Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 444(7116): 213-6, 2006 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17051160

RESUMEN

Resistance to infection and clearance of cell debris in mammals depend on the activation of the complement system, which is an important component of innate and adaptive immunity. Central to the complement system is the activated form of C3, called C3b, which attaches covalently to target surfaces to amplify complement response, label cells for phagocytosis and stimulate the adaptive immune response. C3b consists of 1,560 amino-acid residues and has 12 domains. It binds various proteins and receptors to effect its functions. However, it is not known how C3 changes its conformation into C3b and thereby exposes its many binding sites. Here we present the crystal structure at 4-A resolution of the activated complement protein C3b and describe the conformational rearrangements of the 12 domains that take place upon proteolytic activation. In the activated form the thioester is fully exposed for covalent attachment to target surfaces and is more than 85 A away from the buried site in native C3 (ref. 5). Marked domain rearrangements in the alpha-chain present an altered molecular surface, exposing hidden and cryptic sites that are consistent with known putative binding sites of factor B and several complement regulators. The structural data indicate that the large conformational changes in the proteolytic activation and regulation of C3 take place mainly in the first conversion step, from C3 to C3b. These insights are important for the development of strategies to treat immune disorders that involve complement-mediated inflammation.


Asunto(s)
Complemento C3b/química , Complemento C3b/inmunología , Sitios de Unión , Activación de Complemento , Cristalografía por Rayos X , Humanos , Inflamación , Modelos Moleculares , Estructura Terciaria de Proteína , Electricidad Estática , Relación Estructura-Actividad
2.
Neoplasia ; 15(2): 156-68, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23441130

RESUMEN

Polyploidy contributes to extensive intratumor genomic heterogeneity that characterizes advanced malignancies and is thought to limit the efficiency of current cancer therapies. It has been shown that telomere deprotection in p53-deficient mouse embryonic fibroblasts leads to high rates of polyploidization. We now show that tumor genome evolution through whole-genome duplication occurs in ∼15% of the karyotyped human neoplasms and correlates with disease progression. In a panel of human cancer and transformed cell lines representing the two known types of genomic instability (chromosomal and microsatellite), as well as the two known pathways of telomere maintenance in cancer (telomerase activity and alternative lengthening of telomeres), telomere dysfunction-driven polyploidization occurred independently of the mutational status of p53. Depending on the preexisting context of telomere maintenance, telomerase activity and its major components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA component (hTERC), exert both reverse transcriptase-related (canonical) and noncanonical functions to affect tumor genome evolution through suppression or induction of polyploidization. These new findings provide a more complete mechanistic understanding of cancer progression that may, in the future, lead to novel therapeutic interventions.


Asunto(s)
Transformación Celular Neoplásica/genética , Poliploidía , ARN/genética , Telomerasa/genética , Proteína p53 Supresora de Tumor , Animales , Proliferación Celular , Duplicación Cromosómica/genética , Genoma Humano , Inestabilidad Genómica , Humanos , Hibridación Fluorescente in Situ , Ratones , Mutación , ARN/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Cancer Res ; 69(3): 1125-34, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19176389

RESUMEN

The BRCA1-associated ring domain protein 1 (BARD1) interacts with BRCA1 via its RING finger domain. The BARD1-BRCA1 complex participates in DNA repair, cell cycle control, genomic stability, and mitotic spindle formation through its E3 ubiquitin ligase activity. Cancer cells express several BARD1 protein isoforms, including the RING finger-deficient variant BARD1beta. Here, we show that BARD1 has BRCA1-dependent and BRCA1-independent functions in mitosis. BARD1, but not BRCA1, localizes to the midbody at telophase and cytokinesis, where it colocalizes with Aurora B. The 97-kDa full-length (FL) BARD1 coimmunoprecipates with BRCA1, but the 82-kDa BARD1beta coimmunoprecipitates with Aurora B and BRCA2. We used selective small interfering RNAs to distinguish the functions of FL BARD1 and BARD1beta. Depletion of FL BARD1 had only minor effects on cell growth and did not abolish midbody localization of BARD1 staining, but resulted in massive up-regulation of Aurora B. In contrast, suppression of FL BARD1 and BARD1beta led to growth arrest and correlated with various mitotic defects and disappearance of midbody localization of BARD1 staining. Our data suggest a novel function of FL BARD1 in Aurora B ubiquitination and degradation, opposing a proproliferative function of BARD1beta in scaffolding Aurora B and BRCA2. Thus, loss of FL BARD1 and up-regulation of Aurora B, as observed in cancer cells, can be explained by an imbalance of FL BARD1 and BARD1beta.


Asunto(s)
Proteína BRCA2/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Reguladoras de la Apoptosis , Aurora Quinasa B , Aurora Quinasas , Procesos de Crecimiento Celular/fisiología , Proteínas Fetales/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas , Proteínas Serina-Treonina Quinasas/biosíntesis , ARN Interferente Pequeño/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
4.
Cancer Res ; 68(19): 8146-55, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829574

RESUMEN

In the alternative pathway of telomere lengthening (ALT), neoplastic cell growth is prolonged by telomere recombination. We show that ALT is unexpectedly characterized by high rates of ongoing pericentromeric chromosomal instability. Combined with telomeric recombination, ALT pericentromeric instability generates neoacrocentric chromosomes. In the present studies, we describe a subgroup of ALT neoacrocentric minute chromosomes, composed of DNA entities two to five times smaller in size than human chromosome 21. The frequencies of ALT minute chromosomes were increased by gamma-irradiation and suppressed by telomerase. Continuous growth after telomerase inhibition/depletion was followed by increased rates of telomeric sister chromatid recombination and the emergence of minute chromosomes. We show that ALT minute chromosomes were derived from true centromeric fissions and/or chromosomal breakage/fusion/bridge cycles. They exhibit a two-chromatid structure, carry genomic DNA, centromeric and telomeric repeats, and display regular mitotic functionality. These observations are important in understanding the global genomic instability that characterizes most human advanced malignancies.


Asunto(s)
Centrómero , Inestabilidad Cromosómica/fisiología , Aberraciones Cromosómicas , Transducción de Señal/genética , Telómero/fisiología , Proliferación Celular , Centrómero/genética , Centrómero/ultraestructura , Rotura Cromosómica , Análisis Citogenético , Células HCT116 , Células HT29 , Células HeLa , Humanos , Transducción de Señal/fisiología , Telomerasa/fisiología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA