Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 285(14): 10806-21, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20106984

RESUMEN

Insulin fibrillation provides a model for a broad class of amyloidogenic diseases. Conformational distortion of the native monomer leads to aggregation-coupled misfolding. Whereas beta-cells are protected from proteotoxicity by hexamer assembly, fibrillation limits the storage and use of insulin at elevated temperatures. Here, we have investigated conformational distortions of an engineered insulin monomer in relation to the structure of an insulin fibril. Anomalous (13)C NMR chemical shifts and rapid (15)N-detected (1)H-(2)H amide-proton exchange were observed in one of the three classical alpha-helices (residues A1-A8) of the hormone, suggesting a conformational equilibrium between locally folded and unfolded A-chain segments. Whereas hexamer assembly resolves these anomalies in accordance with its protective role, solid-state (13)C NMR studies suggest that the A-chain segment participates in a fibril-specific beta-sheet. Accordingly, we investigated whether helicogenic substitutions in the A1-A8 segment might delay fibrillation. Simultaneous substitution of three beta-branched residues (Ile(A2) --> Leu, Val(A3) --> Leu, and Thr(A8) --> His) yielded an analog with reduced thermodynamic stability but marked resistance to fibrillation. Whereas amide-proton exchange in the A1-A8 segment remained rapid, (13)Calpha chemical shifts exhibited a more helical pattern. This analog is essentially without activity, however, as Ile(A2) and Val(A3) define conserved receptor contacts. To obtain active analogs, substitutions were restricted to A8. These analogs exhibit high receptor-binding affinity; representative potency in a rodent model of diabetes mellitus was similar to wild-type insulin. Although (13)Calpha chemical shifts remain anomalous, significant protection from fibrillation is retained. Together, our studies define an "Achilles' heel" in a globular protein whose repair may enhance the stability of pharmaceutical formulations and broaden their therapeutic deployment in the developing world.


Asunto(s)
Amiloide/química , Diabetes Mellitus Experimental/metabolismo , Diseño de Fármacos , Insulina/química , Insulina/farmacología , Amiloide/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Cristalografía por Rayos X , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Estructura Secundaria de Proteína , Ratas , Ratas Endogámicas Lew , Receptor IGF Tipo 1/metabolismo , Estreptozocina/toxicidad
2.
J Biol Chem ; 284(50): 35259-72, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19850922

RESUMEN

Protein evolution is constrained by folding efficiency ("foldability") and the implicit threat of toxic misfolding. A model is provided by proinsulin, whose misfolding is associated with beta-cell dysfunction and diabetes mellitus. An insulin analogue containing a subtle core substitution (Leu(A16) --> Val) is biologically active, and its crystal structure recapitulates that of the wild-type protein. As a seeming paradox, however, Val(A16) blocks both insulin chain combination and the in vitro refolding of proinsulin. Disulfide pairing in mammalian cell culture is likewise inefficient, leading to misfolding, endoplasmic reticular stress, and proteosome-mediated degradation. Val(A16) destabilizes the native state and so presumably perturbs a partial fold that directs initial disulfide pairing. Substitutions elsewhere in the core similarly destabilize the native state but, unlike Val(A16), preserve folding efficiency. We propose that Leu(A16) stabilizes nonlocal interactions between nascent alpha-helices in the A- and B-domains to facilitate initial pairing of Cys(A20) and Cys(B19), thus surmounting their wide separation in sequence. Although Val(A16) is likely to destabilize this proto-core, its structural effects are mitigated once folding is achieved. Classical studies of insulin chain combination in vitro have illuminated the impact of off-pathway reactions on the efficiency of native disulfide pairing. The capability of a polypeptide sequence to fold within the endoplasmic reticulum may likewise be influenced by kinetic or thermodynamic partitioning among on- and off-pathway disulfide intermediates. The properties of [Val(A16)]insulin and [Val(A16)]proinsulin demonstrate that essential contributions of conserved residues to folding may be inapparent once the native state is achieved.


Asunto(s)
Insulina , Pliegue de Proteína , Precursores de Proteínas , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular , Disulfuros/química , Humanos , Insulina/química , Insulina/genética , Insulina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estructura Cuaternaria de Proteína , Termodinámica , Valina/genética , Valina/metabolismo
3.
Diabetes ; 53(6): 1599-602, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15161767

RESUMEN

Mutations in human insulin cause an autosomal-dominant syndrome of diabetes and fasting hyperinsulinemia. We demonstrate by residue-specific photo cross-linking that diabetes-associated mutations occur at receptor-binding sites. The studies use para-azido-phenylalanine, introduced at five sites by total protein synthesis. Because two such sites (Val(A3) and Phe(B24)) are largely buried in crystal structures of the free hormone, their participation in receptor binding is likely to require a conformational change to expose a hidden functional surface. Our results demonstrate that this surface spans both chains of the insulin molecule and includes sites of rare human mutations that cause diabetes.


Asunto(s)
Diabetes Mellitus/genética , Insulina/genética , Insulina/metabolismo , Mutación , Receptor de Insulina/metabolismo , Azidas , Sitios de Unión/genética , Humanos , Insulina/química , Estructura Molecular , Fenilalanina/análogos & derivados
4.
J Mol Biol ; 316(3): 435-41, 2002 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-11866509

RESUMEN

The hydrophobic core of vertebrate insulins contains an invariant isoleucine residue at position A2. Lack of variation may reflect this side-chain's dual contribution to structure and function: Ile(A2) is proposed both to stabilize the A1-A8 alpha-helix and to contribute to a "hidden" functional surface exposed on receptor binding. Substitution of Ile(A2) by alanine results in segmental unfolding of the A1-A8 alpha-helix, lower thermodynamic stability and impaired receptor binding. Such a spectrum of perturbations, although of biophysical interest, confounds interpretation of structure-activity relationships. To investigate the specific contribution of Ile(A2) to insulin's functional surface, we have employed non-standard mutagenesis: inversion of side-chain chirality in engineered monomer allo-Ile(A2)-DKP-insulin. Although the analogue retains native structure and stability, its affinity for the insulin receptor is impaired by 50-fold. Thus, whereas insulin's core readily accommodates allo-isoleucine at A2, its activity is exquisitely sensitive to chiral inversion. We propose that the Ile(A2) side-chain inserts within a chiral pocket of the receptor as part of insulin's hidden functional surface.


Asunto(s)
Insulina/análogos & derivados , Insulina/química , Isoleucina/metabolismo , Mutagénesis/genética , Receptor de Insulina/metabolismo , Sitios de Unión , Dicroismo Circular , Guanidina/farmacología , Humanos , Insulina/genética , Insulina/metabolismo , Modelos Moleculares , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína , Estructura Secundaria de Proteína/efectos de los fármacos , Receptor de Insulina/química , Relación Estructura-Actividad
5.
J Mol Biol ; 315(2): 103-11, 2002 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-11779231

RESUMEN

The design of insulin analogues has emphasized stabilization or destabilization of structural elements according to established principles of protein folding. To this end, solvent-exposed side-chains extrinsic to the receptor-binding surface provide convenient sites of modification. An example is provided by an unfavorable helical C-cap (Thr(A8)) whose substitution by favorable amino acids (His(A8) or Arg(A8)) has yielded analogues of improved stability. Remarkably, these analogues also exhibit enhanced activity, suggesting that activity may correlate with stability. Here, we test this hypothesis by substitution of diaminobutyric acid (Dab(A8)), like threonine an amino acid of low helical propensity. The crystal structure of Dab(A8)-insulin is similar to those of native insulin and the related analogue Lys(A8)-insulin. Although no more stable than native insulin, the non-standard analogue is twice as active. Stability and affinity can therefore be uncoupled. To investigate alternative mechanisms by which A8 substitutions enhance activity, multiple substitutions were introduced. Surprisingly, diverse aliphatic, aromatic and polar side-chains enhance receptor binding and biological activity. Because no relationship is observed between activity and helical propensity, we propose that local interactions between the A8 side-chain and an edge of the hormone-receptor interface modulate affinity. Dab(A8)-insulin illustrates the utility of non-standard amino acids in hypothesis-driven protein design.


Asunto(s)
Diseño de Fármacos , Insulina/análogos & derivados , Insulina/metabolismo , Ingeniería de Proteínas , Receptor de Insulina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Aminobutiratos/química , Aminobutiratos/metabolismo , Cristalografía por Rayos X , Humanos , Insulina/química , Insulina/genética , Metabolismo de los Lípidos , Lípidos/biosíntesis , Modelos Moleculares , Mutación/genética , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Receptor de Insulina/química , Receptor de Insulina/genética , Electricidad Estática , Relación Estructura-Actividad , Termodinámica
6.
J Mol Biol ; 341(2): 529-50, 2004 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-15276842

RESUMEN

Binding of insulin to the insulin receptor plays a central role in the hormonal control of metabolism. Here, we investigate possible contact sites between the receptor and the conserved non-polar surface of the B-chain. Evidence is presented that two contiguous sites in an alpha-helix, Val(B12) and Tyr(B16), contact the receptor. Chemical synthesis is exploited to obtain non-standard substitutions in an engineered monomer (DKP-insulin). Substitution of Tyr(B16) by an isosteric photo-activatable derivative (para-azido-phenylalanine) enables efficient cross-linking to the receptor. Such cross-linking is specific and maps to the L1 beta-helix of the alpha-subunit. Because substitution of Val(B12) by larger side-chains markedly impairs receptor binding, cross-linking studies at B12 were not undertaken. Structure-function relationships are instead probed by side-chains of similar or smaller volume: respective substitution of Val(B12) by alanine, threonine, and alpha-aminobutyric acid leads to activities of 1(+/-0.1)%, 13(+/-6)%, and 14(+/-5)% (relative to DKP-insulin) without disproportionate changes in negative cooperativity. NMR structures are essentially identical with native insulin. The absence of transmitted structural changes suggests that the low activities of B12 analogues reflect local perturbation of a "high-affinity" hormone-receptor contact. By contrast, because position B16 tolerates alanine substitution (relative activity 34(+/-10)%), the contribution of this neighboring interaction is smaller. Together, our results support a model in which the B-chain alpha-helix, functioning as an essential recognition element, docks against the L1 beta-helix of the insulin receptor.


Asunto(s)
Sustitución de Aminoácidos/genética , Insulina/química , Insulina/metabolismo , Fragmentos de Péptidos/química , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Alanina , Secuencia de Aminoácidos , Sitios de Unión , Dicroismo Circular , Humanos , Insulina/síntesis química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Valina
7.
Protein Sci ; 11(1): 104-16, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11742127

RESUMEN

To investigate the cooperativity of insulin's structure, a cavity-forming substitution was introduced within the hydrophobic core of an engineered monomer. The substitution, Ile(A2)-->Ala in the A1-A8 alpha-helix, does not impair disulfide pairing between chains. In accord with past studies of cavity-forming mutations in globular proteins, a decrement was observed in thermodynamic stability (DeltaDeltaG(u) 0.4-1.2 kcal/mole). Unexpectedly, CD studies indicate an attenuated alpha-helix content, which is assigned by NMR spectroscopy to selective destabilization of the A1-A8 segment. The analog's solution structure is otherwise similar to that of native insulin, including the B chain's supersecondary structure and a major portion of the hydrophobic core. Our results show that (1) a cavity-forming mutation in a globular protein can lead to segmental unfolding, (2) tertiary packing of Ile(A2), a residue of low helical propensity, stabilizes the A1-A8 alpha-helix, and (3) folding of this segment is not required for native disulfide pairing or overall structure. We discuss these results in relation to a hierarchical pathway of protein folding and misfolding. The Ala(A2) analog's low biological activity (0.5% relative to the parent monomer) highlights the importance of the A1-A8 alpha-helix in receptor recognition.


Asunto(s)
Insulina/química , Insulina/genética , Mutación , Alanina/química , Secuencia de Aminoácidos , Dicroismo Circular , Guanidina/farmacología , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Biosíntesis de Péptidos , Péptidos/química , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Temperatura , Termodinámica
8.
J Biol Chem ; 284(21): 14597-608, 2009 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-19321435

RESUMEN

Proteins evolve in a fitness landscape encompassing a complex network of biological constraints. Because of the interrelation of folding, function, and regulation, the ground-state structure of a protein may be inactive. A model is provided by insulin, a vertebrate hormone central to the control of metabolism. Whereas native assembly mediates storage within pancreatic beta-cells, the active conformation of insulin and its mode of receptor binding remain elusive. Here, functional surfaces of insulin were probed by photocross-linking of an extensive set of azido derivatives constructed by chemical synthesis. Contacts are circumferential, suggesting that insulin is encaged within its receptor. Mapping of photoproducts to the hormone-binding domains of the insulin receptor demonstrated alternating contacts by the B-chain beta-strand (residues B24-B28). Whereas even-numbered probes (at positions B24 and B26) contact the N-terminal L1 domain of the alpha-subunit, odd-numbered probes (at positions B25 and B27) contact its C-terminal insert domain. This alternation corresponds to the canonical structure of abeta-strand (wherein successive residues project in opposite directions) and so suggests that the B-chain inserts between receptor domains. Detachment of a receptor-binding arm enables photo engagement of surfaces otherwise hidden in the free hormone. The arm and associated surfaces contain sites also required for nascent folding and self-assembly of storage hexamers. The marked compression of structural information within a short polypeptide sequence rationalizes the diversity of diabetes-associated mutations in the insulin gene. Our studies demonstrate that photoscanning mutagenesis can decode the active conformation of a protein and so illuminate cryptic constraints underlying its evolution.


Asunto(s)
Insulina/química , Luz , Receptor de Insulina/química , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/efectos de la radiación , Secuencia de Aminoácidos , Animales , Quimotripsina/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Mapeo Peptídico , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sus scrofa
9.
J Biol Chem ; 282(48): 35337-49, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17884811

RESUMEN

The contribution of the insulin A-chain to receptor binding is investigated by photo-cross-linking and nonstandard mutagenesis. Studies focus on the role of Val(A3), which projects within a crevice between the A- and B-chains. Engineered receptor alpha-subunits containing specific protease sites ("midi-receptors") are employed to map the site of photo-cross-linking by an analog containing a photoactivable A3 side chain (para-azido-Phe (Pap)). The probe cross-links to a C-terminal peptide (residues 703-719 of the receptor A isoform, KTFEDYLHNVVFVPRPS) containing side chains critical for hormone binding (underlined); the corresponding segment of the holoreceptor was shown previously to cross-link to a Pap(B25)-insulin analog. Because Pap is larger than Val and so may protrude beyond the A3-associated crevice, we investigated analogs containing A3 substitutions comparable in size to Val as follows: Thr, allo-Thr, and alpha-aminobutyric acid (Aba). Substitutions were introduced within an engineered monomer. Whereas previous studies of smaller substitutions (Gly(A3) and Ser(A3)) encountered nonlocal conformational perturbations, NMR structures of the present analogs are similar to wild-type insulin; the variant side chains are accommodated within a native-like crevice with minimal distortion. Receptor binding activities of Aba(A3) and allo-Thr(A3) analogs are reduced at least 10-fold; the activity of Thr(A3)-DKP-insulin is reduced 5-fold. The hormone-receptor interface is presumably destabilized either by a packing defect (Aba(A3)) or by altered polarity (allo-Thr(A3) and Thr(A3)). Our results provide evidence that Val(A3), a site of mutation causing diabetes mellitus, contacts the insert domain-derived tail of the alpha-subunit in a hormone-receptor complex.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Diabetes Mellitus/metabolismo , Insulina/química , Mutagénesis , Receptor de Insulina/química , Aminobutiratos/química , Animales , Humanos , Luz , Espectroscopía de Resonancia Magnética , Ratones , Mutación , Fotoquímica/métodos , Conformación Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Porcinos , Valina/química
10.
Biochemistry ; 44(13): 5000-16, 2005 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-15794638

RESUMEN

Naturally occurring mutations in insulin associated with diabetes mellitus identify critical determinants of its biological activity. Here, we describe the crystal structure of insulin Wakayama, a clinical variant in which a conserved valine in the A chain (residue A3) is substituted by leucine. The substitution occurs within a crevice adjoining the classical receptor-binding surface and impairs receptor binding by 500-fold, an unusually severe decrement among mutant insulins. To resolve whether such decreased activity is directly or indirectly mediated by the variant side chain, we have determined the crystal structure of Leu(A3)-insulin and investigated the photo-cross-linking properties of an A3 analogue containing p-azidophenylalanine. The structure, characterized in a novel crystal form as an R(6) zinc hexamer at 2.3 A resolution, is essentially identical to that of the wild-type R(6) hexamer. The variant side chain remains buried in a nativelike crevice with small adjustments in surrounding side chains. The corresponding photoactivatable analogue, although of low affinity, exhibits efficient cross-linking to the insulin receptor. The site of photo-cross-linking lies within a 14 kDa C-terminal domain of the alpha-subunit. This domain, unrelated in sequence to the major insulin-binding region in the N-terminal L1 beta-helix, is also contacted by photoactivatable probes at positions A8 and B25. Packing of Val(A3) at this interface may require a conformational change in the B chain to expose the A3-related crevice. The structure of insulin Wakayama thus evokes the reasoning of Sherlock Holmes in "the curious incident of the dog in the night": the apparent absence of structural perturbations (like the dog that did not bark) provides a critical clue to the function of a hidden receptor-binding surface.


Asunto(s)
Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Insulina/análogos & derivados , Insulina/química , Insulina/genética , Mutación , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , Humanos , Técnicas In Vitro , Insulina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Receptor de Insulina/metabolismo , Homología de Secuencia de Aminoácido
11.
Biochemistry ; 42(44): 12770-83, 2003 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-14596591

RESUMEN

The crystal structure of an inactive chiral analogue of insulin containing nonstandard substitution allo-Ile(A2) is described at 2.0 A resolution. In native insulin, the invariant Ile(A2) side chain anchors the N-terminal alpha-helix of the A-chain to the hydrophobic core. The structure of the variant protein was determined by molecular replacement as a T(3)R(3) zinc hexamer. Whereas respective T- and R-state main-chain structures are similar to those of native insulin (main-chain root-mean-square deviations (RMSD) of 0.45 and 0.54 A, respectively), differences in core packing are observed near the variant side chain. The R-state core resembles that of the native R-state with a local inversion of A2 orientation (core side chain RMSD 0.75 A excluding A2); in the T-state, allo-Ile(A2) exhibits an altered conformation in association with the reorganization of the surrounding side chains (RMSD 0.98 A). Surprisingly, the core of the R-state is similar to that observed in solution nuclear magnetic resonance (NMR) studies of an engineered T-like monomer containing the same chiral substitution (allo-Ile(A2)-DKP-insulin; Xu, B., Hua, Q. X., Nakagawa, S. H., Jia, W., Chu, Y. C., Katsoyannis, P. G., and Weiss, M. A. (2002) J. Mol. Biol. 316, 435-441). Simulation of NOESY spectra based on crystallographic protomers enables the analysis of similarities and differences in solution. The different responses of the T- and R-state cores to chiral perturbation illustrates both their intrinsic plasticity and constraints imposed by hexamer assembly. Although variant T- and R-protomers retain nativelike protein surfaces, the receptor-binding activity of allo-Ile(A2)-insulin is low (2% relative to native insulin). This seeming paradox suggests that insulin undergoes a change in conformation to expose Ile(A2) at the hormone-receptor interface.


Asunto(s)
Insulina/análogos & derivados , Insulina/química , Isoleucina/química , Receptor de Insulina/química , Sitios de Unión , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Ligandos , Resonancia Magnética Nuclear Biomolecular , Soluciones , Estereoisomerismo , Relación Estructura-Actividad , Termodinámica
12.
J Biol Chem ; 277(45): 43443-53, 2002 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-12196530

RESUMEN

The A and B chains of insulin combine to form native disulfide bridges without detectable isomers. The fidelity of chain combination thus recapitulates the folding of proinsulin, a precursor protein in which the two chains are tethered by a disordered connecting peptide. We have recently shown that chain combination is blocked by seemingly conservative substitutions in the C-terminal alpha-helix of the A chain. Such analogs, once formed, nevertheless retain high biological activity. By contrast, we demonstrate here that chain combination is robust to non-conservative substitutions in the N-terminal alpha-helix. Introduction of multiple glycine substitutions into the N-terminal segment of the A chain (residues A1-A5) yields analogs that are less stable than native insulin and essentially without biological activity. (1)H NMR studies of a representative analog lacking invariant side chains Ile(A2) and Val(A3) (A chain sequence GGGEQCCTSICSLYQLENYCN; substitutions are italicized and cysteines are underlined) demonstrate local unfolding of the A1-A5 segment in an otherwise native-like structure. That this and related partial folds retain efficient disulfide pairing suggests that the native N-terminal alpha-helix does not participate in the transition state of the reaction. Implications for the hierarchical folding mechanisms of proinsulin and insulin-like growth factors are discussed.


Asunto(s)
Disulfuros/análisis , Insulina/análogos & derivados , Insulina/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Desnaturalización Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido
13.
Biochemistry ; 43(51): 16119-33, 2004 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-15610006

RESUMEN

The receptor-binding surface of insulin is broadly conserved, reflecting its evolutionary optimization. Neighboring positions nevertheless offer an opportunity to enhance activity, through either transmitted structural changes or introduction of novel contacts. Nonconserved residue A8 is of particular interest as Thr(A8) --> His substitution (a species variant in birds and fish) augments the potency of human insulin. Diverse A8 substitutions are well tolerated, suggesting that the hormone-receptor interface is not tightly packed at this site. To resolve whether enhanced activity is directly or indirectly mediated by the variant A8 side chain, we have determined the crystal structure of His(A8)-insulin and investigated the photo-cross-linking properties of an A8 analogue containing p-azidophenylalanine. The structure, characterized as a T(3)R(3)(f) zinc hexamer at 1.8 A resolution, is essentially identical to that of native insulin. The photoactivatable analogue exhibits efficient cross-linking to the insulin receptor. The site of cross-linking lies within a 14 kDa C-terminal domain of the alpha-subunit. This contact, to our knowledge the first to be demonstrated from the A chain, is inconsistent with a recent model of the hormone-receptor complex derived from electron microscopy. Optimizing the binding interaction of a nonconserved side chain on the surface of insulin may thus enhance its activity.


Asunto(s)
Insulina/metabolismo , Receptor de Insulina/metabolismo , Treonina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Insulina/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
14.
Biochemistry ; 43(26): 8356-72, 2004 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-15222748

RESUMEN

How insulin binds to and activates the insulin receptor has long been the subject of speculation. Of particular interest are invariant phenylalanine residues at consecutive positions in the B chain (residues B24 and B25). Sites of mutation causing diabetes mellitus, these residues occupy opposite structural environments: Phe(B25) projects from the surface of insulin, whereas Phe(B24) packs against the core. Despite these differences, site-specific cross-linking suggests that each contacts the insulin receptor. Photoactivatable derivatives of insulin containing respective p-azidophenylalanine substitutions at positions B24 and B25 were synthesized in an engineered monomer (DKP-insulin). On ultraviolet irradiation each derivative cross-links efficiently to the receptor. Packing of Phe(B24) at the receptor interface (rather than against the core of the hormone) may require a conformational change in the B chain. Sites of cross-linking in the receptor were mapped to domains by Western blot. Remarkably, whereas B25 cross-links to the C-terminal domain of the alpha subunit in accord with previous studies (Kurose, T., et al. (1994) J. Biol. Chem. 269, 29190-29197), the probe at B24 cross-links to its N-terminal domain (the L1 beta-helix). Our results demonstrate that consecutive residues in insulin contact widely separated sequences in the receptor and in turn suggest a revised interpretation of electron-microscopic images of the complex. By tethering the N- and C-terminal domains of the extracellular alpha subunit, insulin is proposed to stabilize an active conformation of the disulfide-linked transmembrane tyrosine kinase.


Asunto(s)
Diabetes Mellitus/genética , Insulina/genética , Receptor de Insulina/química , Secuencia de Aminoácidos , Animales , Azidas/química , Western Blotting , Células CHO , Quimotripsina/química , Cricetinae , Reactivos de Enlaces Cruzados/farmacología , Dimerización , Disulfuros , Exones , Humanos , Insulina/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fenilalanina/análogos & derivados , Fenilalanina/química , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Tripsina/química , Rayos Ultravioleta
15.
Biochemistry ; 41(3): 809-19, 2002 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-11790102

RESUMEN

Insulin provides a model of induced fit in macromolecular recognition: the hormone's conserved core is proposed to contribute to a novel receptor-binding surface. The core's evolutionary invariance, unusual among globular proteins, presumably reflects intertwined constraints of structure and function. To probe the architectural basis of such invariance, we have investigated hydrophobic substitutions of a key internal side chain (Leu(A16)). Although the variants exhibit perturbed structure and stability, moderate receptor-binding activities are retained. These observations suggest that the A16 side chain provides an essential structural buttress but unlike neighboring core side chains, does not itself contact the receptor. Among invertebrate insulin-like proteins, Leu(A16) and other putative core residues are not conserved, suggesting that the vertebrate packing scheme is not a general requirement of an insulin-like fold. We propose that conservation of Leu(A16) among vertebrate insulins and insulin-like growth factors is a side consequence of induced fit: alternative packing schemes are disallowed by lack of surrounding covariation within the hormone's hidden receptor-binding surface. An analogy is suggested between Leu(A16) and the spandrels of San Marco, tapering triangular spaces at the intersection of the dome's arches. This celebrated metaphor of Gould and Lewontin emphasizes the role of interlocking constraints in the evolution of biological structures.


Asunto(s)
Leucina , Receptor de Insulina/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Estabilidad de Medicamentos , Humanos , Insulina/análogos & derivados , Insulina/química , Insulina/metabolismo , Invertebrados , Mamíferos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Receptor de Insulina/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vertebrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA