 and 11 (Tps6 and Tps11), was observed. ZA4 exhibited significant antimicrobial activity against the mycotoxigenic pathogen A. flavus; however, ZA4 activity against R. microsporus was minimal, suggesting the potential of some fungi to detoxify ZA4. Significant induction of ZA4 production was also observed in response to infestation with the stem tunneling herbivore Ostrinia nubilalis. Examination of the interactive effects of elevated CO2 (E-CO2) on both fungal and herbivore-elicited ZA4 production revealed significantly reduced levels of inducible ZA4 accumulation, consistent with a negative role for E-CO2 on ZA4 production. Collectively, these results describe a novel ß-macrocarpene-derived antifungal defense in maize and expand the established diversity of zealexins that are differentially regulated in response to biotic/abiotic stress.


Asunto(s)
Sesquiterpenos/metabolismo , Zea mays/metabolismo , Transferasas Alquil y Aril/metabolismo , Antiinfecciosos/metabolismo , Aspergillus flavus/metabolismo , Dióxido de Carbono/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inmunidad de la Planta , Rhizopus/metabolismo , Plantones/metabolismo , Zea mays/efectos de los fármacos , Zea mays/microbiología
16.
J Exp Bot ; 69(5): 1235-1245, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29301018

RESUMEN

Reactive oxygen species (ROS) can be elicited by many forms of stress, including pathogen attack, abiotic stress, damage and insect infestation. Perception of microbe- or damage-associated elicitors triggers an ROS burst in many plant species; however, the impact of herbivore fatty-acid amides on ROS elicitation remains largely unexplored. In this study we show that the lepidopteran-derived fatty-acid amide elicitor N-linolenoyl-L-glutamine (GLN18:3) can induce a ROS burst in multiple plant species. Furthermore, in Arabidopsis this ROS burst is partially dependent on the plasma membrane localized NADPH oxidases RBOHD and RBOHF, and an Arabidopsis rbohD/F double mutant produces enhanced GLN18:3-induced jasmonic acid. Quantification of GLN18:3-induced ROS in phytohormone-deficient lines revealed that in Arabidopsis reduced levels of jasmonic acid resulted in a larger elicitor-induced ROS burst, while in tomato reduction of either jasmonic acid or salicylic acid led to higher induced ROS production. These data indicate that GLN18:3-induced ROS is antagonistic to jasmonic acid production in these species. In biological assays, rbohD/F mutant plants were more resistant to the generalist herbivores Spodoptera exigua and Trichoplusia ni but not to the specialist Plutella xylostella. Collectively, these results demonstrate that in Arabidopsis herbivore-induced ROS may negatively regulate plant defense responses to herbivory.


Asunto(s)
Amidas/metabolismo , Arabidopsis/fisiología , Herbivoria , Mariposas Nocturnas , Especies Reactivas de Oxígeno/metabolismo , Solanum lycopersicum/fisiología , Animales , Proteínas de Arabidopsis/metabolismo , Ácidos Grasos , Cadena Alimentaria , NADPH Oxidasas/metabolismo , Spodoptera
17.
J Exp Bot ; 69(7): 1693-1705, 2018 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-29361044

RESUMEN

Plant defense research is facilitated by the use of genome-sequenced inbred lines; however, a foundational knowledge of interactions in commercial hybrids remains relevant to understanding mechanisms present in crops. Using an array of commercial maize hybrids, we quantified the accumulation patterns of defense-related metabolites and phytohormones in tissues challenged with diverse fungal pathogens. Across hybrids, Southern leaf blight (Cochliobolus heterostrophus) strongly elicited specific sesqui- and diterpenoid defenses, namely zealexin A4 (ZA4) and kauralexin diacids, compared with the stalk-rotting agents Fusarium graminearum and Colletotrichum graminicola. With respect to biological activity, ZA4 and kauralexin diacids demonstrated potent antimicrobial action against F. graminearum. Unexpectedly, ZA4 displayed an opposite effect on C. graminicola by promoting growth. Overall, a negative correlation was observed between total analyzed terpenoids and fungal growth. Statistical analyses highlighted kauralexin A3 and abscisic acid as metabolites most associated with fungal suppression. As an empirical test, mutants of the ent-copalyl diphosphate synthase Anther ear 2 (An2) lacking kauralexin biosynthetic capacity displayed increased susceptibility to C. heterostrophus and Fusarium verticillioides. Our results highlight a widely occurring defensive function of acidic terpenoids in commercial hybrids and the complex nature of elicited pathway products that display selective activities on fungal pathogen species.


Asunto(s)
Antibiosis , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Terpenos/metabolismo , Zea mays/fisiología , Ascomicetos/fisiología , Colletotrichum/fisiología , Fusarium/fisiología , Genotipo , Hibridación Genética , Mutación , Fitomejoramiento , Zea mays/genética , Zea mays/microbiología
18.
Proc Natl Acad Sci U S A ; 112(36): 11407-12, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305953

RESUMEN

Plant damage promotes the interaction of lipoxygenases (LOXs) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides, and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed "jasmonates." As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA, and a series of related 14- and 12-carbon metabolites, collectively termed "death acids." 10-OPEA accumulation becomes wound inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death, which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Unlike jasmonates, functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions.


Asunto(s)
Ciclopentanos/metabolismo , Lipooxigenasa/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Zea mays/metabolismo , Ascomicetos/fisiología , Ciclopentanos/química , Ciclopentanos/farmacología , Cistatinas/genética , Cistatinas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Huésped-Patógeno , Immunoblotting , Lipooxigenasa/genética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxilipinas/química , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sesquiterpenos/química , Sesquiterpenos/farmacología , Zea mays/genética , Zea mays/microbiología , Fitoalexinas
19.
BMC Plant Biol ; 17(1): 197, 2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-29132306

RESUMEN

BACKGROUND: Cercospora zeina is a foliar pathogen responsible for maize grey leaf spot in southern Africa that negatively impacts maize production. Plants use a variety of chemical and structural mechanisms to defend themselves against invading pathogens such as C. zeina, including the production of secondary metabolites with antimicrobial properties. In maize, a variety of biotic and abiotic stressors induce the accumulation of the terpenoid phytoalexins, zealexins and kauralexins. RESULTS: C. zeina-susceptible line displayed pervasive rectangular grey leaf spot lesions, running parallel with the leaf veins in contrast to C. zeina-resistant line that had restricted disease symptoms. Analysis of the transcriptome of both lines indicated that genes involved in primary and secondary metabolism were up-regualted, and although different pathways were prioritized in each line, production of terpenoid compounds were common to both. Targeted phytoalexin analysis revealed that C. zeina-inoculated leaves accumulated zealexins and kauralexins. The resistant line shows a propensity toward accumulation of the kauralexin B series metabolites in response to infection, which contrasts with the susceptible line that preferentially accumulates the kauralexin A series. Kauralexin accumulation was correlated to expression of the kauralexin biosynthetic gene, ZmAn2 and a candidate biosynthetic gene, ZmKSL2. We report the expression of a putative copalyl diphosphate synthase gene that is induced by C. zeina in the resistant line exclusively. DISCUSSION: This study shows that zealexins and kauralexins, and expression of their biosynthetic genes, are induced by C. zeina in both resistant and susceptible germplasm adapted to the southern African climate. The data presented here indicates that different forms of kauralexins accumulate in the resistant and susceptible maize lines in response to C. zeina, with the accumulation of kauralexin B compounds in a resistant maize line and kauralexin A compounds accumulating in the susceptible line.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Terpenos/metabolismo , Zea mays/genética , Ontología de Genes , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Análisis de Secuencia de ARN , Zea mays/metabolismo , Zea mays/microbiología
20.
Plant Cell Environ ; 40(9): 1725-1734, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28436049

RESUMEN

Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO2 had decreased emission of its major sesquiterpene, (E)-ß-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-ß-caryophyllene hyper-accumulated at elevated CO2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO2 . Our data indicate that elevated CO2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO2 on stomatal conductance. These findings suggest that elevated CO2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses.


Asunto(s)
Dióxido de Carbono/farmacología , Herbivoria/fisiología , Compuestos Orgánicos Volátiles/análisis , Zea mays/fisiología , Transferasas Alquil y Aril/genética , Animales , Ciclopentanos/metabolismo , Dieta , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Larva/crecimiento & desarrollo , Oxilipinas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Ácido Salicílico/metabolismo , Sesquiterpenos/análisis , Spodoptera/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/química , Zea mays/efectos de los fármacos , Zea mays/genética , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA