Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(26): 6222-6223, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34942096

RESUMEN

In this issue of Cell, Bushman et al. show how more transmissible variants, even if they do not escape immunity, can be strongly selected during the early pandemic. This explains the dynamics of past SARS-CoV-2 variants, but as immunity increases, it is difficult to predict what will emerge next.


Asunto(s)
COVID-19 , Vacunas , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2
2.
Proc Natl Acad Sci U S A ; 121(25): e2400202121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857397

RESUMEN

Many pathogens evolve to escape immunity, yet it remains difficult to predict whether immune pressure will lead to diversification, serial replacement of one variant by another, or more complex patterns. Pathogen strain dynamics are mediated by cross-protective immunity, whereby exposure to one strain partially protects against infection by antigenically diverged strains. There is growing evidence that this protection is influenced by early exposures, a phenomenon referred to as original antigenic sin (OAS) or imprinting. In this paper, we derive constraints on the emergence of the pattern of successive strain replacements demonstrated by influenza, SARS-CoV-2, seasonal coronaviruses, and other pathogens. We find that OAS implies that the limited diversity found with successive strain replacement can only be maintained if [Formula: see text] is less than a threshold set by the characteristic antigenic distances for cross-protection and for the creation of new immune memory. This bound implies a "speed limit" on the evolution of new strains and a minimum variance of the distribution of infecting strains in antigenic space at any time. To carry out this analysis, we develop a theoretical model of pathogen evolution in antigenic space that implements OAS by decoupling the antigenic distances required for protection from infection and strain-specific memory creation. Our results demonstrate that OAS can play an integral role in the emergence of strain structure from host immune dynamics, preventing highly transmissible pathogens from maintaining serial strain replacement without diversification.


Asunto(s)
Antígenos Virales , SARS-CoV-2 , Humanos , Antígenos Virales/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Variación Antigénica/inmunología , Protección Cruzada/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Memoria Inmunológica/inmunología
3.
PLoS Pathog ; 19(8): e1011603, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624867

RESUMEN

Antibodies result from the competition of B cell lineages evolving under selection for improved antigen recognition, a process known as affinity maturation. High-affinity antibodies to pathogens such as HIV, influenza, and SARS-CoV-2 are frequently reported to arise from B cells whose receptors, the precursors to antibodies, are encoded by particular immunoglobulin alleles. This raises the possibility that the presence of particular germline alleles in the B cell repertoire is a major determinant of the quality of the antibody response. Alternatively, initial differences in germline alleles' propensities to form high-affinity receptors might be overcome by chance events during affinity maturation. We first investigate these scenarios in simulations: when germline-encoded fitness differences are large relative to the rate and effect size variation of somatic mutations, the same germline alleles persistently dominate the response of different individuals. In contrast, if germline-encoded advantages can be easily overcome by subsequent mutations, allele usage becomes increasingly divergent over time, a pattern we then observe in mice experimentally infected with influenza virus. We investigated whether affinity maturation might nonetheless strongly select for particular amino acid motifs across diverse genetic backgrounds, but we found no evidence of convergence to similar CDR3 sequences or amino acid substitutions. These results suggest that although germline-encoded specificities can lead to similar immune responses between individuals, diverse evolutionary routes to high affinity limit the genetic predictability of responses to infection and vaccination.


Asunto(s)
COVID-19 , Animales , Ratones , COVID-19/genética , SARS-CoV-2/genética , Anticuerpos , Alelos , Células Germinativas
4.
J Infect Dis ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687898

RESUMEN

Studies have reported that prior-season influenza vaccination is associated with higher risk of clinical influenza infection among vaccinees. This effect might arise from incomplete consideration of within-season waning and recent infection. Using data from the US Flu Vaccine Effectiveness (VE) Network (2011-2012 to 2018-2019 seasons), we found that repeat vaccinees were vaccinated earlier in a season by one week. After accounting for waning VE, repeat vaccinees were still more likely to test positive for A(H3N2) (OR=1.11, 95%CI:1.02-1.21) but not for influenza B or A(H1N1). We found that clinical infection influenced individuals' decision to vaccinate in the following season while protecting against clinical infection of the same (sub)type. However, adjusting for recent clinical infections did not strongly influence the estimated effect of prior-season vaccination. In contrast, we found that adjusting for subclinical infection could theoretically attenuate this effect. Additional investigation is needed to determine the impact of subclinical infections on VE.

5.
J Infect Dis ; 228(2): 169-172, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-36637115

RESUMEN

Influenza imprinting reduces risks of influenza A virus clinical infection by 40%-90%, estimated from surveillance data in western countries. We analyzed surveillance data from 2010 to 2019 in Hong Kong. Based on the best model, which included hemagglutinin group-level imprinting, we estimated that individuals imprinted to H1N1 or H2N2 had a 17% (95% confidence interval [CI], 3%-28%) lower risk of H1N1 clinical infection, and individuals imprinted to H3N2 would have 12% (95% CI, -3% to 26%) lower risk of H3N2 clinical infection. These estimated imprinting protections were weaker than estimates in western countries. Identifying factors affecting imprinting protections is important for control policies and disease modeling.


Asunto(s)
Enfermedades Transmisibles , Epidemias , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Hong Kong/epidemiología , Subtipo H3N2 del Virus de la Influenza A , Enfermedades Transmisibles/epidemiología
6.
Clin Infect Dis ; 74(9): 1534-1542, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-34374758

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing is critical for monitoring case counts, early detection and containment of infection, clinical management, and surveillance of variants. However, community-based data on the access, uptake, and barriers to testing have been lacking. METHODS: We conducted serial cross-sectional online surveys covering demographics, coronavirus disease 2019 symptoms, and experiences around SARS-CoV-2 diagnostic testing to characterize the SARS-CoV-2 testing cascade and associated barriers across 10 US states (California, Florida, Illinois, Maryland, Massachusetts, Nebraska, North Dakota, South Dakota, Texas, and Wisconsin), from July 2020 to February 2021. RESULTS: In February 2021, across 10 US states, 895 respondents (11%) reported wanting a diagnostic test in the prior 2 weeks, 63% of whom were tested, with limited variability across states. Almost all (97%) who were tested received their results; 56% received their results within 2 days. In Maryland, Florida, and Illinois, where serial data were available at 4 time points, 56% were tested the same day they wanted or needed a test in February 2021, compared with 28% in July 2020, and 45% received results the same day, compared with 17% in July 2020. Wanting a test was significantly more common among younger, nonwhite respondents and participants with a history of symptoms or exposure. Logistical challenges, including not knowing where to go, were the most frequently cited barriers. CONCLUSIONS: There were significant improvements in access and turnaround times across US states, yet barriers to testing remained consistent across states, underscoring the importance of a continued focus on testing, even amidst mass vaccination campaigns.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Estudios Transversales , Humanos , Illinois , Estados Unidos/epidemiología
7.
Am Nat ; 199(2): 223-237, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35077280

RESUMEN

AbstractAlthough vaccines against antigenically evolving pathogens such as seasonal influenza ; and are designed to protect against circulating strains by affecting the emergence and transmission of antigenically divergent strains, they might in theory also be able to change the rate of antigenic evolution. Vaccination might slow antigenic evolution by increasing immunity, reducing the overall prevalence or population size of the pathogen. This reduction could decrease the supply and growth rates of mutants and might thereby slow adaptation. But vaccination might accelerate antigenic evolution by increasing the transmission advantage of more antigenically diverged strains relative to less diverged strains (i.e., by positive selection). Such evolutionary effects could affect vaccination's direct benefits to individuals and indirect benefits to the host population (i.e., the private and social benefits). To investigate these potential impacts, we simulated vaccination against a continuously circulating influenza-like pathogen in a simple population. On average, more vaccination decreased the incidence of infection. Notably, this decrease was driven partly by a vaccine-induced decline in the rate of antigenic evolution. To understand how the evolutionary effects of vaccines might affect their social and private benefits, we fitted linear panel models to simulated data. By slowing evolution, vaccination increased the social benefit and decreased the private benefit. Thus, vaccination's potential social and private benefits may differ from current theory, which omits evolutionary effects. These results suggest that conventional vaccines against influenza and other antigenically evolving pathogens, if protective against transmission and given to the appropriate populations, could further reduce disease burden by slowing antigenic evolution.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/prevención & control , Vacunación
9.
PLoS Comput Biol ; 16(12): e1008409, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33301457

RESUMEN

Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.


Asunto(s)
Número Básico de Reproducción , COVID-19 , COVID-19/epidemiología , COVID-19/transmisión , Biología Computacional , Humanos , Modelos Estadísticos , SARS-CoV-2
10.
BMC Public Health ; 21(1): 1105, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34107947

RESUMEN

BACKGROUND: Availability of SARS-CoV-2 testing in the United States (U.S.) has fluctuated through the course of the COVID-19 pandemic, including in the U.S. state of Illinois. Despite substantial ramp-up in test volume, access to SARS-CoV-2 testing remains limited, heterogeneous, and insufficient to control spread. METHODS: We compared SARS-CoV-2 testing rates across geographic regions, over time, and by demographic characteristics (i.e., age and racial/ethnic groups) in Illinois during March through December 2020. We compared age-matched case fatality ratios and infection fatality ratios through time to estimate the fraction of SARS-CoV-2 infections that have been detected through diagnostic testing. RESULTS: By the end of 2020, initial geographic differences in testing rates had closed substantially. Case fatality ratios were higher in non-Hispanic Black and Hispanic/Latino populations in Illinois relative to non-Hispanic White populations, suggesting that tests were insufficient to accurately capture the true burden of COVID-19 disease in the minority populations during the initial epidemic wave. While testing disparities decreased during 2020, Hispanic/Latino populations consistently remained the least tested at 1.87 tests per 1000 population per day compared with 2.58 and 2.87 for non-Hispanic Black and non-Hispanic White populations, respectively, at the end of 2020. Despite a large expansion in testing since the beginning of the first wave of the epidemic, we estimated that over half (50-80%) of all SARS-CoV-2 infections were not detected by diagnostic testing and continued to evade surveillance. CONCLUSIONS: Systematic methods for identifying relatively under-tested geographic regions and demographic groups may enable policymakers to regularly monitor and evaluate the shifting landscape of diagnostic testing, allowing officials to prioritize allocation of testing resources to reduce disparities in COVID-19 burden and eventually reduce SARS-CoV-2 transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de COVID-19 , Humanos , Illinois/epidemiología , Pandemias , Estados Unidos/epidemiología
11.
Clin Infect Dis ; 71(6): 1447-1453, 2020 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31598646

RESUMEN

BACKGROUND: The H3N2 component of egg-based 2017-2018 influenza vaccines possessed an adaptive substitution that alters antigenicity. Several influenza vaccines include antigens that are produced through alternative systems, but a systematic comparison of different vaccines used during the 2017-2018 season has not been completed. METHODS: We compared antibody responses in humans vaccinated with Fluzone (egg-based, n = 23), Fluzone High-Dose (egg-based, n = 16), Flublok (recombinant protein-based, n = 23), or Flucelvax (cell-based, n = 23) during the 2017-2018 season. We completed neutralization assays using an egg-adapted H3N2 virus, a cell-based H3N2 virus, wild-type 3c2.A and 3c2.A2 H3N2 viruses, and the H1N1 vaccine strain. We also performed enzyme-linked immunosorbent assays using a recombinant wild-type 3c2.A hemagglutinin. Antibody responses were compared in adjusted analysis. RESULTS: Postvaccination neutralizing antibody titers to 3c2.A and 3c2.A2 were higher in Flublok recipients compared with Flucelvax or Fluzone recipients (P < .01). Postvaccination titers to 3c2.A and 3c2.A2 were similar in Flublok and Fluzone High-Dose recipients, though seroconversion rates trended higher in Flublok recipients. Postvaccination titers in Flucelvax recipients were low to all H3N2 viruses tested, including the cell-based H3N2 strain. Postvaccination neutralizing antibody titers to H1N1 were similar among the different vaccine groups. CONCLUSIONS: These data suggest that influenza vaccine antigen match and dose are both important for eliciting optimal H3N2 antibody responses in humans. Future studies should be designed to determine if our findings directly impact vaccine effectiveness. CLINICAL TRIALS REGISTRATION: NCT03068949.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Antivirales , Formación de Anticuerpos , Antígenos Virales , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/prevención & control , Proteínas Recombinantes , Estaciones del Año
12.
Proc Natl Acad Sci U S A ; 114(51): 13573-13578, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29208707

RESUMEN

The high prevalence of human papillomavirus (HPV), the most common sexually transmitted infection, arises from the coexistence of over 200 genetically distinct types. Accurately predicting the impact of vaccines that target multiple types requires understanding the factors that determine HPV diversity. The diversity of many pathogens is driven by type-specific or "homologous" immunity, which promotes the spread of variants to which hosts have little immunity. To test for homologous immunity and to identify mechanisms determining HPV transmission, we fitted nonlinear mechanistic models to longitudinal data on genital infections in unvaccinated men. Our results provide no evidence for homologous immunity, instead showing that infection with one HPV type strongly increases the risk of infection with that type for years afterward. For HPV16, the type responsible for most HPV-related cancers, an initial infection increases the 1-year probability of reinfection by 20-fold, and the probability of reinfection remains 14-fold higher 2 years later. This increased risk occurs in both sexually active and celibate men, suggesting that it arises from autoinoculation, episodic reactivation of latent virus, or both. Overall, our results suggest that high HPV prevalence and diversity can be explained by a combination of a lack of homologous immunity, frequent reinfections, weak competition between types, and variation in type fitness between host subpopulations. Because of the high risk of reinfection, vaccinating boys who have not yet been exposed may be crucial to reduce prevalence, but our results suggest that there may also be large benefits to vaccinating previously infected individuals.


Asunto(s)
Alphapapillomavirus/patogenicidad , Infecciones por Papillomavirus/transmisión , Adolescente , Adulto , Anciano , Alphapapillomavirus/clasificación , Alphapapillomavirus/genética , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/virología , Prevalencia , Recurrencia
13.
Proc Natl Acad Sci U S A ; 114(47): 12578-12583, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109276

RESUMEN

H3N2 viruses continuously acquire mutations in the hemagglutinin (HA) glycoprotein that abrogate binding of human antibodies. During the 2014-2015 influenza season, clade 3C.2a H3N2 viruses possessing a new predicted glycosylation site in antigenic site B of HA emerged, and these viruses remain prevalent today. The 2016-2017 seasonal influenza vaccine was updated to include a clade 3C.2a H3N2 strain; however, the egg-adapted version of this viral strain lacks the new putative glycosylation site. Here, we biochemically demonstrate that the HA antigenic site B of circulating clade 3C.2a viruses is glycosylated. We show that antibodies elicited in ferrets and humans exposed to the egg-adapted 2016-2017 H3N2 vaccine strain poorly neutralize a glycosylated clade 3C.2a H3N2 virus. Importantly, antibodies elicited in ferrets infected with the current circulating H3N2 viral strain (that possesses the glycosylation site) and humans vaccinated with baculovirus-expressed H3 antigens (that possess the glycosylation site motif) were able to efficiently recognize a glycosylated clade 3C.2a H3N2 virus. We propose that differences in glycosylation between H3N2 egg-adapted vaccines and circulating strains likely contributed to reduced vaccine effectiveness during the 2016-2017 influenza season. Furthermore, our data suggest that influenza virus antigens prepared via systems not reliant on egg adaptations are more likely to elicit protective antibody responses that are not affected by glycosylation of antigenic site B of H3N2 HA.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Antígenos Virales/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/química , Animales , Antígenos Virales/química , Antígenos Virales/inmunología , Pollos , Hurones , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunogenicidad Vacunal , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Mutación , Pruebas de Neutralización , Óvulo/virología
14.
Mol Biol Evol ; 35(5): 1135-1146, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688540

RESUMEN

High-affinity antibodies arise within weeks of infection from the evolution of B-cell receptors under selection to improve antigen recognition. This rapid adaptation is enabled by the distribution of highly mutable "hotspot" motifs in B-cell receptor genes. High mutability in antigen-binding regions (complementarity determining regions [CDRs]) creates variation in binding affinity, whereas low mutability in structurally important regions (framework regions [FRs]) may reduce the frequency of destabilizing mutations. During the response, loss of mutational hotspots and changes in their distribution across CDRs and FRs are predicted to compromise the adaptability of B-cell receptors, yet the contributions of different mechanisms to gains and losses of hotspots remain unclear. We reconstructed changes in anti-HIV B-cell receptor sequences and show that mutability losses were ∼56% more frequent than gains in both CDRs and FRs, with the higher relative mutability of CDRs maintained throughout the response. At least 21% of the total mutability loss was caused by synonymous mutations. However, nonsynonymous substitutions caused most (79%) of the mutability loss in CDRs. Because CDRs also show strong positive selection, this result suggests that selection for mutations that increase binding affinity contributed to loss of mutability in antigen-binding regions. Although recurrent adaptation to evolving viruses could indirectly select for high mutation rates, we found no evidence of indirect selection to increase or retain hotspots. Our results suggest mutability losses are intrinsic to both the neutral and adaptive evolution of B-cell populations and might constrain their adaptation to rapidly evolving pathogens such as HIV and influenza.


Asunto(s)
Evolución Molecular , VIH/inmunología , Receptores de Antígenos de Linfocitos B/genética , Selección Genética , Mutación Silenciosa , Sustitución de Aminoácidos , Humanos
15.
PLoS Comput Biol ; 14(10): e1006333, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30273332

RESUMEN

For encapsulated bacteria such as Streptococcus pneumoniae, asymptomatic carriage is more common and longer in duration than disease, and hence is often a more convenient endpoint for clinical trials of vaccines against these bacteria. However, using a carriage endpoint entails specific challenges. Carriage is almost always measured as prevalence, whereas the vaccine may act by reducing incidence or duration. Thus, to determine sample size requirements, its impact on prevalence must first be estimated. The relationship between incidence and prevalence (or duration and prevalence) is convex, saturating at 100% prevalence. For this reason, the proportional effect of a vaccine on prevalence is typically less than its proportional effect on incidence or duration. This relationship is further complicated in the presence of multiple pathogen strains. In addition, host immunity to carriage accumulates rapidly with frequent exposures in early years of life, creating potentially complex interactions with the vaccine's effect. We conducted a simulation study to predict the impact of an inactivated whole cell pneumococcal vaccine-believed to reduce carriage duration-on carriage prevalence in different age groups and trial settings. We used an individual-based model of pneumococcal carriage that incorporates relevant immunological processes, both vaccine-induced and naturally acquired. Our simulations showed that for a wide range of vaccine efficacies, sampling time and age at vaccination are important determinants of sample size. There is a window of favorable sampling times during which the required sample size is relatively low, and this window is prolonged with a younger age at vaccination, and in a trial setting with lower transmission intensity. These results illustrate the ability of simulation studies to inform the planning of vaccine trials with carriage endpoints, and the methods we present here can be applied to trials evaluating other pneumococcal vaccine candidates or comparing alternative dosing schedules for the existing conjugate vaccines.


Asunto(s)
Portador Sano , Biología Computacional/métodos , Modelos Inmunológicos , Infecciones Neumocócicas , Vacunas Neumococicas , Portador Sano/epidemiología , Portador Sano/microbiología , Portador Sano/prevención & control , Interacciones Huésped-Patógeno/inmunología , Humanos , Incidencia , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/prevención & control , Prevalencia , Ensayos Clínicos Controlados Aleatorios como Asunto , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/patogenicidad
16.
Clin Infect Dis ; 67(3): 327-333, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29471464

RESUMEN

Background: Influenza vaccination aims to prevent infection by influenza virus and reduce associated morbidity and mortality; however, vaccine effectiveness (VE) can be modest, especially for subtype A(H3N2). Low VE has been attributed to mismatches between the vaccine and circulating influenza strains and to the vaccine's elicitation of protective immunity in only a subset of the population. The low H3N2 VE in the 2012-2013 season was attributed to egg-adaptive mutations that created antigenic mismatch between the actual vaccine strain (IVR-165) and both the intended vaccine strain (A/Victoria/361/2011) and the predominant circulating strains (clades 3C.2 and 3C.3). Methods: We investigated the basis of low VE in 2012-2013 by determining whether vaccinated and unvaccinated individuals were infected by different viral strains and by assessing the serologic responses to IVR-165, A/Victoria/361/2011, and 3C.2 and 3C.3 strains in an adult cohort before and after vaccination. Results: We found no significant genetic differences between the strains that infected vaccinated and unvaccinated individuals. Vaccination increased titers to A/Victoria/361/2011 and 3C.2 and 3C.3 representative strains as much as to IVR-165. These results are consistent with the hypothesis that vaccination boosted cross-reactive immune responses instead of specific responses against unique vaccine epitopes. Only approximately one-third of the cohort achieved a ≥4-fold increase in titer. Conclusions: In contrast to analyses based on ferret studies, low H3N2 VE in 2012-2013 in adults does not appear to be due to egg adaptation of the vaccine strain. Instead, low VE might have been caused by low vaccine immunogenicity in a subset of the population.


Asunto(s)
Inmunogenicidad Vacunal , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Adaptación Fisiológica , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos Virales/inmunología , Estudios de Cohortes , Reacciones Cruzadas , Huevos/virología , Hurones , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Mutación , Filogenia , Estaciones del Año
18.
Proc Biol Sci ; 283(1838)2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629034

RESUMEN

Most antigenically novel and evolutionarily successful strains of seasonal influenza A (H3N2) originate in East, South and Southeast Asia. To understand this pattern, we simulated the ecological and evolutionary dynamics of influenza in a host metapopulation representing the temperate north, tropics and temperate south. Although seasonality and air traffic are frequently used to explain global migratory patterns of influenza, we find that other factors may have a comparable or greater impact. Notably, a region's basic reproductive number (R0) strongly affects the antigenic evolution of its viral population and the probability that its strains will spread and fix globally: a 17-28% higher R0 in one region can explain the observed patterns. Seasonality, in contrast, increases the probability that a tropical (less seasonal) population will export evolutionarily successful strains but alone does not predict that these strains will be antigenically advanced. The relative sizes of different host populations, their birth and death rates, and the region in which H3N2 first appears affect influenza's phylogeography in different but relatively minor ways. These results suggest general principles that dictate the spatial dynamics of antigenically evolving pathogens and offer predictions for how changes in human ecology might affect influenza evolution.


Asunto(s)
Variación Antigénica/genética , Evolución Molecular , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/virología , Genética de Población , Humanos , Filogeografía , Estaciones del Año
19.
Proc Natl Acad Sci U S A ; 114(12): E2270-E2271, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28298534
20.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38260288

RESUMEN

Many pathogens evolve to escape immunity, yet it remains difficult to predict whether immune pressure will lead to diversification, serial replacement of one variant by another, or more complex patterns. Pathogen strain dynamics are mediated by cross-protective immunity, whereby exposure to one strain partially protects against infection by antigenically diverged strains. There is growing evidence that this protection is influenced by early exposures, a phenomenon referred to as original antigenic sin (OAS) or imprinting. In this paper, we derive new constraints on the emergence of the pattern of successive strain replacements demonstrated by influenza, SARS-CoV-2, seasonal coronaviruses, and other pathogens. We find that OAS implies that the limited diversity found with successive strain replacement can only be maintained if R0 is less than a threshold set by the characteristic antigenic distances for cross-protection and for the creation of new immune memory. This bound implies a "speed limit" on the evolution of new strains and a minimum variance of the distribution of infecting strains in antigenic space at any time. To carry out this analysis, we develop a theoretical model of pathogen evolution in antigenic space that implements OAS by decoupling the antigenic distances required for protection from infection and strain-specific memory creation. Our results demonstrate that OAS can play an integral role in the emergence of strain structure from host immune dynamics, preventing highly transmissible pathogens from maintaining serial strain replacement without diversification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA