Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 590(7846): 486-491, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33505028

RESUMEN

Selective targeting of aneuploid cells is an attractive strategy for cancer treatment1. However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens2-9 to identify cellular vulnerabilities associated with aneuploidy. We found that aneuploid cancer cells show increased sensitivity to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis10. Unexpectedly, we also found that aneuploid cancer cells were less sensitive than diploid cells to short-term exposure to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly sensitive to inhibition of SAC over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing when the SAC was inhibited, resulting in the accumulation of mitotic defects, and in unstable and less-fit karyotypes. Therefore, although aneuploid cancer cells could overcome inhibition of SAC more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to depletion of KIF18A, and KIF18A overexpression restored their response to SAC inhibition. Our results identify a therapeutically relevant, synthetic lethal interaction between aneuploidy and the SAC.


Asunto(s)
Aneuploidia , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Neoplasias/patología , Cariotipo Anormal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Segregación Cromosómica/efectos de los fármacos , Diploidia , Genes Letales , Humanos , Cinesinas/deficiencia , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias/genética , Huso Acromático/efectos de los fármacos , Mutaciones Letales Sintéticas/efectos de los fármacos , Mutaciones Letales Sintéticas/genética , Factores de Tiempo
2.
FASEB J ; 33(4): 5101-5111, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30615487

RESUMEN

Understanding how body weight is regulated at the molecular level is essential for treating obesity. We show that female mice genetically lacking protein tyrosine phosphatase (PTP) receptor type α (PTPRA) exhibit reduced weight and adiposity and increased energy expenditure, and are more resistant to diet-induced obesity than matched wild-type control mice. These mice also exhibit reduced levels of circulating leptin and are leptin hypersensitive, suggesting that PTPRA inhibits leptin signaling in the hypothalamus. Male and female PTPRA-deficient mice fed a high-fat diet were leaner and displayed increased metabolic rates and lower circulating leptin levels, indicating that the effects of loss of PTPRA persist in the obese state. Molecularly, PTPRA down-regulates leptin receptor signaling by dephosphorylating the receptor-associated kinase JAK2, with which the phosphatase associates constitutively. In contrast to the closely related tyrosine phosphatase ε, leptin induces only weak phosphorylation of PTPRA at its C-terminal regulatory site Y789, and this does not affect the activity of PTPRA toward JAK2. PTPRA is therefore an inhibitor of hypothalamic leptin signaling in vivo and may prevent premature activation of leptin signaling, as well as return signaling to baseline after exposure to leptin.-Cohen-Sharir, Y., Kuperman, Y., Apelblat, D., den Hertog, J., Spiegel, I., Knobler, H., Elson, A. Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight in vivo.


Asunto(s)
Hipotálamo/metabolismo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/metabolismo , Receptores de Leptina/metabolismo , Adiposidad/fisiología , Animales , Peso Corporal/fisiología , Femenino , Janus Quinasa 2/metabolismo , Leptina/metabolismo , Masculino , Ratones Noqueados , Obesidad/metabolismo , Fosforilación/fisiología , Condicionamiento Físico Animal/fisiología , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/genética , Transducción de Señal/fisiología
3.
Cancer Discov ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39247952

RESUMEN

Aneuploidy results in a stoichiometric imbalance of protein complexes that jeopardizes cellular fitness. Aneuploid cells thus need to compensate for the imbalanced DNA levels by regulating their RNA and protein levels, but the underlying molecular mechanisms remain unknown. Here, we dissected multiple diploid vs. aneuploid cell models. We found that aneuploid cells cope with transcriptional burden by increasing several RNA degradation pathways, and are consequently more sensitive to the perturbation of RNA degradation. At the protein level, aneuploid cells mitigate proteotoxic stress by reducing protein translation and increasing protein degradation, rendering them more sensitive to proteasome inhibition. These findings were recapitulated across hundreds of human cancer cell lines and primary tumors, and aneuploidy levels were significantly associated with the response of multiple myeloma patients to proteasome inhibitors. Aneuploid cells are therefore preferentially dependent on several key nodes along the gene expression process, creating clinically-actionable vulnerabilities in aneuploid cells.

4.
Nat Commun ; 15(1): 7772, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251587

RESUMEN

Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.


Asunto(s)
Aneuploidia , Daño del ADN , Sistema de Señalización de MAP Quinasas , Ftalazinas , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ftalazinas/farmacología , Línea Celular Tumoral , Piperazinas/farmacología , Quinasas raf/metabolismo , Quinasas raf/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Sistemas CRISPR-Cas , Línea Celular , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Resistencia a Antineoplásicos/genética
5.
Mol Cell Oncol ; 8(3): 1915075, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34027049

RESUMEN

Aneuploidy, a common feature of cancer cells, results in increased sensitivity to the inhibition of the spindle assembly checkpoint (SAC) and the mitotic motor protein Kinesin Family Member 18A (KIF18A). We discuss the importance of drugs targeting SAC core members and KIF18A. We stress the need to assess the sensitivity to this class of drugs at appropriate time points, and propose that aneuploidy could serve as a biomarker to stratify patients for SAC-targeting treatments.

6.
FEBS J ; 288(15): 4702-4723, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33605542

RESUMEN

Bone-resorbing osteoclasts (OCLs) are multinucleated phagocytes, whose central roles in regulating bone formation and homeostasis are critical for normal health and development. OCLs are produced from precursor monocytes in a multistage process that includes initial differentiation, cell-cell fusion, and subsequent functional and morphological maturation; the molecular regulation of osteoclastogenesis is not fully understood. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as an essential regulator specifically of OCL maturation. Monocytes from PTPRJ-deficient (JKO) mice differentiate and fuse normally, but their maturation into functional OCLs and their ability to degrade bone are severely inhibited. In agreement, mice lacking PTPRJ throughout their bodies or only in OCLs exhibit increased bone mass due to reduced OCL-mediated bone resorption. We further show that PTPRJ promotes OCL maturation by dephosphorylating the M-CSF receptor (M-CSFR) and Cbl, thus reducing the ubiquitination and degradation of the key osteoclastogenic transcription factor NFATc1. Loss of PTPRJ increases ubiquitination of NFATc1 and reduces its amounts at later stages of osteoclastogenesis, thereby inhibiting OCL maturation. PTPRJ thus fulfills an essential and cell-autonomous role in promoting OCL maturation by balancing between the pro- and anti-osteoclastogenic activities of the M-CSFR and maintaining NFATc1 expression during late osteoclastogenesis.


Asunto(s)
Osteoclastos/metabolismo , Osteogénesis , Ubiquitinación , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Monocitos/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/citología , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA