Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2319499121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814867

RESUMEN

Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.


Asunto(s)
Arabidopsis , Epítopos , Solanum lycopersicum , Epítopos/inmunología , Solanum lycopersicum/inmunología , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Arabidopsis/inmunología , Arabidopsis/genética , Genoma Bacteriano , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Bacterias/inmunología , Bacterias/genética , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/inmunología , Proteínas y Péptidos de Choque por Frío/metabolismo
2.
Plant Physiol ; 193(1): 689-707, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37144828

RESUMEN

Although much is known about the responses of model plants to microbial features, we still lack an understanding of the extent of variation in immune perception across members of a plant family. In this work, we analyzed immune responses in Citrus and wild relatives, surveying 86 Rutaceae genotypes with differing leaf morphologies and disease resistances. We found that responses to microbial features vary both within and between members. Species in 2 subtribes, the Balsamocitrinae and Clauseninae, can recognize flagellin (flg22), cold shock protein (csp22), and chitin, including 1 feature from Candidatus Liberibacter species (csp22CLas), the bacterium associated with Huanglongbing. We investigated differences at the receptor level for the flagellin receptor FLAGELLIN SENSING 2 (FLS2) and the chitin receptor LYSIN MOTIF RECEPTOR KINASE 5 (LYK5) in citrus genotypes. We characterized 2 genetically linked FLS2 homologs from "Frost Lisbon" lemon (Citrus ×limon, responsive) and "Washington navel" orange (Citrus ×aurantium, nonresponsive). Surprisingly, FLS2 homologs from responsive and nonresponsive genotypes were expressed in Citrus and functional when transferred to a heterologous system. "Washington navel" orange weakly responded to chitin, whereas "Tango" mandarin (C. ×aurantium) exhibited a robust response. LYK5 alleles were identical or nearly identical between the 2 genotypes and complemented the Arabidopsis (Arabidopsis thaliana) lyk4/lyk5-2 mutant with respect to chitin perception. Collectively, our data indicate that differences in chitin and flg22 perception in these citrus genotypes are not the results of sequence polymorphisms at the receptor level. These findings shed light on the diversity of perception of microbial features and highlight genotypes capable of recognizing polymorphic pathogen features.


Asunto(s)
Arabidopsis , Citrus , Rutaceae , Citrus/metabolismo , Rutaceae/metabolismo , Flagelina/genética , Flagelina/metabolismo , Arabidopsis/genética , Quitina/metabolismo , Receptores Inmunológicos/metabolismo , Percepción , Enfermedades de las Plantas/microbiología
3.
Plant Cell ; 33(6): 2015-2031, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33751120

RESUMEN

Acquisition of nutrients from different species is necessary for pathogen colonization. Iron is an essential mineral nutrient for nearly all organisms, but little is known about how pathogens manipulate plant hosts to acquire iron. Here, we report that AvrRps4, an effector protein delivered by Pseudomonas syringae bacteria to plants, interacts with and targets the plant iron sensor protein BRUTUS (BTS) to facilitate iron uptake and pathogen proliferation in Arabidopsis thaliana. Infection of rps4 and eds1 by P. syringae pv. tomato (Pst) DC3000 expressing AvrRps4 resulted in iron accumulation, especially in the plant apoplast. AvrRps4 alleviates BTS-mediated degradation of bHLH115 and ILR3(IAA-Leucine resistant 3), two iron regulatory proteins. In addition, BTS is important for accumulating immune proteins Enhanced Disease Susceptibility1 (EDS1) at both the transcriptional and protein levels upon Pst (avrRps4) infections. Our findings suggest that AvrRps4 targets BTS to facilitate iron accumulation and BTS contributes to RPS4/EDS1-mediated immune responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Hierro/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas Bacterianas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidad , Ubiquitina-Proteína Ligasas/genética
4.
Mol Plant Microbe Interact ; 36(6): 359-371, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36802868

RESUMEN

Eicosapolyenoic fatty acids are integral components of oomycete pathogens that can act as microbe-associated molecular patterns to induce disease resistance in plants. Defense-inducing eicosapolyenoic fatty acids include arachidonic acid (AA) and eicosapentaenoic acid and are strong elicitors in solanaceous plants, with bioactivity in other plant families. Similarly, extracts of a brown seaweed, Ascophyllum nodosum, used in sustainable agriculture as a biostimulant of plant growth, may also induce disease resistance. A. nodosum, similar to other macroalgae, is rich in eicosapolyenoic fatty acids, which comprise as much as 25% of total fatty acid composition. We investigated the response of roots and leaves from AA or a commercial A. nodosum extract (ANE) on root-treated tomatoes via RNA sequencing, phytohormone profiling, and disease assays. AA and ANE significantly altered transcriptional profiles relative to control plants, inducing numerous defense-related genes with both substantial overlap and differences in gene expression patterns. Root treatment with AA and, to a lesser extent, ANE also altered both salicylic acid and jasmonic acid levels while inducing local and systemic resistance to oomycete and bacterial pathogen challenge. Thus, our study highlights overlap in both local and systemic defense induced by AA and ANE, with potential for inducing broad-spectrum resistance against pathogens. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Oomicetos , Algas Marinas , Solanum lycopersicum , Solanum lycopersicum/genética , Ácidos Grasos , Resistencia a la Enfermedad , Plantas , Extractos Vegetales , Enfermedades de las Plantas/microbiología
5.
Phytopathology ; 113(6): 1084-1092, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36598344

RESUMEN

Arachidonic acid (AA) is an oomycete-derived microbe-associated molecular pattern (MAMP) capable of eliciting robust defense responses and inducing resistance in plants. Similarly, Ascophylum nodosum extract (ANE) from the brown seaweed A. nodosum, a plant biostimulant that contains AA, can also prime plants for defense against pathogen challenges. A previous parallel study comparing the transcriptomes of AA- and ANE-root-treated tomatoes demonstrated significant overlap in transcriptional profiles, a shared induced resistance phenotype, and changes in the accumulation of various defense-related phytohormones. In this work, untargeted metabolomic analysis via liquid chromatography-mass spectrometry was conducted to investigate the local and systemic metabolome-wide remodeling events elicited by AA and ANE root treatment in tomatoes. Our study demonstrated AA and ANE's capacity to locally and systemically alter the metabolome of tomatoes with enrichment of chemical classes and accumulation of metabolites associated with defense-related secondary metabolism. AA- and ANE-root-treated plants showed enrichment of fatty acyl-glycosides and strong modulation of hydroxycinnamic acids and derivatives. Identification of specific metabolites whose accumulation was affected by AA and ANE treatment revealed shared metabolic changes related to ligno-suberin biosynthesis and the synthesis of phenolic compounds. This study highlights the extensive local and systemic metabolic changes in tomatoes induced by treatment with a fatty acid MAMP and a seaweed-derived plant biostimulant with implications for induced resistance and crop improvement.


Asunto(s)
Ascophyllum , Oomicetos , Solanum lycopersicum , Solanum lycopersicum/genética , Ascophyllum/química , Ácido Araquidónico , Enfermedades de las Plantas , Metaboloma
6.
Mol Plant Microbe Interact ; 35(12): 1067-1080, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35952362

RESUMEN

Climate change is predicted to increase the prevalence of vector-borne disease due to expansion of insect populations. 'Candidatus Liberibacter solanacearum' is a phloem-limited pathogen associated with multiple economically important diseases in solanaceous crops. Little is known about the strategies and pathogenicity factors 'Ca. L. solanacearum' uses to colonize its vector and host. We determined the 'Ca. L. solanacearum' effector repertoire by predicting proteins secreted by the general secretory pathway across four different 'Ca. L. solanacearum' haplotypes, investigated effector localization in planta, and profiled effector expression in the vector and host. The localization of 'Ca. L. solanacearum' effectors in Nicotiana spp. revealed diverse eukaryotic subcellular targets. The majority of tested effectors were unable to suppress plant immune responses, indicating they possess unique activities. Expression profiling in tomato and the psyllid Bactericera cockerelli indicated 'Ca. L. solanacearum' differentially interacts with its host and vector and can switch effector expression in response to these environments. This study reveals 'Ca. L. solanacearum' effectors possess complex expression patterns, target diverse host organelles and the majority are unable to suppress host immune responses. A mechanistic understanding of 'Ca. L. solanacearum' effector function will reveal novel targets and provide insight into phloem biology. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Hemípteros , Rhizobiaceae , Animales , Rhizobiaceae/fisiología , Hemípteros/microbiología , Liberibacter , Enfermedades de las Plantas/microbiología
7.
Theor Appl Genet ; 135(6): 2121-2145, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35583656

RESUMEN

KEY MESSAGE: Several Fusarium wilt resistance genes were discovered, genetically and physically mapped, and rapidly deployed via marker-assisted selection to develop cultivars resistant to Fusarium oxysporum f. sp. fragariae, a devastating soil-borne pathogen of strawberry. Fusarium wilt, a soilborne disease caused by Fusarium oxysporum f. sp. fragariae, poses a significant threat to strawberry (Fragaria [Formula: see text] ananassa) production in many parts of the world. This pathogen causes wilting, collapse, and death in susceptible genotypes. We previously identified a dominant gene (FW1) on chromosome 2B that confers resistance to race 1 of the pathogen, and hypothesized that gene-for-gene resistance to Fusarium wilt was widespread in strawberry. To explore this, a genetically diverse collection of heirloom and modern cultivars and octoploid ecotypes were screened for resistance to Fusarium wilt races 1 and 2. Here, we show that resistance to both races is widespread in natural and domesticated populations and that resistance to race 1 is conferred by partially to completely dominant alleles among loci (FW1, FW2, FW3, FW4, and FW5) found on three non-homoeologous chromosomes (1A, 2B, and 6B). The underlying genes have not yet been cloned and functionally characterized; however, plausible candidates were identified that encode pattern recognition receptors or other proteins known to confer gene-for-gene resistance in plants. High-throughput genotyping assays for SNPs in linkage disequilibrium with FW1-FW5 were developed to facilitate marker-assisted selection and accelerate the development of race 1 resistant cultivars. This study laid the foundation for identifying the genes encoded by FW1-FW5, in addition to exploring the genetics of resistance to race 2 and other races of the pathogen, as a precaution to averting a Fusarium wilt pandemic.


Asunto(s)
Fragaria , Fusarium , Cromosomas , Fragaria/genética , Enfermedades de las Plantas/genética
8.
Mol Cell Proteomics ; 19(12): 1936-1952, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32883801

RESUMEN

Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.


Asunto(s)
Citrus/enzimología , Citrus/microbiología , Progresión de la Enfermedad , Peroxidasas/metabolismo , Enfermedades de las Plantas/microbiología , Haz Vascular de Plantas/metabolismo , Proteómica , Serina Proteasas/metabolismo , Citrus/efectos de los fármacos , Citrus/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Peroxidasas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/microbiología , Inhibidores de Proteasas/farmacología , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557860

RESUMEN

Citrus greening, also known as Huanglongbing (HLB), is caused by the unculturable bacterium Candidatus Liberibacter spp. (e.g., CLas), and has caused a devastating decline in citrus production in many areas of the world. As of yet, there are no definitive treatments for controlling the disease. Antimicrobial peptides (AMPs) that have the potential to block secretion-dependent effector proteins at the outer-membrane domains were screened in silico. Predictions of drug-receptor interactions were built using multiple in silico techniques, including molecular docking analysis, molecular dynamics, molecular mechanics generalized Born surface area analysis, and principal component analysis. The efflux pump TolC of the Type 1 secretion system interacted with natural bacteriocin plantaricin JLA-9, blocking the ß barrel. The trajectory-based principal component analysis revealed the possible binding mechanism of the peptides. Furthermore, in vitro assays using two closely related culturable surrogates of CLas (Liberibacter crescens and Rhizobium spp.) showed that Plantaricin JLA-9 and two other screened AMPs inhibited bacterial growth and caused mortality. The findings contribute to designing effective therapies to manage plant diseases associated with Candidatus Liberibacter spp.


Asunto(s)
Citrus , Hemípteros , Rhizobiaceae , Animales , Liberibacter , Péptidos Antimicrobianos , Simulación del Acoplamiento Molecular , Claritromicina/farmacología , Citrus/microbiología , Enfermedades de las Plantas/microbiología
10.
Mol Plant Microbe Interact ; 34(12): 1336-1345, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34890250

RESUMEN

The development of knockout mutants and expression variants are critical for understanding genotype-phenotype relationships. However, advances in these techniques in gram-positive actinobacteria have stagnated over the last decade. Actinobacteria in the Clavibacter genus are composed of diverse crop pathogens that cause a variety of wilt and cankering diseases. Here, we present a suite of tools for genetic manipulation in the tomato pathogen Clavibacter michiganensis including a markerless deletion system, an integrative plasmid, and an R package for identification of permissive sites for plasmid integration. The vector pSelAct-KO is a recombination-based, markerless knockout system that uses dual selection to engineer seamless deletions of a region of interest, providing opportunities for repeated higher-order genetic knockouts. The efficacy of pSelAct-KO was demonstrated in C. michiganensis and was confirmed using whole-genome sequencing. We developed permissR, an R package to identify permissive sites for chromosomal integration, which can be used in conjunction with pSelAct-Express, a nonreplicating integrative plasmid that enables recombination into a permissive genomic location. Expression of enhanced green fluorescent protein by pSelAct-Express was verified in two candidate permissive regions predicted by permissR in C. michiganensis. These molecular tools are essential advances for investigating gram-positive actinobacteria, particularly for important pathogens in the Clavibacter genus.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Actinobacteria , Solanum lycopersicum , Actinobacteria/genética , Clavibacter , Genómica , Enfermedades de las Plantas , Plásmidos
11.
Mol Plant Microbe Interact ; 34(10): 1094-1102, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34096764

RESUMEN

Plant-pathogen interactions result in disease development in a susceptible host. Plants actively resist pathogens via a complex immune system comprising both surface-localized receptors that sense the extracellular space as well as intracellular receptors recognizing pathogen effectors. To date, the majority of cloned resistance genes encode intracellular nucleotide-binding leucine-rich repeat receptor proteins. Recent discoveries have revealed tandem kinase proteins (TKPs) as another important family of intracellular proteins involved in plant immune responses. Five TKP genes-barley Rpg1 and wheat WTK1 (Yr15), WTK2 (Sr60), WTK3 (Pm24), and WTK4-protect against devastating fungal diseases. Moreover, a large diversity and numerous putative TKPs exist across the plant kingdom. This review explores our current knowledge of TKPs and serves as a basis for future studies that aim to develop and exploit a deeper understanding of innate plant immunity receptor proteins.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Resistencia a la Enfermedad , Hordeum , Inmunidad de la Planta , Proteínas Quinasas , Triticum , Hordeum/enzimología , Hordeum/inmunología , Enfermedades de las Plantas , Proteínas Quinasas/genética , Triticum/enzimología , Triticum/inmunología
12.
Mol Plant Microbe Interact ; 34(9): 1001-1009, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34110257

RESUMEN

ER bodies are endoplasmic reticulum-derived organelles present in plants belonging to the Brassicales order. In Arabidopsis thaliana, ER bodies are ubiquitous in cotyledons and roots and are present only in certain cell types in rosette leaves. However, both wounding and jasmonic acid treatment induce the formation of ER bodies in leaves. Formation of this structure is dependent on the transcription factor NAI1. The main components of the ER bodies are ß-glucosidases (BGLUs), enzymes that hydrolyze specialized compounds. In Arabidopsis, PYK10 (BGLU23) and BGLU18 are the most abundant ER body proteins. In this work, we found that ER bodies are downregulated as a consequence of the immune responses induced by bacterial flagellin perception. Arabidopsis mutants defective in ER body formation show enhanced responses upon flagellin perception and enhanced resistance to bacterial infections. Furthermore, the bacterial toxin coronatine induces the formation of de novo ER bodies in leaves and its virulence function is partially dependent on this structure. Finally, we show that performance of the polyphagous beet armyworm herbivore Spodoptera exigua increases in plants lacking ER bodies. Altogether, we provide new evidence for the role of the ER bodies in plant immune responses.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Pseudomonas syringae/metabolismo
13.
BMC Genomics ; 22(1): 373, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022804

RESUMEN

BACKGROUND: Spiroplasma citri comprises a bacterial complex that cause diseases in citrus, horseradish, carrot, sesame, and also infects a wide array of ornamental and weed species. S. citri is transmitted in a persistent propagative manner by the beet leafhopper, Neoaliturus tenellus in North America and Circulifer haematoceps in the Mediterranean region. Leafhopper transmission and the pathogen's wide host range serve as drivers of genetic diversity. This diversity was examined in silico by comparing the genome sequences of seven S. citri strains from the United States (BR12, CC-2, C5, C189, LB 319, BLH-13, and BLH-MB) collected from different hosts and times with other publicly available spiroplasmas. RESULTS: Phylogenetic analysis using 16S rRNA sequences from 39 spiroplasmas obtained from NCBI database showed that S. citri strains, along with S. kunkelii and S. phoeniceum, two other plant pathogenic spiroplasmas, formed a monophyletic group. To refine genetic relationships among S. citri strains, phylogenetic analyses with 863 core orthologous sequences were performed. Strains that clustered together were: CC-2 and C5; C189 and R8-A2; BR12, BLH-MB, BLH-13 and LB 319. Strain GII3-3X remained in a separate branch. Sequence rearrangements were observed among S. citri strains, predominantly in the center of the chromosome. One to nine plasmids were identified in the seven S. citri strains analyzed in this study. Plasmids were most abundant in strains isolated from the beet leafhopper, followed by strains from carrot, Chinese cabbage, horseradish, and citrus, respectively. All these S. citri strains contained one plasmid with high similarity to plasmid pSci6 from S. citri strain GII3-3X which is known to confer insect transmissibility. Additionally, 17 to 25 prophage-like elements were identified in these genomes, which may promote rearrangements and contribute to repetitive regions. CONCLUSIONS: The genome of seven S. citri strains were found to contain a single circularized chromosome, ranging from 1.58 Mbp to 1.74 Mbp and 1597-2232 protein-coding genes. These strains possessed a plasmid similar to pSci6 from the GII3-3X strain associated with leafhopper transmission. Prophage sequences found in the S. citri genomes may contribute to the extension of its host range. These findings increase our understanding of S. citri genetic diversity.


Asunto(s)
Hemípteros , Spiroplasma citri , Spiroplasma , Animales , Hemípteros/genética , América del Norte , Filogenia , ARN Ribosómico 16S/genética , Spiroplasma/genética , Spiroplasma citri/genética
14.
Plant Physiol ; 184(2): 792-805, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32759268

RESUMEN

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (Las), is one of the most destructive citrus diseases worldwide, yet how Las causes HLB is poorly understood. Here we show that a Las-secreted protein, SDE15 (CLIBASIA_04025), suppresses plant immunity and promotes Las multiplication. Transgenic expression of SDE15 in Duncan grapefruit (Citrus × paradisi) suppresses the hypersensitive response induced by Xanthomonas citri ssp. citri (Xcc) and reduces the expression of immunity-related genes. SDE15 also suppresses the hypersensitive response triggered by the Xanthomonas vesicatoria effector protein AvrBsT in Nicotiana benthamiana, suggesting that it may be a broad-spectrum suppressor of plant immunity. SDE15 interacts with the citrus protein CsACD2, a homolog of Arabidopsis (Arabidopsis thaliana) ACCELERATED CELL DEATH 2 (ACD2). SDE15 suppression of plant immunity is dependent on CsACD2, and overexpression of CsACD2 in citrus suppresses plant immunity and promotes Las multiplication, phenocopying overexpression of SDE15. Identification of CsACD2 as a susceptibility target has implications in genome editing for novel plant resistance against devastating HLB.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Arabidopsis/fisiología , Proteínas Bacterianas/fisiología , Citrus sinensis/inmunología , Interacciones Huésped-Patógeno/inmunología , Liberibacter/fisiología , Oxidorreductasas/fisiología , Proteínas Bacterianas/aislamiento & purificación , Citrus sinensis/metabolismo , Inmunidad de la Planta , Plantas Modificadas Genéticamente
15.
Mol Plant Microbe Interact ; 33(2): 308-319, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31556346

RESUMEN

Nucleotide-binding leucine-rich repeat receptors (NLRs) are the most abundant type of immune receptors in plants and can trigger a rapid cell-death (hypersensitive) response upon sensing pathogens. We previously cloned the wheat NLR Sr35, which encodes a coiled-coil (CC) NLR that confers resistance to the virulent wheat stem rust race Ug99. Here, we investigated Sr35 signaling after Agrobacterium-mediated transient expression in Nicotiana benthamiana. Expression of Sr35 in N. benthamiana leaves triggered a mild cell-death response, which is enhanced in the autoactive mutant Sr35 D503V. The N-terminal tagging of Sr35 with green fluorescent protein (GFP) blocked the induction of cell death, whereas a C-terminal GFP tag did not. No domain truncations of Sr35 generated cell-death responses as strong as the wild type, but a truncation including the NB-ARC (nucleotide binding adaptor) shared by APAF-1, R proteins, and CED-4 domains in combination with the D503V autoactive mutation triggered cell death. In addition, coexpression of Sr35 with the matching pathogen effector protein AvrSr35 resulted in robust cell death and electrolyte leakage levels that were similar to autoactive Sr35 and significantly higher than Sr35 alone. Coexpression of Sr35-CC-NB-ARC and AvrSr35 did not induce cell death, confirming the importance of the leucine-rich repeat (LRR) domain for AvrSr35 recognition. These findings were confirmed through Agrobacterium-mediated transient expression in barley. Taken together, these results implicate the CC-NB-ARC domains of Sr35 in inducing cell death and the LRR domain in AvrSr35 recognition.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Muerte Celular , Resistencia a la Enfermedad , Triticum , Muerte Celular/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Triticum/genética , Triticum/microbiología
16.
J Exp Bot ; 71(9): 2561-2572, 2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31942623

RESUMEN

The wild emmer wheat (Triticum turgidum ssp. dicoccoides; WEW) yellow (stripe) rust resistance genes Yr15, YrG303, and YrH52 were discovered in natural populations from different geographic locations. They all localize to chromosome 1B but were thought to be non-allelic based on differences in resistance response. We recently cloned Yr15 as a Wheat Tandem Kinase 1 (WTK1) and show here that these three resistance loci co-segregate in fine-mapping populations and share an identical full-length genomic sequence of functional Wtk1. Independent ethyl methanesulfonate (EMS)-mutagenized susceptible yrG303 and yrH52 lines carried single nucleotide mutations in Wtk1 that disrupted function. A comparison of the mutations for yr15, yrG303, and yrH52 mutants showed that while key conserved residues were intact, other conserved regions in critical kinase subdomains were frequently affected. Thus, we concluded that Yr15-, YrG303-, and YrH52-mediated resistances to yellow rust are encoded by a single locus, Wtk1. Introgression of Wtk1 into multiple genetic backgrounds resulted in variable phenotypic responses, confirming that Wtk1-mediated resistance is part of a complex immune response network. WEW natural populations subjected to natural selection and adaptation have potential to serve as a good source for evolutionary studies of different traits and multifaceted gene networks.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad , Enfermedades de las Plantas , Poaceae/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genes de Plantas , Marcadores Genéticos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Poaceae/microbiología
17.
Plant Cell ; 29(7): 1555-1570, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28600390

RESUMEN

To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum Thus, the GFP strand system can be broadly used to investigate effector biology in planta.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Imagen Molecular/métodos , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Arabidopsis/citología , Arabidopsis/genética , Proteínas Bacterianas/genética , Epítopos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Solanum lycopersicum/citología , Solanum lycopersicum/microbiología , Células Vegetales/microbiología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Ralstonia/patogenicidad , Nicotiana/genética , Nicotiana/microbiología , Factores de Virulencia/metabolismo
18.
Phytopathology ; 110(3): 556-566, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31799900

RESUMEN

Clavibacter michiganensis is a Gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial wilt and canker symptoms. Accurate detection is a crucial step in confirming outbreaks of bacterial canker and developing management strategies. A major problem with existing detection methods are false-positive and -negative results. Here, we report the use of comparative genomics of 37 diverse Clavibacter strains, including 21 strains sequenced in this study, to identify specific sequences that are C. michiganensis detection targets. Genome-wide phylogenic analyses revealed additional diversity within the genus Clavibacter. Pathogenic C. michiganensis strains varied in plasmid composition, highlighting the need for detection methods based on chromosomal targets. We utilized sequences of C. michiganensis-specific loci to develop a multiplex PCR-based diagnostic platform using two C. michiganensis chromosomal genes (rhuM and tomA) and an internal control amplifying both bacterial and plant DNA (16s ribosomal RNA). The multiplex PCR assay specifically detected C. michiganensis strains from a panel of 110 additional bacteria, including other Clavibacter spp. and bacterial pathogens of tomato. The assay was adapted to detect the presence of C. michiganensis in seed and tomato plant materials with high sensitivity and specificity. In conclusion, the described method represents a robust, specific tool for detection of C. michiganensis in tomato seed and infected plants.


Asunto(s)
Micrococcaceae , Solanum lycopersicum , Actinobacteria , Clavibacter , Genómica , Reacción en Cadena de la Polimerasa Multiplex , Enfermedades de las Plantas
20.
Mol Plant Microbe Interact ; 32(1): 56-64, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30418084

RESUMEN

RIN4 is an intensively studied immune regulator in Arabidopsis and is involved in perception of microbial features outside and bacterial effectors inside plant cells. Furthermore, RIN4 is conserved in land plants and is targeted for posttranslational modifications by several virulence proteins from the bacterial pathogen Pseudomonas syringae. Despite the important roles of RIN4 in plant immune responses, its molecular function is not known. RIN4 is an intrinsically disordered protein (IDP), except at regions where pathogen-induced posttranslational modifications take place. IDP act as hubs for protein complex formation due to their ability to bind to multiple client proteins and, thus, are important players in signal transduction pathways. RIN4 is known to associate with multiple proteins involved in immunity, likely acting as an immune-signaling hub for the formation of distinct protein complexes. Genetically, RIN4 is a negative regulator of immunity, but diverse posttranslational modifications can either enhance its negative regulatory function or, on the contrary, render it a potent immune activator. In this review, we describe the structural domains of RIN4 proteins, their intrinsically disordered regions, posttranslational modifications, and highlight the implications that these features have on RIN4 function. In addition, we will discuss the potential role of plasma membrane subdomains in mediating RIN4 protein complex formations.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , Transducción de Señal , Proteínas de Arabidopsis/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Péptidos y Proteínas de Señalización Intracelular , Inmunidad de la Planta/genética , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Pseudomonas syringae , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA