Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38452761

RESUMEN

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucariotas/metabolismo , Redes Neurales de la Computación , Proteoma/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell ; 170(5): 889-898.e10, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28803729

RESUMEN

Eukaryotic promoter regions are frequently divergently transcribed in vivo, but it is unknown whether the resultant antisense RNAs are a mechanistic by-product of RNA polymerase II (Pol II) transcription or biologically meaningful. Here, we use a functional evolutionary approach that involves nascent transcript mapping in S. cerevisiae strains containing foreign yeast DNA. Promoter regions in foreign environments lose the directionality they have in their native species. Strikingly, fortuitous promoter regions arising in foreign DNA produce equal transcription in both directions, indicating that divergent transcription is a mechanistic feature that does not imply a function for these transcripts. Fortuitous promoter regions arising during evolution promote bidirectional transcription and over time are purged through mutation or retained to enable new functionality. Similarly, human transcription is more bidirectional at newly evolved enhancers and promoter regions. Thus, promoter regions are intrinsically bidirectional and are shaped by evolution to bias transcription toward coding versus non-coding RNAs.


Asunto(s)
Evolución Molecular , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Transcripción Genética , Elementos de Facilitación Genéticos , Humanos , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/clasificación
3.
Mol Cell ; 84(8): 1541-1555.e11, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38503286

RESUMEN

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.


Asunto(s)
Mitocondrias , Ribosomas Mitocondriales , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Fosforilación Oxidativa , Proteínas Mitocondriales/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
4.
Mol Cell ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38964322

RESUMEN

Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.

5.
Cell ; 161(3): 541-554, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910208

RESUMEN

Major features of transcription by human RNA polymerase II (Pol II) remain poorly defined due to a lack of quantitative approaches for visualizing Pol II progress at nucleotide resolution. We developed a simple and powerful approach for performing native elongating transcript sequencing (NET-seq) in human cells that globally maps strand-specific Pol II density at nucleotide resolution. NET-seq exposes a mode of antisense transcription that originates downstream and converges on transcription from the canonical promoter. Convergent transcription is associated with a distinctive chromatin configuration and is characteristic of lower-expressed genes. Integration of NET-seq with genomic footprinting data reveals stereotypic Pol II pausing coincident with transcription factor occupancy. Finally, exons retained in mature transcripts display Pol II pausing signatures that differ markedly from skipped exons, indicating an intrinsic capacity for Pol II to recognize exons with different processing fates. Together, human NET-seq exposes the topography and regulatory complexity of human gene expression.


Asunto(s)
ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Empalme Alternativo , Elementos de Facilitación Genéticos , Exones , Células HeLa , Humanos , Regiones Promotoras Genéticas , ARN sin Sentido/genética , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/metabolismo , Transcripción Genética
6.
Nat Rev Mol Cell Biol ; 18(4): 263-273, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28248323

RESUMEN

The carboxy-terminal domain (CTD) extends from the largest subunit of RNA polymerase II (Pol II) as a long, repetitive and largely unstructured polypeptide chain. Throughout the transcription process, the CTD is dynamically modified by post-translational modifications, many of which facilitate or hinder the recruitment of key regulatory factors of Pol II that collectively constitute the 'CTD code'. Recent studies have revealed how the physicochemical properties of the CTD promote phase separation in the presence of other low-complexity domains. Here, we discuss the intricacies of the CTD code and how the newly characterized physicochemical properties of the CTD expand the function of the CTD beyond the code.


Asunto(s)
ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Transcripción Genética , Regulación de la Expresión Génica , Humanos , Fosforilación , Dominios Proteicos , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/genética
7.
Cell ; 157(7): 1712-23, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949978

RESUMEN

In addition to their annotated transcript, many eukaryotic mRNA promoters produce divergent noncoding transcripts. To define determinants of divergent promoter directionality, we used genomic replacement experiments. Sequences within noncoding transcripts specified their degradation pathways, and functional protein-coding transcripts could be produced in the divergent direction. To screen for mutants affecting the ratio of transcription in each direction, a bidirectional fluorescent protein reporter construct was introduced into the yeast nonessential gene deletion collection. We identified chromatin assembly as an important regulator of divergent transcription. Mutations in the CAF-I complex caused genome-wide derepression of nascent divergent noncoding transcription. In opposition to the CAF-I chromatin assembly pathway, H3K56 hyperacetylation, together with the nucleosome remodeler SWI/SNF, facilitated divergent transcription by promoting rapid nucleosome turnover. We propose that these chromatin-mediated effects control divergent transcription initiation, complementing downstream pathways linked to early termination and degradation of the noncoding RNAs.


Asunto(s)
Factor 1 de Ensamblaje de la Cromatina/metabolismo , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , ARN de Hongos/genética , ARN no Traducido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN no Traducido/metabolismo , Terminación de la Transcripción Genética , Transcripción Genética
8.
Genes Dev ; 35(9-10): 698-712, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888559

RESUMEN

Histone chaperones are critical for controlling chromatin integrity during transcription, DNA replication, and DNA repair. Three conserved and essential chaperones, Spt6, Spn1/Iws1, and FACT, associate with elongating RNA polymerase II and interact with each other physically and/or functionally; however, there is little understanding of their individual functions or their relationships with each other. In this study, we selected for suppressors of a temperature-sensitive spt6 mutation that disrupts the Spt6-Spn1 physical interaction and that also causes both transcription and chromatin defects. This selection identified novel mutations in FACT. Surprisingly, suppression by FACT did not restore the Spt6-Spn1 interaction, based on coimmunoprecipitation, ChIP, and mass spectrometry experiments. Furthermore, suppression by FACT bypassed the complete loss of Spn1. Interestingly, the FACT suppressor mutations cluster along the FACT-nucleosome interface, suggesting that they alter FACT-nucleosome interactions. In agreement with this observation, we showed that the spt6 mutation that disrupts the Spt6-Spn1 interaction caused an elevated level of FACT association with chromatin, while the FACT suppressors reduced the level of FACT-chromatin association, thereby restoring a normal Spt6-FACT balance on chromatin. Taken together, these studies reveal previously unknown regulation between histone chaperones that is critical for their essential in vivo functions.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica/genética , Chaperonas de Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Chaperonas de Histonas/genética , Mutación , Nucleosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
9.
Mol Cell ; 77(5): 985-998.e8, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31839405

RESUMEN

Understanding how splicing events are coordinated across numerous introns in metazoan RNA transcripts requires quantitative analyses of transient RNA processing events in living cells. We developed nanopore analysis of co-transcriptional processing (nano-COP), in which nascent RNAs are directly sequenced through nanopores, exposing the dynamics and patterns of RNA splicing without biases introduced by amplification. Long nano-COP reads reveal that, in human and Drosophila cells, splicing occurs after RNA polymerase II transcribes several kilobases of pre-mRNA, suggesting that metazoan splicing transpires distally from the transcription machinery. Inhibition of the branch-site recognition complex SF3B rapidly diminished global co-transcriptional splicing. We found that splicing order does not strictly follow the order of transcription and is associated with cis-acting elements, alternative splicing, and RNA-binding factors. Further, neighboring introns in human cells tend to be spliced concurrently, implying that splicing of these introns occurs cooperatively. Thus, nano-COP unveils the organizational complexity of RNA processing.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Intrones , Células K562 , Cinética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , Transcripción Genética
10.
Mol Cell ; 73(6): 1087-1088, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901560

RESUMEN

In this issue of Molecular Cell, Lu et al. (2019) analyze the role of the length and sequence complexity of the RNA polymerase II unstructured C-terminal domain in animal viability, development, and the dynamics of RNA polymerase II in vivo.


Asunto(s)
ARN Polimerasa III , ARN Polimerasa II , Animales , Consenso , Drosophila
11.
Hum Mol Genet ; 33(R1): R34-R41, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38779776

RESUMEN

In human cells, the nuclear and mitochondrial genomes engage in a complex interplay to produce dual-encoded oxidative phosphorylation (OXPHOS) complexes. The coordination of these dynamic gene expression processes is essential for producing matched amounts of OXPHOS protein subunits. This review focuses on our current understanding of the mitochondrial central dogma rates, highlighting the striking differences in gene expression rates between mitochondrial and nuclear genes. We synthesize a coherent model of mitochondrial gene expression kinetics, highlighting the emerging principles and emphasizing where more precise measurements would be beneficial. Such an understanding is pivotal for grasping the unique aspects of mitochondrial function and its role in cellular energetics, and it has profound implications for aging, metabolic disorders, and neurodegenerative diseases.


Asunto(s)
Mitocondrias , Fosforilación Oxidativa , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Regulación de la Expresión Génica , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Genoma Mitocondrial , Metabolismo Energético/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Envejecimiento/genética , Envejecimiento/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
12.
Annu Rev Genet ; 52: 511-533, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30230928

RESUMEN

Together, the nuclear and mitochondrial genomes encode the oxidative phosphorylation (OXPHOS) complexes that reside in the mitochondrial inner membrane and enable aerobic life. Mitochondria maintain their own genome that is expressed and regulated by factors distinct from their nuclear counterparts. For optimal function, the cell must ensure proper stoichiometric production of OXPHOS subunits by coordinating two physically separated and evolutionarily distinct gene expression systems. Here, we review our current understanding of mitonuclear coregulation primarily at the levels of transcription and translation. Additionally, we discuss other levels of coregulation that may exist but remain largely unexplored, including mRNA modification and stability and posttranslational protein degradation.


Asunto(s)
Evolución Biológica , Genoma Mitocondrial/genética , Genoma/genética , Fosforilación Oxidativa , Núcleo Celular/genética , Mitocondrias/química , Mitocondrias/genética , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN/genética , Transcripción Genética
13.
Mol Cell ; 72(4): 687-699.e6, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30318445

RESUMEN

Spt6 is a conserved factor that controls transcription and chromatin structure across the genome. Although Spt6 is viewed as an elongation factor, spt6 mutations in Saccharomyces cerevisiae allow elevated levels of transcripts from within coding regions, suggesting that Spt6 also controls initiation. To address the requirements for Spt6 in transcription and chromatin structure, we have combined four genome-wide approaches. Our results demonstrate that Spt6 represses transcription initiation at thousands of intragenic promoters. We characterize these intragenic promoters and find sequence features conserved with genic promoters. Finally, we show that Spt6 also regulates transcription initiation at most genic promoters and propose a model of initiation site competition to account for this. Together, our results demonstrate that Spt6 controls the fidelity of transcription initiation throughout the genome.


Asunto(s)
Chaperonas de Histonas/genética , Chaperonas de Histonas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Iniciación de la Transcripción Genética/fisiología , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/fisiología , Cromatina/fisiología , Regulación Fúngica de la Expresión Génica/genética , Chaperonas de Histonas/metabolismo , Histonas/fisiología , Proteínas Nucleares , Nucleosomas , Factores de Elongación de Péptidos/fisiología , Regiones Promotoras Genéticas/genética , ARN Polimerasa II , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Factores de Transcripción/fisiología , Sitio de Iniciación de la Transcripción/fisiología , Transcripción Genética/genética , Factores de Elongación Transcripcional/metabolismo
14.
Mol Cell ; 70(2): 312-326.e7, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656924

RESUMEN

Many non-coding transcripts (ncRNA) generated by RNA polymerase II in S. cerevisiae are terminated by the Nrd1-Nab3-Sen1 complex. However, Sen1 helicase levels are surprisingly low compared with Nrd1 and Nab3, raising questions regarding how ncRNA can be terminated in an efficient and timely manner. We show that Sen1 levels increase during the S and G2 phases of the cell cycle, leading to increased termination activity of NNS. Overexpression of Sen1 or failure to modulate its abundance by ubiquitin-proteasome-mediated degradation greatly decreases cell fitness. Sen1 toxicity is suppressed by mutations in other termination factors, and NET-seq analysis shows that its overexpression leads to a decrease in ncRNA production and altered mRNA termination. We conclude that Sen1 levels are carefully regulated to prevent aberrant termination. We suggest that ncRNA levels and coding gene transcription termination are modulated by Sen1 to fulfill critical cell cycle-specific functions.


Asunto(s)
ADN Helicasas/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Regulación Fúngica de la Expresión Génica , ARN Helicasas/metabolismo , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , ARN no Traducido/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Terminación de la Transcripción Genética , ADN Helicasas/genética , Viabilidad Microbiana , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ARN Helicasas/genética , ARN de Hongos/genética , ARN Mensajero/genética , ARN no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
15.
Mol Cell ; 65(1): 1-2, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28061329

RESUMEN

Thousands of long noncoding RNAs (lncRNAs) have been annotated, yet their functions remain unclear. Recent studies-including Schlackow et al. (2017) in this issue of Molecular Cell-using orthogonal methods investigated the expression and functions of lncRNAs, resulting in deeper appreciation for the salient differences between lncRNAs and mRNAs and the roles lncRNAs serve.


Asunto(s)
Genómica , ARN Largo no Codificante , ARN Mensajero
16.
Mol Cell ; 67(1): 5-18.e19, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28673542

RESUMEN

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Quinasa 9 Dependiente de la Ciclina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Regulación Leucémica de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Complejos Multiproteicos , Proteínas Nucleares/genética , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Estabilidad Proteica , Proteolisis , ARN Polimerasa II/metabolismo , Factores de Tiempo , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Transcripción/genética , Transfección , Ubiquitina-Proteína Ligasas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Biol Chem ; 299(11): 105289, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37748648

RESUMEN

Yeast mRNAs are polyadenylated at multiple sites in their 3' untranslated regions (3' UTRs), and poly(A) site usage is regulated by the rate of transcriptional elongation by RNA polymerase II (Pol II). Slow Pol II derivatives favor upstream poly(A) sites, and fast Pol II derivatives favor downstream poly(A) sites. Transcriptional elongation and polyadenylation are linked at the nucleotide level, presumably reflecting Pol II dwell time at each residue that influences the level of polyadenylation. Here, we investigate the effect of Pol II elongation rate on pausing patterns and the relationship between Pol II pause sites and poly(A) sites within 3' UTRs. Mutations that affect Pol II elongation rate alter sequence preferences at pause sites within 3' UTRs, and pausing preferences differ between 3' UTRs and coding regions. In addition, sequences immediately flanking the pause sites show preferences that are largely independent of Pol II speed. In wild-type cells, poly(A) sites are preferentially located < 50 nucleotides upstream from Pol II pause sites, but this spatial relationship is diminished in cells harboring Pol II speed mutants. Based on a random forest classifier, Pol II pause sites are modestly predicted by the distance to poly(A) sites but are better predicted by the chromatin landscape in Pol II speed derivatives. Transcriptional regulatory proteins can influence the relationship between Pol II pausing and polyadenylation but in a manner distinct from Pol II elongation rate derivatives. These results indicate a complex relationship between Pol II pausing and polyadenylation.


Asunto(s)
Regiones no Traducidas 3' , ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcripción Genética , Regiones no Traducidas 3'/genética , Poliadenilación , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Mol Cell ; 58(2): 339-52, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25866248

RESUMEN

Individual mammalian cells exhibit large variability in cellular volume, even with the same absolute DNA content, and so must compensate for differences in DNA concentration in order to maintain constant concentration of gene expression products. Using single-molecule counting and computational image analysis, we show that transcript abundance correlates with cellular volume at the single-cell level due to increased global transcription in larger cells. Cell fusion experiments establish that increased cellular content itself can directly increase transcription. Quantitative analysis shows that this mechanism measures the ratio of cellular volume to DNA content, most likely through sequestration of a transcriptional factor to DNA. Analysis of transcriptional bursts reveals a separate mechanism for gene dosage compensation after DNA replication that enables proper transcriptional output during early and late S phase. Our results provide a framework for quantitatively understanding the relationships among DNA content, cell size, and gene expression variability in single cells.


Asunto(s)
Dosificación de Gen , Hibridación Fluorescente in Situ/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcripción Genética , Animales , Caenorhabditis elegans/genética , Células Cultivadas , Fibroblastos/citología , Prepucio/citología , Expresión Génica , Humanos , Masculino , Datos de Secuencia Molecular , Fase S
20.
Nature ; 533(7604): 499-503, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225121

RESUMEN

Oxidative phosphorylation (OXPHOS) is a vital process for energy generation, and is carried out by complexes within the mitochondria. OXPHOS complexes pose a unique challenge for cells because their subunits are encoded on both the nuclear and the mitochondrial genomes. Genomic approaches designed to study nuclear/cytosolic and bacterial gene expression have not been broadly applied to mitochondria, so the co-regulation of OXPHOS genes remains largely unexplored. Here we monitor mitochondrial and nuclear gene expression in Saccharomyces cerevisiae during mitochondrial biogenesis, when OXPHOS complexes are synthesized. We show that nuclear- and mitochondrial-encoded OXPHOS transcript levels do not increase concordantly. Instead, mitochondrial and cytosolic translation are rapidly, dynamically and synchronously regulated. Furthermore, cytosolic translation processes control mitochondrial translation unidirectionally. Thus, the nuclear genome coordinates mitochondrial and cytosolic translation to orchestrate the timely synthesis of OXPHOS complexes, representing an unappreciated regulatory layer shaping the mitochondrial proteome. Our whole-cell genomic profiling approach establishes a foundation for studies of global gene regulation in mitochondria.


Asunto(s)
Núcleo Celular/genética , Citosol/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Mitocondriales/biosíntesis , Fosforilación Oxidativa , Biosíntesis de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Núcleo Celular/metabolismo , Genes Mitocondriales/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Biogénesis de Organelos , Proteoma/biosíntesis , Proteoma/genética , ARN de Hongos/análisis , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA