Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Pathog ; 14(4): e1006977, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29664940

RESUMEN

During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA.


Asunto(s)
Infecciones por VIH/virología , VIH-1/genética , Empalme del ARN , ARN Viral/metabolismo , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Infecciones por VIH/genética , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Viral/genética , Virión , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
2.
J Virol ; 90(4): 1944-63, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26656702

RESUMEN

UNLABELLED: The major homology region (MHR) is a highly conserved motif that is found within the Gag protein of all orthoretroviruses and some retrotransposons. While it is widely accepted that the MHR is critical for assembly of HIV-1 and other retroviruses, how the MHR functions and why it is so highly conserved are not understood. Moreover, consensus is lacking on when HIV-1 MHR residues function during assembly. Here, we first addressed previous conflicting reports by confirming that MHR deletion, like conserved MHR residue substitution, leads to a dramatic reduction in particle production in human and nonhuman primate cells expressing HIV-1 proviruses. Next, we used biochemical analyses and immunoelectron microscopy to demonstrate that conserved residues in the MHR are required after assembling Gag has associated with genomic RNA, recruited critical host factors involved in assembly, and targeted to the plasma membrane. The exact point of inhibition at the plasma membrane differed depending on the specific mutation, with one MHR mutant arrested as a membrane-associated intermediate that is stable upon high-salt treatment and other MHR mutants arrested as labile, membrane-associated intermediates. Finally, we observed the same assembly-defective phenotypes when the MHR deletion or conserved MHR residue substitutions were engineered into Gag from a subtype B, lab-adapted provirus or Gag from a subtype C primary isolate that was codon optimized. Together, our data support a model in which MHR residues act just after membrane targeting, with some MHR residues promoting stability and another promoting multimerization of the membrane-targeted assembling Gag oligomer. IMPORTANCE: The retroviral Gag protein exhibits extensive amino acid sequence variation overall; however, one region of Gag, termed the major homology region, is conserved among all retroviruses and even some yeast retrotransposons, although the reason for this conservation remains poorly understood. Highly conserved residues in the major homology region are required for assembly of retroviruses; however, when these residues are required during assembly is not clear. Here, we used biochemical and electron microscopic analyses to demonstrate that these conserved residues function after assembling HIV-1 Gag has associated with genomic RNA, recruited critical host factors involved in assembly, and targeted to the plasma membrane but before Gag has completed the assembly process. By revealing precisely when conserved residues in the major homology region are required during assembly, these studies resolve existing controversies and set the stage for future experiments aimed at a more complete understanding of how the major homology region functions.


Asunto(s)
VIH-1/fisiología , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/virología , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Modelos Biológicos , Mutación Missense , Unión Proteica , Multimerización de Proteína , Eliminación de Secuencia
3.
Cell Host Microbe ; 19(3): 336-48, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26962944

RESUMEN

HIV-1 recruits cellular endosomal sorting complexes required for transport (ESCRTs) to bud virions from the membrane. Disruption of the viral nucleocapsid (NC) domain integrity affects HIV-1 budding. However, the molecular mechanisms of NC's involvement in HIV budding remain unclear. We find that NC mimics the PDZ domains of syntenin, a membrane-binding adaptor involved in cell-to-cell contact/communication, to capture the Bro1 domain of ALIX, which is an ESCRTs recruiting cellular adaptor. NC binds membranes via basic residues in either the distal or proximal zinc fingers, and NC-membrane binding is essential for Bro1 capture and HIV-1 budding. Removal of RNA enhances NC membrane binding, suggesting a dynamic competition between membrane lipids and RNA for the same binding sites in NC. Remarkably, syntenin PDZ can substitute for NC function in HIV-1 budding. Thus, NC mimics syntenin PDZs to function as a membrane-binding adaptor critical for HIV-1 budding at specific microdomains of the membrane.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , VIH-1/fisiología , Linfocitos T/virología , Liberación del Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Línea Celular , Humanos , Unión Proteica
4.
Virus Res ; 193: 89-107, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25066606

RESUMEN

During the late stage of the viral life cycle, HIV-1 Gag assembles into a spherical immature capsid, and undergoes budding, release, and maturation. Here we review events involved in immature capsid assembly from the perspective of five different approaches used to study this process: mutational analysis, structural studies, assembly of purified recombinant Gag, assembly of newly translated Gag in a cell-free system, and studies in cells using biochemical and imaging techniques. We summarize key findings obtained using each approach, point out where there is consensus, and highlight unanswered questions. Particular emphasis is placed on reconciling data suggesting that Gag assembles by two different paths, depending on the assembly environment. Specifically, in assembly systems that lack cellular proteins, high concentrations of Gag can spontaneously assemble using purified nucleic acid as a scaffold. However, in the more complex intracellular environment, barriers that limit self-assembly are present in the form of cellular proteins, organelles, host defenses, and the absence of free nucleic acid. To overcome these barriers and promote efficient immature capsid formation in an unfavorable environment, Gag appears to utilize an energy-dependent, host-catalyzed, pathway of assembly intermediates in cells. Overall, we show how data obtained using a variety of techniques has led to our current understanding of HIV assembly.


Asunto(s)
VIH-1/fisiología , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Sistema Libre de Células , Técnicas de Silenciamiento del Gen , Humanos , Técnicas In Vitro , Imagen Molecular , Mutación , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Relación Estructura-Actividad , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA