Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206141

RESUMEN

The interaction of multi-LacNAc (Galß1-4GlcNAc)-containing N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers with human galectin-1 (Gal-1) and the carbohydrate recognition domain (CRD) of human galectin-3 (Gal-3) was analyzed using NMR methods in addition to cryo-electron-microscopy and dynamic light scattering (DLS) experiments. The interaction with individual LacNAc-containing components of the polymer was studied for comparison purposes. For Gal-3 CRD, the NMR data suggest a canonical interaction of the individual small-molecule bi- and trivalent ligands with the lectin binding site and better affinity for the trivalent arrangement due to statistical effects. For the glycopolymers, the interaction was stronger, although no evidence for forming a large supramolecule was obtained. In contrast, for Gal-1, the results indicate the formation of large cross-linked supramolecules in the presence of multivalent LacNAc entities for both the individual building blocks and the polymers. Interestingly, the bivalent and trivalent presentation of LacNAc in the polymer did not produce such an increase, indicating that the multivalency provided by the polymer is sufficient for triggering an efficient binding between the glycopolymer and Gal-1. This hypothesis was further demonstrated by electron microscopy and DLS methods.


Asunto(s)
Proteínas Sanguíneas/química , Galectina 1/química , Galectinas/química , Metacrilatos/química , Polímeros/química , Acrilamidas/química , Acrilamidas/farmacología , Sitios de Unión/efectos de los fármacos , Proteínas Sanguíneas/genética , Carbohidratos/química , Microscopía por Crioelectrón , Galectina 1/genética , Galectinas/genética , Humanos , Ligandos , Metacrilatos/farmacología , Polímeros/farmacología , Unión Proteica/efectos de los fármacos
2.
Biomacromolecules ; 21(8): 3122-3133, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32697592

RESUMEN

The development of efficient galectin-3 (Gal-3) inhibitors draws attention in the field of anti-cancer therapy, especially due to the prominent role of extra- and intracellular Gal-3 in vital processes of cancerogenesis, such as immunosuppression, stimulation of tumor cells proliferation, survival, invasion, apoptotic resistance, and metastasis formation and progression. Here, by combining poly-LacNAc (Galß4GlcNAc)-derived oligosaccharides with N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, we synthesized multivalent glycopolymer inhibitors with a high potential to target extracellular and intracellular Gal-3. The inhibitory capabilities of the best conjugate in the studied series were in the nanomolar range proving the excellent Gal-3 inhibitory potential. Moreover, thorough investigation of the inhibitory effect in the biological conditions showed that the glycopolymers strongly inhibited Gal-3-induced apoptosis of T lymphocytes and suppressed migration and spreading of colorectal, breast, melanoma, and prostate cancer cells. In sum, the strong inhibitory activity toward Gal-3, combined with favorable pharmacokinetics of HPMA copolymers ensuring enhanced tumor accumulation via the enhanced permeability and retention effect, nominate the glycopolymers containing LacdiNAc-LacNAc (GalNAcß4GlcNAcß3Galß4GlcNAc) tetrasaccharide as promising tools for preclinical in anti-cancer therapy evaluation.


Asunto(s)
Apoptosis , Galectina 3 , Línea Celular Tumoral , Movimiento Celular , Humanos , Masculino , Polímeros , Linfocitos T
3.
Biomacromolecules ; 21(2): 641-652, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31904940

RESUMEN

N-Acetyllactosamine (LacNAc; Galß4GlcNAc) is a typical disaccharide ligand of galectins. The most abundant members of these human lectins, galectin-1 (Gal-1) and galectin-3 (Gal-3), participate in a number of pathologies including cancerogenesis and metastatic formation. In this study, we synthesized a series of fifteen N-(2-hydroxypropyl)methacrylamide (HPMA)-based glycopolymers with varying LacNAc amounts and presentations and evaluated the impact of their architecture on the binding affinity to Gal-1 and Gal-3. The controlled radical reversible addition-fragmentation chain transfer copolymerization technique afforded linear polymer precursors with comparable molecular weight (Mn ≈ 22,000 g mol-1) and narrow dispersity (D̵ ≈ 1.1). The precursors were conjugated with the functionalized LacNAc disaccharide (4-22 mol % content in glycopolymer) prepared by enzymatic synthesis under catalysis by ß-galactosidase from Bacillus circulans. The structure-affinity relationship study based on the enzyme-linked immunosorbent assay revealed that the type of LacNAc presentation, individual or clustered on bi- or trivalent linkers, brings a clear discrimination (almost 300-fold) between Gal-1 and Gal-3, reaching avidity to Gal-1 in the nanomolar range. Whereas Gal-1 strongly preferred a dense presentation of individually distributed LacNAc epitopes, Gal-3 preferred a clustered LacNAc presentation. Such a strong galectin preference based just on the structure of a multivalent glycopolymer type is exceptional. The prepared nontoxic, nonimmunogenic, and biocompatible glycopolymers are prospective for therapeutic applications requiring selectivity for one particular galectin.


Asunto(s)
Acrilamidas/química , Amino Azúcares/química , Proteínas Sanguíneas/análisis , Galectina 1/análisis , Galectinas/análisis , Polímeros/química , Bacillus/enzimología , Proteínas Sanguíneas/metabolismo , Catálisis , Disacáridos/síntesis química , Ensayo de Inmunoadsorción Enzimática , Epítopos , Galectina 1/metabolismo , Galectinas/metabolismo , Espectroscopía de Resonancia Magnética , Polimerizacion , Polímeros/metabolismo , Polímeros/farmacología , beta-Galactosidasa/metabolismo
4.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825790

RESUMEN

Stimulus-sensitive polymer drug conjugates based on high molecular weight N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers carrying doxorubicin via a pH-dependent cleavable bond (pHPMA-Dox) were previously shown to be able to overcome multi-drug resistance. Nevertheless, a tumor type dependent differential response was observed. Although an improved and more selective tumor accumulation of pHPMA-Dox is generally achieved due to the enhanced permeability and retention (EPR) effect, little is known about the fate of these conjugates upon entering the tumor tissue, which could explain the different responses. In this study, we compared in vitro and in vivo accumulation and Dox-activation of pHPMA-Dox in three cancer cell line models (1411HP, A2780cis, HT29) and derived xenograft tumors using a near-infrared fluorescence-labeled pHPMA-Dox conjugate. Firstly, cytotoxicity assays using different pH conditions proved a stepwise, pH-dependent increase in cytotoxic activity and revealed comparable sensitivity among the cell lines. Using multispectral fluorescence microscopy, we were able to track the distribution of drug and polymeric carrier simultaneously on cellular and histological levels. Microscopic analyses of cell monolayers confirmed the assumed mechanism of cell internalization of the whole conjugate followed by intracellular cleavage and nuclear accumulation of Dox in all three cell lines. In contrast, intratumoral distribution and drug release in xenograft tumors were completely different and were associated with different tissue substructures and microenvironments analyzed by Azan- and Hypoxisense®-staining. In 1411HP tumors, large vessels and less hypoxic/acidic microenvironments were associated with a pattern resulting from consistent tissue distribution and cellular uptake as whole conjugate followed by intracellular drug release. In A2780cis tumors, an inconsistent pattern of distribution partly resulting from premature drug release was associated with a more hypoxic/acidic microenvironment, compacted tumor tissue with compressed vessels and specific pre-damaged tissue structures. A completely different distribution pattern was observed in HT29 tumors, resulting from high accumulation of polymer in abundant fibrotic structures, with small embedded vessels featuring this tumor type together with pronounced premature drug release due to the strongly hypoxic/acidic microenvironment. In conclusion, the pattern of intratumoral distribution and drug release strongly depends on the tumor substructure and microenvironment and may result in different degrees of therapeutic efficacy. This reflects the pronounced heterogeneity observed in the clinical application of nanomedicines and can be exploited for the future design of such conjugates.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Portadores de Fármacos/farmacocinética , Animales , Antineoplásicos/administración & dosificación , Carbocianinas/química , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Colorantes Fluorescentes/química , Células HT29 , Humanos , Concentración de Iones de Hidrógeno , Masculino , Metacrilatos/química , Ratones Desnudos , Peso Molecular , Distribución Tisular , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Mol Pharm ; 16(8): 3452-3459, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31294568

RESUMEN

N-(2-Hydroxypropyl)methacrylamide copolymer conjugates of pirarubicin (THP), P-THP, accumulates selectively in solid tumor tissue by the enhanced permeability and retention (EPR) effect. Despite of high accumulation in solid tumors, some macromolecular antitumor agents show poor therapeutic outcome because of poor tissue diffusion into the tumor as well as obstructed tumor blood flow. Here, we confirmed that cellular uptake of P-THP was 25 times less than that of free THP at 1-4 h incubation time in vitro. The passage of P-THP through the confluent tight-monolayer cells junction was 12 times higher than free THP, and P-THP penetrated deeper into the tumor cell spheroid (1.3-1.7-fold) than free THP in 4 h. In addition, P-THP showed cytotoxicity comparable to that of free THP to tumor-cells in spheroid form, despite of 7 times lower cytotoxicity of P-THP to the monolayer cells to that of free THP in vitro. These results indicate that P-THP administration can exhibit deeper diffusion into the tumor cell spheroid than free THP. As a consequence, P-THP exhibits more efficient antitumor activity than free THP in vivo, which is also supported by better pharmacokinetics and tumor accumulation of P-THP than free THP.


Asunto(s)
Acrilamidas/química , Antineoplásicos/administración & dosificación , Doxorrubicina/análogos & derivados , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacocinética , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Neoplasias/patología , Esferoides Celulares
6.
Biomacromolecules ; 20(2): 854-870, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30608149

RESUMEN

Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity). Moreover, both lymph node cytokine production and the magnitude of CD8 T cells induced against protein antigen increased with increasing polymer-TLR-7/8a hydrodynamic radius, with the submicrometer particle inducing the highest magnitude responses. Notably, CD8 T cell responses induced by polymer-TLR-7/8a were dependent on CCR2+ monocytes and IL-12, whereas responses by a small molecule TLR-7/8a that unexpectedly persisted in vaccine-site draining lymph nodes (T1/2 = 15 h) had less dependence on monocytes and IL-12 but required Type I IFNs. This study shows how modular properties of synthetic adjuvants can be chemically programmed to alter immunity in vivo through distinct immunological mechanisms.


Asunto(s)
Adyuvantes Inmunológicos/química , Linfocitos T CD8-positivos/efectos de los fármacos , Activación de Linfocitos , Micelas , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células Cultivadas , Citocinas/metabolismo , Femenino , Hidrodinámica , Ratones , Ratones Endogámicos C57BL , Unión Proteica
7.
Mol Pharm ; 15(9): 3654-3663, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-29543465

RESUMEN

Herein, the biodegradable micelle-forming amphiphilic N-(2-hydroxypropyl) methacrylamide (HPMA)-based polymer conjugates with the anticancer drug doxorubicin (Dox) designed for enhanced tumor accumulation were investigated, and the influence of their stability in the bloodstream on biodistribution, namely, tumor uptake, and in vivo antitumor efficacy were evaluated in detail. Dox was attached to the polymer carrier by a hydrazone bond enabling pH-controlled drug release. While the polymer-drug conjugates were stable in a buffer at pH 7.4 (mimicking bloodstream environment), Dox was released in a buffer under mild acidic conditions modeling the tumor microenvironment or cells. The amphiphilic polymer carriers differed in the structure of hydrophobic cholesterol derivative moieties bound to the HPMA copolymers via a hydrolyzable hydrazone bond, exhibiting different rates of micellar structure disintegration at various pH values. Considerable dependence of the studied polymer-drug conjugate biodistribution on the stability of the micellar structure was observed in neutral, bloodstream-mimicking, environment, showing that a faster rate of the micelle disintegration in pH 7.4 increased the conjugate blood clearance, decreased tumor accumulation, and significantly reduced the tumor:blood and tumor:muscle ratios. Similarly, the final therapeutic outcome was strongly affected by the stability of the micellar structure because the most stable micellar conjugate showed an almost similar therapeutic outcome as the water-soluble, nondegradable, high-molecular-weight starlike HPMA copolymer-Dox conjugate, which was highly efficient in the treatment of solid tumors in mice. Based on the results, we conclude that the bloodstream stability of micellar polymer-anticancer drug conjugates, in addition to their low side toxicity, is a crucial parameter for their efficient solid tumor accumulation and high in vivo antitumor activity.


Asunto(s)
Doxorrubicina/química , Doxorrubicina/farmacocinética , Polímeros/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Liberación de Fármacos , Femenino , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Linfoma/sangre , Linfoma/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Micelas
8.
Langmuir ; 34(27): 7998-8006, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29949376

RESUMEN

Amphiphilic poly( N-(2-hydroxypropyl)methacrylamide) copolymers ( pHPMA) bearing cholesterol side groups in phosphate buffer saline self-assemble into nanoparticles (NPs) which can be used as tumor-targeted drug carriers. It was previously shown by us that human serum albumin (HSA) interacts weakly with the NPs. However, the mechanism of this binding could not be resolved due to overlapping of signals from the complex system. Here, we use fluorescence labeling to distinguish the components and to characterize the binding: On the one hand, a fluorescent dye was attached to pHPMA, so that the diffusion behavior of the NPs could be studied in the presence of HSA using fluorescence lifetime correlation spectroscopy. On the other hand, quenching of the intrinsic fluorescence of HSA revealed the origin of the binding, which is mainly the complexation between HSA and cholesterol side groups. Furthermore, a binding constant was obtained.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Albúmina Sérica Humana , Espectrometría de Fluorescencia , Humanos , Sustancias Macromoleculares , Unión Proteica , Albúmina Sérica , Albúmina Sérica Humana/metabolismo
9.
Biomacromolecules ; 19(2): 470-480, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29381335

RESUMEN

Nanoparticles (NPs) that form by self-assembly of amphiphilic poly(N-(2-hydroxypropyl)-methacrylamide) (pHPMA) copolymers bearing cholesterol side groups are potential drug carriers for solid tumor treatment. Here, we investigate their behavior in solutions of human serum albumin (HSA) in phosphate buffered saline. Mixed solutions of NPs, from polymer conjugates with or without the anticancer drug doxorubicin (Dox) bound to them, and HSA at concentrations up to the physiological value are characterized by synchrotron small-angle X-ray scattering and isothermal titration calorimetry. When Dox is absent, a small amount of HSA molecules bind to the cholesterol groups that form the core of the NPs by diffusing through the loose pHPMA shell or get caught in meshes formed by the pHPMA chains. These interactions are strongly hindered by the presence of Dox, which is distributed in the pHPMA shell, meaning that the delivery of Dox by the NPs in the human body is not affected by the presence of HSA.


Asunto(s)
Colesterol/química , Doxorrubicina/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Ácidos Polimetacrílicos/química , Albúmina Sérica Humana/química , Colesterol/farmacocinética , Doxorrubicina/farmacocinética , Humanos , Neoplasias/metabolismo , Ácidos Polimetacrílicos/farmacocinética , Albúmina Sérica Humana/farmacocinética
10.
Anticancer Drugs ; 28(10): 1126-1130, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28901962

RESUMEN

Polymer prodrugs can considerably improve the treatment of tumors with multidrug resistance, often caused by overexpression of P-glycoprotein (P-gp). Here, we present the effect of the N-(2-hydroxypropyl) methacrylamide-based polymer conjugate with P-gp inhibitor ritonavir (RIT) on the increase of free doxorubicin (DOX) and polymer-bound DOX cytotoxicity in the human neuroblastoma 4 cell line and its resistant clones to different cytostatics. The increase in cytotoxicity after polymer-RIT conjugate pretreatment was higher for the lines overexpressing P-gp and less pronounced for those with decreased P-gp levels. Moreover, the effect of polymer conjugate containing inhibitor and DOX on the same polymer chain was lower than that of two individual polymer conjugates used sequentially. In conclusion, the polymer-RIT conjugate can significantly increase the cytotoxicity of free DOX and polymer-DOX conjugates in cells with various multidrug resistance origins and can thus be considered a suitable therapeutic enhancer of polymer prodrugs.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Acrilamidas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Doxorrubicina/farmacología , Neuroblastoma/tratamiento farmacológico , Ritonavir/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/biosíntesis , Acrilamidas/administración & dosificación , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Humanos , Neuroblastoma/metabolismo , Ritonavir/administración & dosificación
11.
Mol Pharm ; 13(12): 4106-4115, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27934482

RESUMEN

Many conjugates of water-soluble polymers with biologically active molecules were developed during the last two decades. Although, therapeutic effects of these conjugates are affected by the properties of carriers, the properties of the attached drugs appear more important than the same carrier polymer in this case. Pirarubicin (THP), a tetrahydropyranyl derivative of doxorubicin (DOX), demonstrated more rapid cellular internalization and potent cytotoxicity than DOX. Here, we conjugated the THP or DOX to N-(2-hydroxypropyl)methacrylamide copolymer via a hydrazone bond. The polymeric prodrug conjugates, P-THP and P-DOX, respectively, had comparable hydrodynamic sizes and drug loading. Compared with P-DOX, P-THP showed approximately 10 times greater cellular uptake during a 240 min incubation and a cytotoxicity that was more than 10 times higher during a 72-h incubation. A marginal difference was seen in P-THP and P-DOX accumulation in the liver and kidney at 6 h after drug administration, but no significant difference occurred in the tumor drug concentration during 6-24 h after drug administration. Antitumor activity against xenograft human pancreatic tumor (SUIT2) in mice was greater for P-THP than for P-DOX. To sum up, the present study compared the biological behavior of two different drugs, each attached to an N-(2-hydroxypropyl)methacrylamide copolymer carrier, with regard to their uptake by tumor cells, body distribution, accumulation in tumors, cytotoxicity, and antitumor activity in vitro and in vivo. No differences in the tumor cell uptake of the polymer-drug conjugates, P-THP and P-DOX, were observed. In contrast, the intracellular uptake of free THP liberated from the P-THP was 25-30 times higher than that of DOX liberated from P-DOX. This finding indicates that proper selection of the carrier, and especially conjugated active pharmaceutical ingredient (API) are most critical for anticancer activity of the polymer-drug conjugates. THP, in this respect, was found to be a more preferable API for polymer conjugation than DOX. Hence the treatment based on enhanced permeability and retention (EPR) effect that targets more selectively to solid tumors can be best achieved with THP, although both polymer conjugates of DOX and THP exhibited the EPR effects and drug release profiles in acidic pH similarly.


Asunto(s)
Acrilamidas/química , Antibióticos Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Portadores de Fármacos/química , Polímeros/química , Animales , Antibióticos Antineoplásicos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Doxorrubicina/química , Portadores de Fármacos/administración & dosificación , Humanos , Ratones , Ratones Endogámicos BALB C , Polímeros/administración & dosificación , Sarcoma Experimental/tratamiento farmacológico , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Biomacromolecules ; 17(11): 3493-3507, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27636143

RESUMEN

Here, we present the synthesis, physicochemical, and preliminary biological characterization of micellar polymer-betulinic acid (BA) conjugates based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer carriers, enabling the controlled release of cytotoxic BA derivatives in solid tumors or tumor cells. Various HPMA copolymer conjugates differing in the structure of the spacer between the drug and the carrier were synthesized, all designed for pH-triggered drug release in tumor tissue or tumor cells. The high molecular weight of the micellar conjugates should improve the uptake of the drug in solid tumors due to the Enhanced permeability and retention (EPR) effect. Nevertheless, only the conjugate containing BA with methylated carboxyl groups enabled pH-dependent controlled release in vitro. Moreover, drug release led to the disassembly of the micellar structure, which facilitated elimination of the water-soluble HPMA copolymer carrier from the body by renal filtration. The methylated BA derivative and its polymer conjugate exhibited high cytostatic activity against DLD-1, HT-29, and HeLa carcinoma cell lines and enhanced tumor accumulation in HT-29 xenograft in mice.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Doxorrubicina/química , Metacrilatos/química , Neoplasias/tratamiento farmacológico , Animales , Plásticos Biodegradables/química , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Humanos , Metacrilatos/administración & dosificación , Ratones , Micelas , Triterpenos Pentacíclicos , Polímeros/administración & dosificación , Polímeros/química , Triterpenos/administración & dosificación , Triterpenos/química , Ácido Betulínico
13.
Macromol Biosci ; 24(3): e2300266, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37821117

RESUMEN

This study develops and characterizes novel biodegradable soft hydrogels with dual porosity based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers cross-linked by hydrolytically degradable linkers. The structure and properties of the hydrogels are designed as scaffolds for tissue engineering and they are tested in vitro with model mesenchymal stem cells (rMSCs). Detailed morphological characterization confirms dual porosity suitable for cell growth and nutrient transport. The dual porosity of hydrogels slightly improves rMSCs proliferation compared to the hydrogel with uniform pores. In addition, the laminin coating supports the adhesion of rMSCs to the hydrogel surface. However, hydrogels modified by heptapeptide RGDSGGY significantly stimulate cell adhesion and growth. Moreover, the RGDS-modified hydrogels also affect the topology of proliferating rMSCs, ranging from single-cell to multicellular clusters. The 3D reconstruction of the hydrogels with cells obtained by laser scanning confocal microscopy (LSCM) confirms cell penetration into the inner structure of the hydrogel and its corresponding microstructure. The prepared biodegradable oligopeptide-modified hydrogels with dual porosity are suitable candidates for further in vivo evaluation in soft tissue regeneration.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Hidrogeles/química , Ingeniería de Tejidos , Porosidad , Adhesión Celular , Andamios del Tejido/química
14.
Biomacromolecules ; 14(11): 4061-70, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24083567

RESUMEN

We report kinetic studies of therapeutically highly potent polymer-drug conjugates consisting of amphiphilic N-(2-hydroxypropyl) methacrylamide (HPMA)-based copolymers bearing the anticancer drug doxorubicin (Dox). Highly hydrophobic cholesterol moieties as well as the drug were attached to the polymer backbone by a pH-sensitive hydrazone bond. Moreover, the structure of the spacer between the polymer carrier and the cholesterol moiety differed in order to influence the release rate of the hydrophobic moiety, and thus the disintegration of the high-molecular-weight micellar nanoparticle structure. We performed time-dependent SAXS/SANS measurements after changing pH from a typical blood value (pH 7.2) to that of tumor cells (pH 5.0) to characterize the drug release and changes in particle size and shape. Nanoparticles composed of the conjugates containing Dox were generally larger than the drug-free ones. For most conjugates, nanoparticle growth or decay was observed in the time range of several hours. It was established that the growth/decay rate and the steady-state size of nanoparticles depend on the spacer structure. From analytical fitting, we conclude that the most probable structure of the nanoparticles was a core-shell or a core with attached Gaussian chains. We concluded that the spacer structure determined the fate of a cholesterol derivative after the pH jump. Fitting results for 5α-cholestan-3-onecholestan-3-one and cholesteryl-4-oxopentanoate (Lev-chol) implied that cholesterol moieties continuously escape from the core of the nanoparticle core and concentrate in the hydrophilic shell. In contrast, cholest-4-en-3-one spacer prevent cholesterol escaping. Dox moiety release was only observed after a change in pH. Such findings justify the model proposed in our previous paper. Lastly, the cholesteryl 4-(2-oxopropyl)benzoate (Opb-Chol) was a different case where after the release of hydrophobic Opb-Chol moieties, the core becomes more compact. The physicochemical mechanisms responsible for the scenarios of the different spacers are discussed.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Micelas , Ácidos Polimetacrílicos/química , Acrilamidas/química , Colesterol/química , Concentración de Iones de Hidrógeno , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Estructura Molecular , Difracción de Neutrones , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Propiedades de Superficie , Factores de Tiempo , Difracción de Rayos X
15.
Biomacromolecules ; 13(8): 2594-604, 2012 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-22793269

RESUMEN

We report a rigorous investigation into the detailed structure of nanoparticles already shown to be successful drug delivery nanocarriers. The basic structure of the drug conjugates consists of an N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer bearing the anticancer drug doxorubicin (Dox) bound via a pH-sensitive hydrazone bond and a defined amount of cholesterol moieties that vary in hydrophobicity. The results show that size, anisotropy, and aggregation number N(aggr) of the nanoparticles grows with increasing cholesterol content. From ab initio calculations, we conclude that the most probable structure of HPMA copolymer-cholesterol nanoparticles is a pearl necklace structure, where ellipsoidal pearls mainly composed of cholesterol are covered by a HPMA shell; pearls are connected by bridges composed of hydrophilic HPMA copolymer chains. Using a combination of techniques, we unambiguously show that the Dox moieties are not impregnated inside a cholesterol core but are instead uniformly distributed across the whole nanoparticle, including the hydrophilic HPMA shell surface.


Asunto(s)
Acrilamidas/química , Antibióticos Antineoplásicos/química , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Nanocápsulas/química , Algoritmos , Anisotropía , Colesterol , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Sustancias Macromoleculares/química , Micelas , Modelos Moleculares , Conformación Molecular , Difracción de Neutrones , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Difracción de Rayos X
16.
J Med Chem ; 65(5): 3866-3878, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35157467

RESUMEN

Galectin-3 (Gal-3) participates in many cancer-related metabolic processes. The inhibition of overexpressed Gal-3 by, e.g., ß-galactoside-derived inhibitors is hence promising for cancer treatment. The multivalent presentation of such inhibitors on a suitable biocompatible carrier can enhance the overall affinity to Gal-3 and favorably modify the interaction with Gal-3-overexpressing cells. We synthesized a library of C-3 aryl-substituted thiodigalactoside inhibitors and their multivalent N-(2-hydroxypropyl)methacrylamide (HPMA)-based counterparts with two different glycomimetic contents. Glycopolymers with a higher content of glycomimetic exhibited a higher affinity to Gal-3 as assessed by ELISA and biolayer interferometry. Among them, four candidates (with 4-acetophenyl, 4-cyanophenyl, 4-fluorophenyl, and thiophen-3-yl substitution) were selected for further evaluation in cancer-related experiments in cell cultures. These glycopolymers inhibited Gal-3-induced processes in cancer cells. The cyanophenyl-substituted glycopolymer exhibited the strongest antiproliferative, antimigratory, antiangiogenic, and immunoprotective properties. The prepared glycopolymers appear to be prospective modulators of the tumor microenvironment applicable in the therapy of Gal-3-associated cancers.


Asunto(s)
Galectina 3 , Tiogalactósidos , Galectina 3/metabolismo , Estudios Prospectivos , Tiogalactósidos/farmacología
17.
J Pers Med ; 11(2)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578756

RESUMEN

Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.

18.
Macromol Biosci ; 21(8): e2100135, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34008348

RESUMEN

This paper summarizes the area of biomedicinal polymers, which serve as nanomedicines even though they do not contain any anticancer or antiinflammatory drugs. These polymer nanomedicines with unique design are in the literature highlighted as a novel class of therapeutics called "drug-free macromolecular therapeutics." Their therapeutic efficacy is based on the tailored multiple presentations of biologically active vectors, i.e., peptides, oligopeptides, or oligosaccharides. Thus, they enable, for example, to directly induce the apoptosis of malignant cells by the crosslinking of surface slowly internalizing receptors, or to deplete the efficacy of tumor-associated proteins. The precise biorecognition of natural binding motifs by multiple vectors on the polymer construct remains the crucial part in the designing of these drug-free nanomedicines. Here, the rationales, designs, synthetic approaches, and therapeutic potential of drug-free macromolecular therapeutics consisting of various active vectors are described in detail. Recent developments and achievements for namely B-cell lymphoma treatment, Gal-3-positive tumors, inflammative liver injury, and bacterial treatment are reviewed and highlighted. Finally, a possible future prospect within this highly exciting new field of nanomedicine research is presented.


Asunto(s)
Antineoplásicos , Neoplasias , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Humanos , Sustancias Macromoleculares/química , Nanomedicina/métodos , Neoplasias/tratamiento farmacológico , Polímeros/química
19.
Pharmaceutics ; 13(2)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525658

RESUMEN

The study describes the synthesis, physicochemical properties, and biological evaluation of polymer therapeutics based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers intended for a tumor-targeted immuno-oncotherapy. Water-soluble linear and cholesterol-containing HPMA precursors were synthesized using controlled reversible addition-fragmentation chain transfer polymerization to reach molecular weight Mn about 2 × 104 g·mol-1 and low dispersity. These linear or self-assembled micellar conjugates, containing immunomodulatory agent cucurbitacin-D (CuD) or the anticancer drug doxorubicin (Dox) covalently bound by the hydrolytically degradable hydrazone bond, showed a hydrodynamic size of 10-30 nm in aqueous solutions. The CuD-containing conjugates were stable in conditions mimicking blood. Importantly, a massive release of active CuD in buffer mimicking the acidic tumor environment was observed. In vitro, both the linear (LP-CuD) and the micellar (MP-CuD) conjugates carrying CuD showed cytostatic/cytotoxic activity against several cancer cell lines. In a murine metastatic and difficult-to-treat 4T1 mammary carcinoma, only LP-CuD showed an anticancer effect. Indeed, the co-treatment with Dox-containing micellar polymer conjugate and LP-CuD showed potentiation of the anticancer effect. The results indicate that the binding of CuD, characterized by prominent hydrophobic nature and low bioavailability, to the polymer carrier allows a safe and effective delivery. Therefore, the conjugate could serve as a potential component of immuno-oncotherapy schemes within the next preclinical evaluation.

20.
Tumour Biol ; 31(4): 233-42, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20556593

RESUMEN

To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMA(AM), PK1) or a hydrazone pH-sensitive bond (Dox-HPMA(HYD)). In contrast to Dox and Dox-HPMA(HYD), Dox-HPMA(AM) accumulates within the cell's intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMA(AM) conjugate, in contrast to Dox or Dox-HPMA(HYD), increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMA(AM) increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMA(AM) possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMA(AM) treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/análogos & derivados , Linfoma de Células T/tratamiento farmacológico , Ácidos Polimetacrílicos/farmacología , Amidas/química , Animales , Apoptosis , Western Blotting , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular , Doxorrubicina/farmacología , Portadores de Fármacos , Retículo Endoplásmico/metabolismo , Citometría de Flujo , Galectina 1/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Leucosialina/metabolismo , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA