Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Opt Soc Am A Opt Image Sci Vis ; 38(11): LID1-LID2, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34807027

RESUMEN

In this introduction we provide an overview of the papers that were accepted for publication in the special issue on light detection and ranging (lidar). Four of the papers were published in JOSA A, and four were published in JOSA B. They represent different aspects of this important and fast-growing field while showing the relevant state-of-the-art achievements currently existing in the field of lidars in the world of science and engineering.

2.
J Opt Soc Am A Opt Image Sci Vis ; 38(10): B29-B36, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612987

RESUMEN

Vehicle detection plays a critical role in autonomous driving, where two central sensing modalities are lidar and radar. Although many deep neural network (DNN)-based methods have been proposed to solve this task, a systematic and methodological examination on the influence of the data on those methods is still missing. In this work, we examine the effects of resolution on the performance of vehicle detection for both lidar and radar sensors. We propose subsampling methods that can improve the performance and efficiency of DNN-based solutions and offer an alternative approach to traditional sensor-design trade-offs.

3.
Nano Lett ; 17(9): 5181-5186, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28467084

RESUMEN

The ability to control the energy flow of light at the nanoscale is fundamental to modern communication and big-data technologies, as well as quantum information processing schemes. However, since photons are diffraction-limited, efforts of confining them to dimensions of integrated electronics have so far proven elusive. A promising way to facilitate nanoscale manipulation of light is through plasmon polaritons-coupled excitations of photons and charge carriers. These tightly confined hybrid waves can facilitate compression of optical functionalities to the nanoscale but suffer from huge propagation losses that limit their use to mostly subwavelength scale applications. With only weak evidence of macroscale plasmon polaritons, propagation has recently been reported theoretically and indirectly, no experiments so far have directly resolved long-range propagating optical plasmons in real space. Here, we launch and detect nanoscale optical signals, for record distances in a wireless link based on novel plasmonic nanotransceivers. We use a combination of scanning probe microscopies to provide high resolution real space images of the optical near fields and investigate their long-range propagation principles. We design our nanotransceivers based on a high-performance nanoantenna, Plantenna, hybridized with channel plasmon waveguides with a cross-section of 20 nm × 20 nm, and observe propagation for distances up to 1000 times greater than the plasmon wavelength. We experimentally show that our approach hugely outperforms both waveguide and wireless nanophotonic links. This successful alliance between Plantenna and plasmon waveguides paves the way for new generations of optical interconnects and expedites long-range interaction between quantum emitters and photomolecular devices.

4.
Sci Rep ; 14(1): 2541, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291178

RESUMEN

Widespread adaptation of autonomous, robotic systems relies greatly on safe and reliable operation, which in many cases is derived from the ability to maintain accurate and robust perception capabilities. Environmental and operational conditions as well as improper maintenance can produce calibration errors inhibiting sensor fusion and, consequently, degrading the perception performance and overall system usability. Traditionally, sensor calibration is performed in a controlled environment with one or more known targets. Such a procedure can only be carried out in between operations and is done manually; a tedious task if it must be conducted on a regular basis. This creates an acute need for online targetless methods, capable of yielding a set of geometric transformations based on perceived environmental features. However, the often-required redundancy in sensing modalities poses further challenges, as the features captured by each sensor and their distinctiveness may vary. We present a holistic approach to performing joint calibration of a camera-lidar-radar trio in a representative autonomous driving application. Leveraging prior knowledge and physical properties of these sensing modalities together with semantic information, we propose two targetless calibration methods within a cost minimization framework: the first via direct online optimization, and the second through self-supervised learning (SSL).

5.
Sci Robot ; 6(61): eabk0431, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34910530

RESUMEN

High-resolution automotive radar sensors are required to meet the high bar of autonomous vehicle needs and regulations. However, current radar systems are limited in their angular resolution, causing a technological gap. An industry and academic trend to improve angular resolution by increasing the number of physical channels also increases system complexity, requires sensitive calibration processes, lowers robustness to hardware malfunctions, and drives higher costs. We offer an alternative approach, named Radar signal Reconstruction using Self Supervision (R2S2), which substantially improves the angular resolution of a given radar array without increasing the number of physical channels. R2S2 is a family of algorithms that use a deep neural network (DNN) with complex range-Doppler radar data as input and trained in a self-supervised method using a loss function that operates in multiple data representation spaces. Improvement of 4× in angular resolution was demonstrated using a real-world dataset collected in urban and highway environments during clear and rainy weather conditions.

6.
J Phys Chem Lett ; 8(16): 3912-3916, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28745891

RESUMEN

Scanning electron microscopy (SEM) is one of the most powerful tools for nanoscale inspection and imaging. It is broadly used for biomedicine, materials science, and nanotechnology, enabling spatial resolution beyond the optical diffraction limit. In SEM, a high-energy electron beam illuminates a specimen, and the emitted secondary electrons are routed to a positively biased, synchronized detector for image creation. Here, for the first time, we experimentally demonstrate a cloaking of metallic objects from a secondary electron image. We make a metallic disc with a diameter of 300 nm almost invisible to a secondary electron detector with <5 nm spatial resolution. The secondary electron cloaking is based on broadband optical radiation absorption in the near field. Our secondary electron images are in good agreement with full-wave numerical solution of Maxwell's equations at optical frequencies, confirming the concept of secondary electron cloaking based on broadband optical radiation absorption.

7.
ACS Nano ; 11(3): 3274-3281, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28264151

RESUMEN

The interaction of fast electrons with metal atoms may lead to optical excitations. This exciting phenomenon forms the basis for the most powerful inspection methods in nanotechnology, such as cathodoluminescence and electron-energy loss spectroscopy. However, direct nanoimaging of light based on electrons is yet to be introduced. Here, we experimentally demonstrate simultaneous excitation and nanoimaging of optical signals using unmodified scanning electron microscope. We use high-energy electron beam for plasmon excitation and rapidly image the optical near fields using the emitted secondary electrons. We analyze dipole nanoantennas coupled with channel nanoplasmonic waveguides and observe both surface plasmons and surface plasmon polaritons with spatial resolution of 25 nm. Our experimental results are confirmed by rigorous numerical calculations based on full-wave solution of Maxwell's equations, showing high correlation between optical near fields and secondary electrons images. This demonstration of optical near-field mapping using direct electron imaging provides essential insights to the exciting relations between electrons plasmons and photons, paving the way toward secondary electron-based plasmon analysis at the nanoscale.

8.
Sci Rep ; 5: 17562, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620270

RESUMEN

Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ(3)/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers.

9.
Sci Rep ; 5: 13095, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26293477

RESUMEN

Electrokinetic phenomena are a powerful tool used in various scientific and technological applications for the manipulation of aqueous solutions and the chemical entities within them. However, the use of DC-induced electrokinetics in miniaturized devices is highly limited. This is mainly due to unavoidable electrochemical reactions at the electrodes, which hinder successful manipulation. Here we present experimental evidence that on-chip DC manipulation of particles between closely positioned electrodes inside micro-droplets can be successfully achieved, and at low voltages. We show that such manipulation, which is considered practically impossible, can be used to rapidly concentrate and pattern particles in 2D shapes in inter-electrode locations. We show that this is made possible in low ion content dispersions, which enable low-voltage electrokinetics and an anomalous bubble-free water electrolysis. This phenomenon can serve as a powerful tool in both microflow devices and digital microfluidics for rapid pre-concentration and particle patterning.

10.
Nat Commun ; 6: 7334, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26055942

RESUMEN

Molecule-plasmon interactions have been shown to have a definite role in light propagation through optical microcavities due to strong coupling between molecular excitations and surface plasmons. This coupling can lead to macroscopic extended coherent states exhibiting increment in temporal and spatial coherency and a large Rabi splitting. Here, we demonstrate spatial modulation of light transmission through a single microcavity patterned on a free-standing Au film, strongly coupled to one of the most efficient energy transfer photosynthetic proteins in nature, photosystem I. Here we observe a clear correlation between the appearance of spatial modulation of light and molecular photon absorption, accompanied by a 13-fold enhancement in light transmission and the emergence of a distinct electromagnetic standing wave pattern in the cavity. This study provides the path for engineering various types of bio-photonic devices based on the vast diversity of biological molecules in nature.

11.
Sci Rep ; 4: 4096, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24556874

RESUMEN

The exceptional capability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light-matter interaction in deep nanoscale and harness electromagnetic and quantum properties of materials, thus opening pathways for tremendous potential applications. However, imaging optical plasmonic waves on a single nanometer scale is yet a substantial challenge mainly due to size and energy considerations. Here, for the first time, we use Kelvin Probe Force Microscopy (KPFM) under optical illumination to image and characterize plasmonic modes. We experimentally demonstrate unprecedented spatial resolution and measurement sensitivity both on the order of a single nanometer. By comparing experimentally obtained images with theoretical calculation results, we show that KPFM maps may provide valuable information on the phase of the optical near field. Additionally, we propose a theoretical model for the relation between surface plasmons and the material workfunction measured by KPFM. Our findings provide the path for using KPFM for high resolution measurements of optical plasmons, prompting the scientific frontier towards quantum plasmonic imaging on submolecular scales.

12.
Nanoscale ; 5(12): 5442-9, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23661298

RESUMEN

Surface plasmon polaritons (SPPs) may serve as ultimate data processing expedients in future nanophotonic applications. SPPs combine the high localization of electrons with the bandwidth, frequency and propagation properties of photons, thus supplying nature with the best of two worlds. However, although plasmonics have recently gained constantly growing scientific attention, logic devices that operate on SPPs on a deep nanometer scale are yet to be demonstrated. Here, we design, fabricate and experimentally verify the smallest, first ever reported all optical nanoplasmonic XOR logic gate. The introduced XOR device is based on a novel engineerable interferometry scheme with extremely compact dimensions of λ(3)/15,500, which can be used to realize a variety of plasmonic logic functionalities. We use frequency modulated Kelvin probe microscopy to provide evidence of binary XOR functionality performed directly on SPPs with λ(3)/80,000 mode volumes. An extinction ratio of 10 dB is achieved for a device length of 150 nm, increasing up to 30 dB for a device length of 280 nm. Our findings confirm plasmonics as the favorite data carriers in integrated all optical logic devices operating on the deep nanoscale, and pave the way to the development of future ultrafast information processing technologies based on SPPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA