RESUMEN
Autophagy is a versatile degradation system for maintaining cellular homeostasis whereby cytosolic materials are sequestered in a double-membrane autophagosome and subsequently delivered to lysosomes, where they are broken down. In multicellular organisms, newly formed autophagosomes undergo a process called 'maturation', in which they fuse with vesicles originating from endolysosomal compartments, including early/late endosomes and lysosomes, to form amphisomes, which eventually become degradative autolysosomes. This fusion process requires the concerted actions of multiple regulators of membrane dynamics, including SNAREs, tethering proteins and RAB GTPases, and also transport of autophagosomes and late endosomes/lysosomes towards each other. Multiple mechanisms modulate autophagosome maturation, including post-translational modification of key components, spatial distribution of phosphoinositide lipid species on membranes, RAB protein dynamics, and biogenesis and function of lysosomes. Nutrient status and various stresses integrate into the autophagosome maturation machinery to coordinate the progression of autophagic flux. Impaired autophagosome maturation is linked to the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and myopathies. Furthermore, invading pathogens exploit various strategies to block autophagosome maturation, thus evading destruction and even subverting autophagic vacuoles (autophagosomes, amphisomes and autolysosomes) for survival, growth and/or release. Here, we discuss the recent progress in our understanding of the machinery and regulation of autophagosome maturation, the relevance of these mechanisms to human pathophysiology and how they are harnessed by pathogens for their benefit. We also provide perspectives on targeting autophagosome maturation therapeutically.
Asunto(s)
Autofagosomas/genética , Autofagia/genética , Enfermedades Neurodegenerativas/genética , Vesículas Transportadoras/genética , Endosomas/genética , Humanos , Lisosomas/genética , Enfermedades Neurodegenerativas/patología , Fagosomas/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas SNARE/genética , Proteínas de Unión al GTP rab/genéticaRESUMEN
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Asunto(s)
Autofagia , Susceptibilidad a Enfermedades , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/inmunología , Biomarcadores , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Especificidad de Órganos , Transducción de SeñalRESUMEN
BACKGROUND: The ability to respond to mechanical forces is a basic requirement for maintaining endothelial cell (ECs) homeostasis, which is continuously subjected to low shear stress (LSS) and high shear stress (HSS). In arteries, LSS and HSS have a differential impact on EC autophagy processes. However, it is still unclear whether LSS and HSS differently tune unique autophagic machinery or trigger specific autophagic responses in ECs. METHODS: Using fluid flow system to generate forces on EC and multiscale imaging analyses on ApoE-/- mice whole arteries, we studied the cellular and molecular mechanism involved in autophagic response to LSS or HSS on the endothelium. RESULTS: We found that LSS and HSS trigger autophagy activation by mobilizing specific autophagic signaling modules. Indeed, LSS-induced autophagy in endothelium was independent of the class III PI3K (phosphoinositide 3-kinase) VPS34 (vacuolar sorting protein 34) but controlled by the α isoform of class II PI3K (phosphoinositide 3-kinase class II α [PI3KCIIα]). Accordingly, reduced PI3KCIIα expression in ApoE-/- mice (ApoE-/-PI3KCIIα+/-) led to EC dysfunctions associated with increased plaque deposition in the LSS regions. Mechanistically, we revealed that PI3KCIIα inhibits mTORC1 (mammalian target of rapamycin complex 1) activation and that rapamycin treatment in ApoE-/-PI3KCIIα+/- mice specifically rescue autophagy in arterial LSS regions. Finally, we demonstrated that absence of PI3KCIIα led to decreased endothelial primary cilium biogenesis in response to LSS and that ablation of primary cilium mimics PI3KCIIα-decreased expression in EC dysfunction, suggesting that this organelle could be the mechanosensor linking PI3KCIIα and EC homeostasis. CONCLUSIONS: Our data reveal that mechanical forces variability within the arterial system determines EC autophagic response and supports a central role of PI3KCIIα/mTORC1 axis to prevent EC dysfunction in LSS regions.
Asunto(s)
Aterosclerosis , Fosfatidilinositol 3-Quinasa Clase I , Animales , Humanos , Ratones , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Autofagia , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mamíferos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Estrés Mecánico , Fosfatidilinositol 3-Quinasa Clase I/metabolismoRESUMEN
Physical constraints, such as compression, shear stress, stretching and tension, play major roles during development, tissue homeostasis, immune responses and pathologies. Cells and organelles also face mechanical forces during migration and extravasation, and investigations into how mechanical forces are translated into a wide panel of biological responses, including changes in cell morphology, membrane transport, metabolism, energy production and gene expression, is a flourishing field. Recent studies demonstrate the role of macroautophagy in the integration of physical constraints. The aim of this Review is to summarize and discuss our knowledge of the role of macroautophagy in controlling a large panel of cell responses, from morphological and metabolic changes, to inflammation and senescence, for the integration of mechanical forces. Moreover, wherever possible, we also discuss the cell surface molecules and structures that sense mechanical forces upstream of macroautophagy.
Asunto(s)
Autofagia , Inmunidad , Membrana Celular , Homeostasis , Estrés MecánicoRESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1009340.].
RESUMEN
Influenza virus infections are major public health threats due to their high rates of morbidity and mortality. Upon influenza virus entry, host cells experience modifications of endomembranes, including those used for virus trafficking and replication. Here we report that influenza virus infection modifies mitochondrial morphodynamics by promoting mitochondria elongation and altering endoplasmic reticulum-mitochondria tethering in host cells. Expression of the viral RNA recapitulates these modifications inside cells. Virus induced mitochondria hyper-elongation was promoted by fission associated protein DRP1 relocalization to the cytosol, enhancing a pro-fusion status. We show that altering mitochondrial hyper-fusion with Mito-C, a novel pro-fission compound, not only restores mitochondrial morphodynamics and endoplasmic reticulum-mitochondria contact sites but also dramatically reduces influenza replication. Finally, we demonstrate that the observed Mito-C antiviral property is directly connected with the innate immunity signaling RIG-I complex at mitochondria. Our data highlight the importance of a functional interchange between mitochondrial morphodynamics and innate immunity machineries in the context of influenza viral infection.
Asunto(s)
Antivirales/administración & dosificación , Retículo Endoplásmico/patología , Interacciones Huésped-Patógeno , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Retículo Endoplásmico/virología , Humanos , Inmunidad Innata , Gripe Humana/patología , Gripe Humana/virología , Mitocondrias/patología , Mitocondrias/virología , Replicación ViralRESUMEN
The autophagosome is the central organelle in macroautophagy, a vacuolar lysosomal catabolic pathway that degrades cytoplasmic material to fuel starving cells and eliminates intracellular pathogens. Macroautophagy has important physiological roles during development, ageing and the immune response, and its cytoprotective function is compromised in various diseases. A set of autophagy-related (ATG) proteins is hierarchically recruited to the phagophore, the initial membrane template in the construction of the autophagosome. However, recent findings suggest that macroautophagy can also occur in the absence of some of these key autophagy proteins, through the unconventional biogenesis of canonical autophagosomes. Such alternatives to the evolutionarily conserved scheme might provide additional therapeutic opportunities.
Asunto(s)
Autofagia , Fagosomas/metabolismo , Humanos , Lisosomas/metabolismo , Vacuolas/metabolismoRESUMEN
Kidney mass and function are sexually determined, but the cellular events and the molecular mechanisms involved in this dimorphism are poorly characterized. By combining female and male mice with castration/replacement experiments, we showed that male mice exhibited kidney overgrowth from five weeks of age. This effect was organ specific, since liver and heart weight were comparable between males and females, regardless of age. Consistently, the androgen receptor was found to be expressed in the kidneys of males, but not in the liver. In growing mice, androgens led to kidney overgrowth by first inducing a burst of cell proliferation and then an increase of cell size. Remarkably, androgens were also required to maintain cell size in adults. In fact, orchiectomy resulted in smaller kidneys in a matter of few weeks. These changes paralleled the changes of the expression of ornithine decarboxylase and cyclin D1, two known mediators of kidney growth, whereas, unexpectedly, mTORC1 and Hippo pathways did not seem to be involved. Androgens also enhanced kidney autophagy, very likely by increasing transcription factor EB nuclear translocation. Functionally, the increase of tubular mass resulted in increased sodium/phosphate transport. These findings were relevant to humans. Remarkably, by studying living gender-paired kidney donors-recipients, we showed that tubular cell size increased three months after transplantation in men as compared to women, regardless of the donor gender. Thus, our results identify novel signaling pathways that may be involved in androgen-induced kidney growth and homeostasis and suggest that androgens determine kidney size after transplantation.
Asunto(s)
Andrógenos , Caracteres Sexuales , Andrógenos/farmacología , Animales , Femenino , Homeostasis , Humanos , Riñón , Masculino , Ratones , Tamaño de los ÓrganosRESUMEN
Several human pathologies including neurological, cardiac, infectious, cancerous, and metabolic diseases have been associated with altered mitochondria morphodynamics. Here, we identify a small organic molecule, which we named Mito-C. Mito-C is targeted to mitochondria and rapidly provokes mitochondrial network fragmentation. Biochemical analyses reveal that Mito-C is a member of a new class of heterocyclic compounds that target the NEET protein family, previously reported to regulate mitochondrial iron and ROS homeostasis. One of the NEET proteins, NAF-1, is identified as an important regulator of mitochondria morphodynamics that facilitates recruitment of DRP1 to the ER-mitochondria interface. Consistent with the observation that certain viruses modulate mitochondrial morphogenesis as a necessary part of their replication cycle, Mito-C counteracts dengue virus-induced mitochondrial network hyperfusion and represses viral replication. The newly identified chemical class including Mito-C is of therapeutic relevance for pathologies where altered mitochondria dynamics is part of disease etiology and NEET proteins are highlighted as important therapeutic targets in anti-viral research.
Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Homeostasis , Humanos , Hierro , Proteínas Mitocondriales/genéticaRESUMEN
Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.
Asunto(s)
Acetilcoenzima A/química , Autofagia , Citosol/enzimología , Regulación Enzimológica de la Expresión Génica , Adenosina Trifosfato/química , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Proteína p300 Asociada a E1A/química , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Células HeLa , Humanos , Ácidos Cetoglutáricos/química , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Mitocondrias/metabolismo , ARN Interferente Pequeño/metabolismoRESUMEN
The double-membrane-bound autophagosome is formed by the closure of a structure called the phagophore, origin of which is still unclear. The endoplasmic reticulum (ER) is clearly implicated in autophagosome biogenesis due to the presence of the omegasome subdomain positive for DFCP1, a phosphatidyl-inositol-3-phosphate (PI3P) binding protein. Contribution of other membrane sources, like the plasma membrane (PM), is still difficult to integrate in a global picture. Here we show that ER-plasma membrane contact sites are mobilized for autophagosome biogenesis, by direct implication of the tethering extended synaptotagmins (E-Syts) proteins. Imaging data revealed that early autophagic markers are recruited to E-Syt-containing domains during autophagy and that inhibition of E-Syts expression leads to a reduction in autophagosome biogenesis. Furthermore, we demonstrate that E-Syts are essential for autophagy-associated PI3P synthesis at the cortical ER membrane via the recruitment of VMP1, the stabilizing ER partner of the PI3KC3 complex. These results highlight the contribution of ER-plasma membrane tethers to autophagosome biogenesis regulation and support the importance of membrane contact sites in autophagy.
Asunto(s)
Autofagosomas/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Biogénesis de Organelos , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Proteínas Portadoras/metabolismo , Perros , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Proteínas de la Membrana/metabolismo , Sinaptotagminas/metabolismoRESUMEN
Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.
Asunto(s)
Autofagia , Terminología como Asunto , Animales , Caenorhabditis elegans/fisiología , Drosophila melanogaster/fisiología , Redes Reguladoras de Genes , Ratones , Saccharomyces cerevisiae/fisiologíaRESUMEN
Autophagy is a catabolic pathway by which cellular components are delivered to the lysosome for degradation and recycling. Autophagy serves as a crucial intracellular quality control and repair mechanism but is also involved in cell remodelling during development and cell differentiation. In addition, mitophagy, the process by which damaged mitochondria undergo autophagy, has emerged as key regulator of cell metabolism. In recent years, a number of studies have revealed roles for autophagy and mitophagy in the regulation of stem cells, which represent the origin for all tissues during embryonic and postnatal development, and contribute to tissue homeostasis and repair throughout adult life. Here, we review these studies, focussing on the latest evidence that supports the quality control, remodelling and metabolic functions of autophagy during the activation, self-renewal and differentiation of embryonic, adult and cancer stem cells.
Asunto(s)
Autofagia , Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Células Madre/fisiología , Animales , HumanosRESUMEN
Mechanical forces, such as compression, shear stress and stretching, play major roles during development, tissue homeostasis and immune processes. These forces are translated into a wide panel of biological responses, ranging from changes in cell morphology, membrane transport, metabolism, energy production and gene expression. Recent studies demonstrate the role of autophagy in the integration of these physical constraints. Here we focus on the role of autophagy in the integration of shear stress induced by blood and urine flows in the circulatory system and the kidney, respectively. Many studies highlight the involvement of the primary cilium, a microtubule-based antenna present at the surface of many cell types, in the integration of extracellular stimuli. The cross-talk between the molecular machinery of autophagy and that of the primary cilium in the context of shear stress is revealed to be an important dialog in cell biology.
Asunto(s)
Autofagia/fisiología , Cilios/fisiología , Estrés MecánicoRESUMEN
STK38 (also known as NDR1) is a Hippo pathway serine/threonine protein kinase with multifarious functions in normal and cancer cells. Using a context-dependent proximity-labeling assay, we identify more than 250 partners of STK38 and find that STK38 modulates its partnership depending on the cellular context by increasing its association with cytoplasmic proteins upon nutrient starvation-induced autophagy and with nuclear ones during ECM detachment. We show that STK38 shuttles between the nucleus and the cytoplasm and that its nuclear exit depends on both XPO1 (aka exportin-1, CRM1) and STK38 kinase activity. We further uncover that STK38 modulates XPO1 export activity by phosphorylating XPO1 on serine 1055, thus regulating its own nuclear exit. We expand our model to other cellular contexts by discovering that XPO1 phosphorylation by STK38 regulates also the nuclear exit of Beclin1 and YAP1, key regulator of autophagy and transcriptional effector, respectively. Collectively, our results reveal STK38 as an activator of XPO1, behaving as a gatekeeper of nuclear export. These observations establish a novel mechanism of XPO1-dependent cargo export regulation by phosphorylation of XPO1's C-terminal auto-inhibitory domain.
Asunto(s)
Autofagia , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Portadoras/metabolismo , Cromatografía Liquida , Biología Computacional/métodos , Vía de Señalización Hippo , Humanos , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Transducción de Señal , Espectrometría de Masas en Tándem , Proteína Exportina 1RESUMEN
BACKGROUND: Although both circular RNAs (circRNAs) and autophagy are associated with the function of breast cancer (BC), whether circRNAs regulate BC progression via autophagy remains unknown. In this study, we aim to explore the regulatory mechanisms and the clinical significance of autophagy-associated circRNAs in BC. METHODS: Autophagy associated circRNAs were screened by circRNAs deep sequencing and validated by qRT-PCR in BC tissues with high- and low- autophagic level. The biological function of autophagy associated circRNAs were assessed by plate colony formation, cell viability, transwells, flow cytometry and orthotopic animal models. For mechanistic study, RNA immunoprecipitation, circRNAs pull-down, Dual luciferase report assay, Western Blot, Immunofluorescence and Immunohistochemical staining were performed. RESULTS: An autophagy associated circRNA circCDYL was elevated by 3.2 folds in BC tissues as compared with the adjacent non-cancerous tissues, and circCDYL promoted autophagic level in BC cells via the miR-1275-ATG7/ULK1 axis; Moreover, circCDYL enhanced the malignant progression of BC cells in vitro and in vivo. Clinically, increased circCDYL in the tumor tissues and serum of BC patients was associated with higher tumor burden, shorter survival and poorer clinical response to therapy. CONCLUSIONS: circCDYL promotes BC progression via the miR-1275-ATG7/ULK1-autophagic axis and circCDYL could act as a potential prognostic and predictive molecule for breast cancer patients.
Asunto(s)
Autofagia , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Proteínas Co-Represoras/metabolismo , Hidroliasas/metabolismo , MicroARNs/genética , ARN Circular/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Proteínas Co-Represoras/genética , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hidroliasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Macroautophagy (hereafter called autophagy) is a vacuolar, lysosomal pathway for catabolism of intracellular material that is conserved among eukaryotic cells. Autophagy plays a crucial role in tissue homeostasis, adaptation to stress situations, immune responses, and the regulation of the inflammatory response. Blockade or uncontrolled activation of autophagy is associated with cancer, diabetes, obesity, cardiovascular disease, neurodegenerative disease, autoimmune disease, infection, and chronic inflammatory disease. During the past decade, researchers have made major progress in understanding the three levels of regulation of autophagy in mammalian cells: signaling, autophagosome formation, and autophagosome maturation and lysosomal degradation. As we discuss in this review, each of these levels is potentially druggable, and, depending on the indication, may be able to stimulate or inhibit autophagy. We also summarize the different modulators of autophagy and their potential and limitations in the treatment of life-threatening diseases.
Asunto(s)
Autofagia/fisiología , Transducción de Señal/fisiología , Animales , Autofagia/efectos de los fármacos , Ensayos Clínicos como Asunto/métodos , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/patología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Transducción de Señal/efectos de los fármacos , Sirolimus/análogos & derivados , Sirolimus/farmacología , Sirolimus/uso terapéuticoRESUMEN
BACKGROUND & AIMS: Previous studies demonstrated that autophagy is protective in hepatocytes and macrophages, but detrimental in hepatic stellate cells in chronic liver diseases. The role of autophagy in liver sinusoidal endothelial cells (LSECs) in non-alcoholic steatohepatitis (NASH) is unknown. Our aim was to analyze the potential implication of autophagy in LSECs in NASH and liver fibrosis. METHODS: We analyzed autophagy in LSECs from patients using transmission electron microscopy. We determined the consequences of a deficiency in autophagy: (a) on LSEC phenotype, using primary LSECs and an LSEC line; (b) on early stages of NASH and on advanced stages of liver fibrosis, using transgenic mice deficient in autophagy specifically in endothelial cells and fed a high-fat diet or chronically treated with carbon tetrachloride, respectively. RESULTS: Patients with NASH had half as many LSECs containing autophagic vacuoles as patients without liver histological abnormalities, or with simple steatosis. LSECs from mice deficient in endothelial autophagy displayed an upregulation of genes implicated in inflammatory pathways. In the LSEC line, deficiency in autophagy enhanced inflammation (Ccl2, Ccl5, Il6 and VCAM-1 expression), features of endothelial-to-mesenchymal transition (α-Sma, Tgfb1, Col1a2 expression) and apoptosis (cleaved caspase-3). In mice fed a high-fat diet, deficiency in endothelial autophagy induced liver expression of inflammatory markers (Ccl2, Ccl5, Cd68, Vcam-1), liver cell apoptosis (cleaved caspase-3) and perisinusoidal fibrosis. Mice deficient in endothelial autophagy treated with carbon tetrachloride also developed more perisinusoidal fibrosis. CONCLUSIONS: A defect in autophagy in LSECs occurs in patients with NASH. Deficiency in endothelial autophagy promotes the development of liver inflammation, features of endothelial-to-mesenchymal transition, apoptosis and liver fibrosis in the early stages of NASH, but also favors more advanced stages of liver fibrosis. LAY SUMMARY: Autophagy is a physiological process controlling endothelial homeostasis in vascular beds outside the liver. This study demonstrates that autophagy is defective in the liver endothelial cells of patients with non-alcoholic steatohepatitis. This defect promotes liver inflammation and fibrosis at early stages of non-alcoholic steatohepatitis, but also at advanced stages of chronic liver disease.
Asunto(s)
Autofagia/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Hepatitis/etiología , Cirrosis Hepática Experimental/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Animales , Apoptosis/genética , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/genética , Tetracloruro de Carbono/efectos adversos , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Hígado/patología , Cirrosis Hepática Experimental/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patologíaRESUMEN
It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α-induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation.