Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(5): 1232-1242.e11, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31080064

RESUMEN

The activation of G proteins by G protein-coupled receptors (GPCRs) underlies the majority of transmembrane signaling by hormones and neurotransmitters. Recent structures of GPCR-G protein complexes obtained by crystallography and cryoelectron microscopy (cryo-EM) reveal similar interactions between GPCRs and the alpha subunit of different G protein isoforms. While some G protein subtype-specific differences are observed, there is no clear structural explanation for G protein subtype-selectivity. All of these complexes are stabilized in the nucleotide-free state, a condition that does not exist in living cells. In an effort to better understand the structural basis of coupling specificity, we used time-resolved structural mass spectrometry techniques to investigate GPCR-G protein complex formation and G-protein activation. Our results suggest that coupling specificity is determined by one or more transient intermediate states that serve as selectivity filters and precede the formation of the stable nucleotide-free GPCR-G protein complexes observed in crystal and cryo-EM structures.


Asunto(s)
Proteínas de Unión al GTP/química , Complejos Multienzimáticos/química , Receptores Acoplados a Proteínas G/química , Animales , Bovinos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Complejos Multienzimáticos/ultraestructura , Estructura Cuaternaria de Proteína , Ratas
2.
Cell ; 169(3): 407-421.e16, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431242

RESUMEN

The phosphorylation of agonist-occupied G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) functions to turn off G-protein signaling and turn on arrestin-mediated signaling. While a structural understanding of GPCR/G-protein and GPCR/arrestin complexes has emerged in recent years, the molecular architecture of a GPCR/GRK complex remains poorly defined. We used a comprehensive integrated approach of cross-linking, hydrogen-deuterium exchange mass spectrometry (MS), electron microscopy, mutagenesis, molecular dynamics simulations, and computational docking to analyze GRK5 interaction with the ß2-adrenergic receptor (ß2AR). These studies revealed a dynamic mechanism of complex formation that involves large conformational changes in the GRK5 RH/catalytic domain interface upon receptor binding. These changes facilitate contacts between intracellular loops 2 and 3 and the C terminus of the ß2AR with the GRK5 RH bundle subdomain, membrane-binding surface, and kinase catalytic cleft, respectively. These studies significantly contribute to our understanding of the mechanism by which GRKs regulate the function of activated GPCRs. PAPERCLIP.


Asunto(s)
Quinasa 5 del Receptor Acoplado a Proteína-G/química , Mamíferos/metabolismo , Receptores Adrenérgicos beta 2/química , Animales , Camélidos del Nuevo Mundo , Bovinos , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Espectrometría de Masas , Microscopía Electrónica , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Ratas , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
3.
Mol Cell ; 81(2): 323-339.e11, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33321095

RESUMEN

The phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) facilitates arrestin binding and receptor desensitization. Although this process can be regulated by Ca2+-binding proteins such as calmodulin (CaM) and recoverin, the molecular mechanisms are poorly understood. Here, we report structural, computational, and biochemical analysis of a CaM complex with GRK5, revealing how CaM shapes GRK5 response to calcium. The CaM N and C domains bind independently to two helical regions at the GRK5 N and C termini to inhibit GPCR phosphorylation, though only the C domain interaction disrupts GRK5 membrane association, thereby facilitating cytoplasmic translocation. The CaM N domain strongly activates GRK5 via ordering of the amphipathic αN-helix of GRK5 and allosteric disruption of kinase-RH domain interaction for phosphorylation of cytoplasmic GRK5 substrates. These results provide a framework for understanding how two functional effects, GRK5 activation and localization, can cooperate under control of CaM for selective substrate targeting by GRK5.


Asunto(s)
Calcio/metabolismo , Calmodulina/química , Quinasa 5 del Receptor Acoplado a Proteína-G/química , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Calmodulina/genética , Calmodulina/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Simulación de Dinámica Molecular , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Células Sf9 , Spodoptera , Especificidad por Sustrato , Termodinámica
4.
Genes Dev ; 33(11-12): 620-625, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30923167

RESUMEN

DOT1L is a histone H3 Lys79 methyltransferase whose activity is stimulated by histone H2B Lys120 ubiquitination, suggesting cross-talk between histone H3 methylation and H2B ubiquitination. Here, we present cryo-EM structures of DOT1L complexes with unmodified or H2B ubiquitinated nucleosomes, showing that DOT1L recognizes H2B ubiquitin and the H2A/H2B acidic patch through a C-terminal hydrophobic helix and an arginine anchor in DOT1L, respectively. Furthermore, the structures combined with single-molecule FRET experiments show that H2B ubiquitination enhances a noncatalytic function of the DOT1L-destabilizing nucleosome. These results establish the molecular basis of the cross-talk between H2B ubiquitination and H3 Lys79 methylation as well as nucleosome destabilization by DOT1L.


Asunto(s)
Histonas/química , Histonas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Arginina/metabolismo , Dominio Catalítico , Microscopía por Crioelectrón , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Metilación , Modelos Moleculares , Estabilidad Proteica , Estructura Secundaria de Proteína , Ubiquitina/metabolismo , Ubiquitinación
5.
Proc Natl Acad Sci U S A ; 120(28): e2301934120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399373

RESUMEN

E3 ubiquitin ligase Mdm2 facilitates ß-arrestin ubiquitination, leading to the internalization of G protein-coupled receptors (GPCRs). In this process, ß-arrestins bind to Mdm2 and recruit it to the receptor; however, the molecular architecture of the ß-arrestin-Mdm2 complex has not been elucidated yet. Here, we identified the ß-arrestin-binding region (ABR) on Mdm2 and solved the crystal structure of ß-arrestin1 in complex with Mdm2ABR peptide. The acidic residues of Mdm2ABR bind to the positively charged concave side of the ß-arrestin1 N-domain. The C-tail of ß-arrestin1 is still bound to the N-domain, indicating that Mdm2 binds to the inactive state of ß-arrestin1, whereas the phosphorylated C-terminal tail of GPCRs binds to activate ß-arrestins. The overlapped binding site of Mdm2 and GPCR C-tails on ß-arrestin1 suggests that the binding of GPCR C-tails might trigger the release of Mdm2. Moreover, hydrogen/deuterium exchange experiments further show that Mdm2ABR binding to ß-arrestin1 induces the interdomain interface to be more dynamic and uncouples the IP6-induced oligomer of ß-arrestin1. These results show how the E3 ligase, Mdm2, interacts with ß-arrestins to promote the internalization of GPCRs.


Asunto(s)
Arrestinas , Ubiquitina-Proteína Ligasas , beta-Arrestinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , Ubiquitinación , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2/metabolismo , Fosforilación
6.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34507982

RESUMEN

Arrestins were initially identified for their role in homologous desensitization and internalization of G protein-coupled receptors. Receptor-bound arrestins also initiate signaling by interacting with other signaling proteins. Arrestins scaffold MAPK signaling cascades, MAPK kinase kinase (MAP3K), MAPK kinase (MAP2K), and MAPK. In particular, arrestins facilitate ERK1/2 activation by scaffolding ERK1/2 (MAPK), MEK1 (MAP2K), and Raf (MAPK3). However, the structural mechanism underlying this scaffolding remains unknown. Here, we investigated the mechanism of arrestin-2 scaffolding of cRaf, MEK1, and ERK2 using hydrogen/deuterium exchange-mass spectrometry, tryptophan-induced bimane fluorescence quenching, and NMR. We found that basal and active arrestin-2 interacted with cRaf, while only active arrestin-2 interacted with MEK1 and ERK2. The ATP binding status of MEK1 or ERK2 affected arrestin-2 binding; ATP-bound MEK1 interacted with arrestin-2, whereas only empty ERK2 bound arrestin-2. Analysis of the binding interfaces suggested that the relative positions of cRaf, MEK1, and ERK2 on arrestin-2 likely facilitate sequential phosphorylation in the signal transduction cascade.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , beta-Arrestina 1/metabolismo , Animales , Arrestinas/metabolismo , Células COS , Chlorocebus aethiops , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , MAP Quinasa Quinasa 1/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Espectrometría de Masas/métodos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas , Proteínas/metabolismo , Ratas , Transducción de Señal , Arrestina beta 2/metabolismo , beta-Arrestinas/metabolismo
7.
Biochem Biophys Res Commun ; 685: 149153, 2023 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-37913692

RESUMEN

Heterotrimeric G proteins (G proteins), composed of Gα, Gß, and Gγ subunits, are the major downstream signaling molecules of the G protein-coupled receptors. Upon activation, Gα undergoes conformational changes both in the Ras-like domain (RD) and the α-helical domain (AHD), leading to the dissociation of Gα from Gßγ and subsequent regulation of downstream effector proteins. Gα RD mediate the most of classical functions of Gα. However, the role of Gα AHD is relatively not well elucidated despite its much higher sequence differences between Gα subtypes than those between Gα RD. Here, we isolated AHD from Gαs, Gαi1, and Gαq to provide tools for examining Gα AHD. We investigated the conformational dynamics of the isolated Gα AHD compared to those of the GDP-bound Gα. The results showed higher local conformational dynamics of Gα AHD not only at the domain interfaces but also in regions further away from the domain interfaces. This finding is consistent with the conformation of Gα AHD in the receptor-bound nucleotide-free state. Therefore, the isolated Gα AHD could provide a platform for studying the functions of Gα AHD, such as identification of the Gα AHD-binding proteins.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Transducción de Señal , Modelos Moleculares , Proteínas de Unión al GTP Heterotriméricas/química , Receptores Acoplados a Proteínas G/metabolismo , Nucleótidos/metabolismo
8.
Biochem J ; 479(17): 1843-1855, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36000572

RESUMEN

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are composed of α, ß, and γ subunits, and Gα has a GDP/GTP-binding pocket. When a guanine nucleotide exchange factor (GEF) interacts with Gα, GDP is released, and GTP interacts to Gα. The GTP-bound activated Gα dissociates from GEF and Gßγ, mediating the induction of various intracellular signaling pathways. Depending on the sequence similarity and cellular function, Gα subunits are subcategorized into four subfamilies: Gαi/o, Gαs, Gαq/11, and Gα12/13. Although the Gαi/o subtype family proteins, Gαi3 and GαoA, share similar sequences and functions, they differ in their GDP/GTP turnover profiles, with GαoA possessing faster rates than Gαi3. The structural factors responsible for these differences remain unknown. In this study, we employed hydrogen/deuterium exchange mass spectrometry and mutational studies to investigate the factors responsible for these functional differences. The Gα subunit consists of a Ras-like domain (RD) and an α-helical domain (AHD). The RD has GTPase activity and receptor-binding and effector-binding regions; however, the function of the AHD has not yet been extensively studied. In this study, the chimeric construct containing the RD of Gαi3 and the AHD of GαoA showed a GDP/GTP turnover profile similar to that of GαoA, suggesting that the AHD is the major regulator of the GDP/GTP turnover profile. Additionally, site-directed mutagenesis revealed the importance of the N-terminal part of αA and αA/αB loops in the AHD for the GDP/GTP exchange. These results suggest that the AHD regulates the nucleotide exchange rate within the Gα subfamily.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Proteínas de Unión al GTP Heterotriméricas , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo
9.
Subcell Biochem ; 99: 271-284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36151379

RESUMEN

Heterotrimeric G proteins (G proteins) are essential cellular signaling proteins that mediate extracellular signals to achieve various cellular functions. G-protein-coupled receptors (GPCRs) are the major guanine nucleotide exchange factors (GEFs) that induce G proteins to release guanosine diphosphate and rapidly bind to guanosine triphosphate, resulting in G protein activation. G proteins undergo dynamic conformational changes during the activation/inactivation process, and the precise structural mechanism of GPCR-mediated G protein activation is of great interest. Over the last decade, a number of GPCR-G protein complex structures have been identified, yet an understanding of the mechanisms underlying allosteric conformational changes during receptor-mediated G protein activation and GPCR-G protein coupling selectivity is only now emerging. This review discusses recent studies on the dynamic conformational changes of G proteins and provides insight into the structural mechanism of GPCR-mediated G protein activation.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Transducción de Señal , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
10.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835474

RESUMEN

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are among the most important cellular signaling components, especially G protein-coupled receptors (GPCRs). G proteins comprise three subunits, Gα, Gß, and Gγ. Gα is the key subunit, and its structural state regulates the active status of G proteins. Interaction of guanosine diphosphate (GDP) or guanosine triphosphate (GTP) with Gα switches G protein into basal or active states, respectively. Genetic alteration in Gα could be responsible for the development of various diseases due to its critical role in cell signaling. Specifically, loss-of-function mutations of Gαs are associated with parathyroid hormone-resistant syndrome such as inactivating parathyroid hormone/parathyroid hormone-related peptide (PTH/PTHrP) signaling disorders (iPPSDs), whereas gain-of-function mutations of Gαs are associated with McCune-Albright syndrome and tumor development. In the present study, we analyzed the structural and functional implications of natural variants of the Gαs subtype observed in iPPSDs. Although a few tested natural variants did not alter the structure and function of Gαs, others induced drastic conformational changes in Gαs, resulting in improper folding and aggregation of the proteins. Other natural variants induced only mild conformational changes but altered the GDP/GTP exchange kinetics. Therefore, the results shed light on the relationship between natural variants of Gα and iPPSDs.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hormona Paratiroidea/metabolismo , Transducción de Señal , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Humanos , Seudohipoparatiroidismo/genética , Conformación Proteica
11.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055186

RESUMEN

ß-arrestins were initially identified to desensitize and internalize G-protein-coupled receptors (GPCRs). Receptor-bound ß-arrestins also initiate a second wave of signaling by scaffolding mitogen-activated protein kinase (MAPK) signaling components, MAPK kinase kinase, MAPK kinase, and MAPK. In particular, ß-arrestins facilitate ERK1/2 or JNK3 activation by scaffolding signal cascade components such as ERK1/2-MEK1-cRaf or JNK3-MKK4/7-ASK1. Understanding the precise molecular and structural mechanisms of ß-arrestin-mediated MAPK scaffolding assembly would deepen our understanding of GPCR-mediated MAPK activation and provide clues for the selective regulation of the MAPK signaling cascade for therapeutic purposes. Over the last decade, numerous research groups have attempted to understand the molecular and structural mechanisms of ß-arrestin-mediated MAPK scaffolding assembly. Although not providing the complete mechanism, these efforts suggest potential binding interfaces between ß-arrestins and MAPK signaling components and the mechanism for MAPK signal amplification by ß-arrestin-mediated scaffolding. This review summarizes recent developments of cellular and molecular works on the scaffolding mechanism of ß-arrestin for MAPK signaling cascade.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Animales , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química
12.
J Struct Biol ; 213(1): 107694, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33418033

RESUMEN

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are composed of α, ß, and γ subunits. Gα switches between guanosine diphosphate (GDP)-bound inactive and guanosine triphosphate (GTP)-bound active states, and Gßγ interacts with the GDP-bound state. The GDP-binding regions are composed of two sites: the phosphate-binding and guanine-binding regions. The turnover of GDP and GTP is induced by guanine nucleotide-exchange factors (GEFs), including G protein-coupled receptors (GPCRs), Ric8A, and GIV/Girdin. However, the key structural factors for stabilizing the GDP-bound state of G proteins and the direct structural event for GDP release remain unclear. In this study, we investigated structural factors affecting GDP release by introducing point mutations in selected, conserved residues in Gαi3. We examined the effects of these mutations on the GDP/GTP turnover rate and the overall conformation of Gαi3 as well as the binding free energy between Gαi3 and GDP. We found that dynamic changes in the phosphate-binding regions are an immediate factor for the release of GDP.


Asunto(s)
Proteínas de Unión al GTP/química , Guanosina Difosfato/química , Sitios de Unión/fisiología , Factores de Intercambio de Guanina Nucleótido/química , Guanosina Trifosfato/química , Unión Proteica/fisiología , Conformación Proteica
13.
Proc Natl Acad Sci U S A ; 115(35): 8787-8792, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104375

RESUMEN

Wnt signaling is initiated by Wnt ligand binding to the extracellular ligand binding domain, called the cysteine-rich domain (CRD), of a Frizzled (Fzd) receptor. Norrin, an atypical Fzd ligand, specifically interacts with Fzd4 to activate ß-catenin-dependent canonical Wnt signaling. Much of the molecular basis that confers Norrin selectivity in binding to Fzd4 was revealed through the structural study of the Fzd4CRD-Norrin complex. However, how the ligand interaction, seemingly localized at the CRD, is transmitted across full-length Fzd4 to the cytoplasm remains largely unknown. Here, we show that a flexible linker domain, which connects the CRD to the transmembrane domain, plays an important role in Norrin signaling. The linker domain directly contributes to the high-affinity interaction between Fzd4 and Norrin as shown by ∼10-fold higher binding affinity of Fzd4CRD to Norrin in the presence of the linker. Swapping the Fzd4 linker with the Fzd5 linker resulted in the loss of Norrin signaling, suggesting the importance of the linker in ligand-specific cellular response. In addition, structural dynamics of Fzd4 associated with Norrin binding investigated by hydrogen/deuterium exchange MS revealed Norrin-induced conformational changes on the linker domain and the intracellular loop 3 (ICL3) region of Fzd4. Cell-based functional assays showed that linker deletion, L430A and L433A mutations at ICL3, and C-terminal tail truncation displayed reduced ß-catenin-dependent signaling activity, indicating the functional significance of these sites. Together, our results provide functional and biochemical dissection of Fzd4 in Norrin signaling.


Asunto(s)
Proteínas del Ojo/química , Receptores Frizzled/química , Proteínas del Tejido Nervioso/química , Vía de Señalización Wnt , Animales , Proteínas del Ojo/metabolismo , Receptores Frizzled/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Relación Estructura-Actividad
14.
J Struct Biol ; 197(3): 271-278, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27998708

RESUMEN

c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family that regulate apoptosis, inflammation, cytokine production, and metabolism. MAPKs undergo various splicing within their kinase domains. Unlike other MAPKs, JNKs have alternative splicing at the C-terminus, resulting in long and short variants. Functional or conformational effects due to the elongated C-terminal tail in the long splice variants have not been investigated nor has the conformation of the C-terminal tail been analyzed. Here, we analyzed the conformation of the elongated C-terminal tail and investigated conformational differences between long and short splice variants of JNKs using JNK3α2 and JNK3α1 as models. We adopted hydrogen/deuterium exchange mass spectrometry (HDX-MS) to analyze the conformation. HDX-MS revealed that the C-terminal tail is mostly intrinsically disordered, and that the conformation of the kinase domain of JNK3α2 is more dynamic than that of JNK3α1. The different conformation dynamics between long and short splice variants of JNK3α might affect the cellular functions of JNK3.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/genética , Empalme Alternativo/genética , Secuencia de Aminoácidos , Deuterio/química , Humanos , Hidrógeno/química , Conformación Proteica , Estructura Secundaria de Proteína , Empalme del ARN/genética , Homología de Secuencia de Aminoácido
15.
FASEB J ; 30(3): 1356-66, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26644350

RESUMEN

Tissue-specific splice variants of Na(+)/Ca(2+) exchangers contain 2 Ca(2+)-binding regulatory domains (CBDs), CBD1 and CBD2. Ca(2+) interaction with CBD1 activates sodium-calcium exchangers (NCXs), and Ca(2+) binding to CBD2 alleviates Na(+)-dependent inactivation. A combination of mutually exclusive (A, B) and cassette (C-F) exons in CBD2 raises functionally diverse splice variants through unknown mechanisms. Here, the effect of exons on CBDs backbone dynamics were investigated in the 2-domain tandem (CBD12) of the brain, kidney, and cardiac splice variants by using hydrogen-deuterium exchange mass spectrometry and stopped-flow techniques. Mutually exclusive exons stabilize interdomain interactions in the apoprotein, which primarily predefines the extent of responses to Ca(2+) binding. Deuterium uptake levels were up to 20% lower in the cardiac vs. the brain CBD12, reveling that elongation of the CBD2 FG loop by cassette exons rigidifies the interdomain Ca(2+) salt bridge at the 2-domain interface, which secondarily modulates the Ca(2+)-bound states. In matching splice variants, the extent of Ca(2+)-induced rigidification correlates with decreased (up to 10-fold) Ca(2+) off rates, where the cardiac CBD12 exhibits the slowest Ca(2+) off rates. Collectively, structurally disordered/dynamic segments at mutually exclusive and cassette exons have local and distant effects on the folded structures nearby the Ca(2+) binding sites, which may serve as a structure-dynamic basis for splicing-dependent regulation of NCX.


Asunto(s)
Empalme Alternativo/genética , Variación Genética/genética , Intercambiador de Sodio-Calcio/genética , Animales , Sitios de Unión/genética , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Medición de Intercambio de Deuterio/métodos , Perros , Exones/genética , Transporte Iónico/genética , Unión Proteica/genética , Estructura Terciaria de Proteína , Sodio/metabolismo
16.
Nature ; 477(7366): 611-5, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21956331

RESUMEN

G protein-coupled receptors represent the largest family of membrane receptors that instigate signalling through nucleotide exchange on heterotrimeric G proteins. Nucleotide exchange, or more precisely, GDP dissociation from the G protein α-subunit, is the key step towards G protein activation and initiation of downstream signalling cascades. Despite a wealth of biochemical and biophysical studies on inactive and active conformations of several heterotrimeric G proteins, the molecular underpinnings of G protein activation remain elusive. To characterize this mechanism, we applied peptide amide hydrogen-deuterium exchange mass spectrometry to probe changes in the structure of the heterotrimeric bovine G protein, Gs (the stimulatory G protein for adenylyl cyclase) on formation of a complex with agonist-bound human ß(2) adrenergic receptor (ß(2)AR). Here we report structural links between the receptor-binding surface and the nucleotide-binding pocket of Gs that undergo higher levels of hydrogen-deuterium exchange than would be predicted from the crystal structure of the ß(2)AR-Gs complex. Together with X-ray crystallographic and electron microscopic data of the ß(2)AR-Gs complex (from refs 2, 3), we provide a rationale for a mechanism of nucleotide exchange, whereby the receptor perturbs the structure of the amino-terminal region of the α-subunit of Gs and consequently alters the 'P-loop' that binds the ß-phosphate in GDP. As with the Ras family of small-molecular-weight G proteins, P-loop stabilization and ß-phosphate coordination are key determinants of GDP (and GTP) binding affinity.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animales , Biocatálisis , Dominio Catalítico , Bovinos , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores Adrenérgicos beta 2/ultraestructura
17.
Nature ; 477(7366): 549-55, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21772288

RESUMEN

G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The ß(2) adrenergic receptor (ß(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric ß(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the ß(2)AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the ß(2)AR include a 14 Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animales , Dominio Catalítico , Bovinos , Cristalización , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Ratas
18.
Biochem J ; 473(20): 3533-3543, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27444647

RESUMEN

There are three subtypes of vertebrate inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), a Ca2+-release channel on the ER membrane - IP3R1, IP3R2, and IP3R3 - each of which has a distinctive role in disease development. To determine the subtype-specific IP3-binding mechanism, we compared the thermodynamics, thermal stability, and conformational dynamics between the N-terminal regions of IP3R1 (IP3R1-NT) and IP3R3 (IP3R3-NT) by performing circular dichroism (CD), isothermal titration calorimetry (ITC), and hydrogen-deuterium exchange mass spectrometry (HDX-MS). Previously determined crystal structures of IP3R1-NT and HDX-MS results from this study revealed that both IP3R1 and IP3R3 adopt a similar IP3-binding mechanism. However, several regions, including the α- and ß-interfaces, of IP3R1-NT and IP3R3-NT show significantly different conformational dynamics upon IP3 binding, which may explain the different IP3-binding affinities between the subtypes. The importance of the interfaces for subtype-specific IP3 binding is also supported by the different dynamic conformations of the two subtypes in the apo-states. Furthermore, IP3R1-NT and IP3R3-NT show different IP3-binding affinities and thermal stabilities, but share similar thermodynamic properties for IP3 binding. These results collectively provide new insights into the mechanism underlying IP3 binding to IP3Rs and the subtype-specific regulatory mechanism.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Espectrometría de Masas , Ratones , Modelos Biológicos , Transducción de Señal/genética , Transducción de Señal/fisiología , Termodinámica
19.
Biochem J ; 465(3): 489-501, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25387769

RESUMEN

The Ca(2+)-dependent allosteric regulation of Na(+)/Ca(2+) exchanger (NCX) proteins represents Ca(2+) interaction with the cytosolic domains, CBD1 (calcium-binding domain 1) and CBD2, which is associated either with activation, inhibition or no response to regulatory Ca(2+) in a given splice variant. CBD1 contains a high affinity Ca(2+)-sensor (which is highly conserved among splice variants), whereas primary information upon Ca(2+) binding to CBD1 is modified by alternative splicing of CBD2, yielding the diverse regulatory responses to Ca(2+). To resolve the structure-dynamic determinants of splicing-dependent regulation, we tested two-domain tandem (CBD12) constructs possessing either positive, negative or no response to Ca(2+) using hydrogen-deuterium exchange MS (HDX-MS), SAXS, equilibrium 45Ca(2+) binding and stopped-flow kinetics. Taken together with previously resolved crystallographic structures of CBD12, the data revealed that Ca(2+) binding to CBD1 rigidifies the main-chain flexibility of CBD2 (but not of CBD1), whereas CBD2 stabilizes the apo-CBD1. Strikingly, the extent and strength of Ca(2+)-dependent rigidification of CBD2 is splice-variant dependent, where the main-chain rigidification spans from the Ca(2+)-binding sites of CBD1, through a helix of CBD2 (positioned at the domains' interface) up to the tip of CBD2 [>50 Å (1 Å = 0.1 nm)] or alternatively, it stops at the CBD2 helix in the splice variant exhibiting an inhibitory response to regulatory Ca(2+). These results provide a structure-dynamic basis by which alternative splicing diversifies the regulatory responses to Ca(2+) as well as controls the extent and strength of allosteric signal propagation over long distance.


Asunto(s)
Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/fisiología , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Medición de Intercambio de Deuterio , Perros , Datos de Secuencia Molecular , Unión Proteica/fisiología , Isoformas de Proteínas/química , Estructura Secundaria de Proteína , Intercambiador de Sodio-Calcio/química , Relación Estructura-Actividad , Difracción de Rayos X
20.
J Struct Biol ; 190(2): 250-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25871523

RESUMEN

Arrestins have important roles in G protein-coupled receptor (GPCR) signaling including desensitization of GPCRs and G protein-independent signaling. Two major intra-molecular interactions, the polar core and the three-element region, maintain arrestins in the basal conformation by connecting the N- and C-domains. Mutations in these regions that disrupt the polar core (R169E or p44) or the three-element (3A) have been reported to interact with GPCRs in a phosphorylation-independent manner, and thus these mutants are referred to as pre-activated arrestins. On the other hand, deletion of 7 residues in the linker region between N- and C-domains (Δ7) freezes arrestins in the inactive state, which has a much lower binding affinity to GPCRs compared to the wild type form. Although these mutants are widely used for functional studies of arrestins, the conformations of these mutants have not yet been fully elucidated. Here, we analyzed the conformational dynamics of ß-arrestin1 with various mutants (R169E, p44, 3A, and Δ7) by hydrogen/deuterium exchange mass spectrometry (HDX-MS). HDX-MS data revealed that pre-activated mutants have more deuterium uptake than the basal state, and also that the regions and degree of increased deuterium uptake differ between pre-activated mutants. Unexpectedly, the inactive mutant also showed increased deuterium uptake in a few regions.


Asunto(s)
Arrestinas/química , Modelos Moleculares , Animales , Arrestinas/aislamiento & purificación , Medición de Intercambio de Deuterio , Espectrometría de Masas , Simulación de Dinámica Molecular , Conformación Proteica , Ratas , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA