Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 38: 341-363, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31961750

RESUMEN

Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.


Asunto(s)
Hipoxia/inmunología , Hipoxia/metabolismo , Inmunidad Innata , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Hipoxia/genética , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Inmunomodulación , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal
2.
Am J Pathol ; 193(8): 1013-1028, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37169343

RESUMEN

Crohn disease (CD) is a highly morbid chronic inflammatory disease. Although many patients with CD also develop fibrostenosing complications, there are no medical therapies for intestinal fibrosis. This is due, in part, to a lack of high-fidelity biomimetic models to enhance understanding and drug development, which highlights the need for developing in vivo models of inflammatory bowel disease-related intestinal fibrosis. This study investigates whether the TNFΔARE mouse, a model of ileal inflammation, also develops intestinal fibrosis. Several clinically relevant outcomes were studied, including features of structural fibrosis, histologic fibrosis, and gene expression. These include the use of a new luminal casting technique, traditional histologic outcomes, use of second harmonic imaging, and quantitative PCR. These features were studied in aged TNFΔARE mice as well as in cohorts of numerous ages. At >24 weeks of age, TNFΔARE mice developed structural, histologic, and transcriptional changes of ileal fibrosis. Protein and RNA expression profiles showed changes as early as 6 weeks, coinciding with histologic changes as early as 14 to 15 weeks. Overt structural fibrosis was delayed until at least 16 weeks and was most developed after 24 weeks. This study found that the TNFΔARE mouse is a viable and highly tractable model of ileal fibrosis. This model and the techniques used herein can be leveraged for both mechanistic studies and therapeutic development for the treatment of intestinal fibrosis.


Asunto(s)
Enfermedad de Crohn , Intestinos , Ratones , Animales , Intestinos/patología , Enfermedad de Crohn/patología , Inflamación/patología , Íleon/metabolismo , Fibrosis
3.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972436

RESUMEN

Metabolic changes associated with tissue inflammation result in significant extracellular acidosis (EA). Within mucosal tissues, intestinal epithelial cells (IEC) have evolved adaptive strategies to cope with EA through the up-regulation of SLC26A3 to promote pH homeostasis. We hypothesized that EA significantly alters IEC gene expression as an adaptive mechanism to counteract inflammation. Using an unbiased RNA sequencing approach, we defined the impact of EA on IEC gene expression to define molecular mechanisms by which IEC respond to EA. This approach identified a unique gene signature enriched in cyclic AMP response element-binding protein (CREB)-regulated gene targets. Utilizing loss- and gain-of-function approaches in cultured epithelia and murine colonoids, we demonstrate that EA elicits prominent CREB phosphorylation through cyclic AMP-independent mechanisms that requires elements of the mitogen-activated protein kinase signaling pathway. Further analysis revealed that EA signals through the G protein-coupled receptor GPR31 to promote induction of FosB, NR4A1, and DUSP1. These studies were extended to an in vivo murine model in conjunction with colonization of a pH reporter Escherichia coli strain that demonstrated significant mucosal acidification in the TNFΔARE model of murine ileitis. Herein, we observed a strong correlation between the expression of acidosis-associated genes with bacterial reporter sfGFP intensity in the distal ileum. Finally, the expression of this unique EA-associated gene signature was increased during active inflammation in patients with Crohn's disease but not in the patient control samples. These findings establish a mechanism for EA-induced signals during inflammation-associated acidosis in both murine and human ileitis.


Asunto(s)
Acidosis/genética , Antiportadores/genética , Enfermedad de Crohn/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Ileítis/genética , Receptores Acoplados a Proteínas G/genética , Transportadores de Sulfato/genética , Acidosis/metabolismo , Acidosis/patología , Animales , Antiportadores/metabolismo , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Regulación de la Expresión Génica , Humanos , Ileítis/metabolismo , Ileítis/patología , Íleon/metabolismo , Íleon/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Organoides/metabolismo , Organoides/patología , Fosforilación , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Transportadores de Sulfato/metabolismo
4.
Immunity ; 40(1): 66-77, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24412613

RESUMEN

Acute intestinal inflammation involves early accumulation of neutrophils (PMNs) followed by either resolution or progression to chronic inflammation. Based on recent evidence that mucosal metabolism influences disease outcomes, we hypothesized that transmigrating PMNs influence the transcriptional profile of the surrounding mucosa. Microarray studies revealed a cohort of hypoxia-responsive genes regulated by PMN-epithelial crosstalk. Transmigrating PMNs rapidly depleted microenvironmental O2 sufficiently to stabilize intestinal epithelial cell hypoxia-inducible factor (HIF). By utilizing HIF reporter mice in an acute colitis model, we investigated the relative contribution of PMNs and the respiratory burst to "inflammatory hypoxia" in vivo. CGD mice, lacking a respiratory burst, developed accentuated colitis compared to control, with exaggerated PMN infiltration and diminished inflammatory hypoxia. Finally, pharmacological HIF stabilization within the mucosa protected CGD mice from severe colitis. In conclusion, transcriptional imprinting by infiltrating neutrophils modulates the host response to inflammation, via localized O2 depletion, resulting in microenvironmental hypoxia and effective inflammatory resolution.


Asunto(s)
Colitis/inmunología , Hipoxia/inmunología , Membrana Mucosa/metabolismo , Neutrófilos/patología , Animales , Comunicación Celular , Movimiento Celular , Células Cultivadas , Microambiente Celular , Colitis/inducido químicamente , Colon/patología , Modelos Animales de Enfermedad , Hipoxia/inducido químicamente , Factor 1 Inducible por Hipoxia/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Membrana Mucosa/patología , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Estrés Oxidativo , Oxígeno/metabolismo , Estabilidad Proteica/efectos de los fármacos , Migración Transendotelial y Transepitelial
5.
Proc Natl Acad Sci U S A ; 117(21): 11648-11657, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32398370

RESUMEN

The intestinal mucosa exists in dynamic balance with trillions of luminal microbes. Disruption of the intestinal epithelial barrier, commonly observed in mucosal inflammation and diseases such as inflammatory bowel diseases (IBDs), is often associated with dysbiosis, particularly decreases in species producing short-chain fatty acids (SCFAs), such as butyrate. It remains unclear to what extent microbiota-derived factors contribute to the overall maintenance of intestinal homeostasis. Initial studies revealed that butyrate selectively promotes epithelial barrier function and wound healing. We aimed to define the specific mechanism(s) through which butyrate contributes to these epithelial responses. Guided by an unbiased profiling approach, we identified the dominant regulation of the actin-binding protein synaptopodin (SYNPO). Extensions of this work revealed a role for SYNPO in intestinal epithelial barrier function and wound healing. SYNPO was localized to the intestinal epithelial tight junction and within F-actin stress fibers where it is critical for barrier integrity and cell motility. Butyrate, but not other SCFAs, induced SYNPO in epithelial cell lines and murine colonic enteroids through mechanisms possibly involving histone deacetylase inhibition. Moreover, depletion of the microbiota abrogated expression of SYNPO in the mouse colon, which was rescued with butyrate repletion. Studies in Synpo-deficient mice demonstrated exacerbated disease susceptibility and increased intestinal permeability in a dextran sulfate sodium colitis model. These findings establish a critical role for the microbiota and their products, specifically butyrate, in the regulated expression of SYNPO for intestinal homeostasis and reveal a direct mechanistic link between microbiota-derived butyrate and barrier restoration.


Asunto(s)
Butiratos/metabolismo , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Proteínas de Microfilamentos , Animales , Línea Celular , Homeostasis/fisiología , Humanos , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Uniones Estrechas/metabolismo
6.
Am J Physiol Cell Physiol ; 323(3): C866-C878, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35912990

RESUMEN

The healthy mammalian intestine is lined by a single layer of epithelial cells. These cells provide a selectively permeable barrier to luminal contents and normally do so in an efficient and effective manner. Barrier function in the healthy mucosa is provided via several mechanisms including epithelial junctional complexes, mucus production, as well as mucosal-derived antimicrobial proteins. As tissue metabolism is central to the maintenance of homeostasis in the mucosa, intestinal [Formula: see text] levels are uniquely low due to counter-current blood flow and the presence of the microbiota, resulting in the stabilization of the transcription factor hypoxia-inducible factor (HIF). Ongoing studies have revealed that HIF molds normal intestinal metabolism and is central to the coordination of barrier regulation during both homeostasis and active disease. During acute inflammation, HIF is central to controlling the rapid restitution of the epithelium consistent with normal wound healing responses. In contrast, HIF may also contribute to the fibrostenotic response associated with chronic, nonresolving inflammation. As such, HIF may function as a double-edged sword in the overall course of the inflammatory response. Here, we review recent literature on the contribution of HIF to mucosal barrier function, wound healing, and fibrosis.


Asunto(s)
Mucosa Intestinal , Cicatrización de Heridas , Animales , Fibrosis , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Mamíferos
7.
FASEB J ; 35(5): e21552, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33826788

RESUMEN

During episodes of acute inflammation, polymorphonuclear leukocytes (PMNs) are actively recruited to sites of inflammation or injury where they provide anti-microbial and wound-healing functions. One enzyme crucial for fulfilling these functions is myeloperoxidase (MPO), which generates hypochlorous acid from Cl- and hydrogen peroxide. The potential exists, however, that uncontrolled the extracellular generation of hypochlorous acid by MPO can cause bystander tissue damage and inhibit the healing response. Previous work suggests that the microbiota-derived tryptophan metabolites 1H-indole and related molecules ("indoles") are protective during intestinal inflammation, although their precise mechanism of action is unclear. In the present work, we serendipitously discovered that indoles are potent and selective inhibitors of MPO. Using both primary human PMNs and recombinant human MPO in a cell-free system, we revealed that indoles inhibit MPO at physiologic concentrations. Particularly, indoles block the chlorinating activity of MPO, a reliable marker for MPO-associated tissue damage, as measured by coulometric-coupled HPLC. Further, we observed direct interaction between indoles and MPO using the established biochemical techniques microscale thermophoresis and STD-NMR. Utilizing a murine colitis model, we demonstrate that indoles inhibit bystander tissue damage, reflected in decreased colon 3-chlorotyrosine and pro-inflammatory chemokine expression in vivo. Taken together, these results identify microbiota-derived indoles that acts as endogenous immunomodulatory compounds through their actions on MPO, suggesting a symbiotic association between the gut microbiota and host innate immune system. Such findings offer exciting new targets for future pharmacological intervention.


Asunto(s)
Adenocarcinoma/patología , Efecto Espectador , Colitis/patología , Neoplasias Colorrectales/patología , Indoles/farmacología , Neutrófilos/enzimología , Peroxidasa/antagonistas & inhibidores , Adenocarcinoma/inmunología , Adenocarcinoma/metabolismo , Animales , Colitis/inmunología , Colitis/metabolismo , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Halogenación , Humanos , Ratones , Ratones Endogámicos C57BL , Microbiota , Células Tumorales Cultivadas , Tirosina/metabolismo
8.
Gastroenterology ; 159(3): 984-998.e1, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32433978

RESUMEN

BACKGROUND & AIMS: Patients with inflammatory bowel diseases (IBDs) have intestinal barrier dysfunction. Creatine regulates energy distribution within cells and reduces the severity of colitis in mice. We studied the functions of the creatine transporter solute carrier family 6 member 8 (SLC6A8, also called CRT) in intestinal epithelial cells (IECs) and mice, and we measured levels in mucosal biopsies from patients with IBD. METHODS: Colon biopsy specimens from patients with IBD (30 with Crohn's disease and 27 with ulcerative colitis) and 30 patients without IBD (control individuals) and colon tissues from mice (with and without disruption of Crt) were analyzed by immunofluorescence, immunoblots, and/or quantitative reverse-transcription polymerase chain reaction (qRT-PCR). CRT was knocked down or overexpressed in T84 cells, which were analyzed by immunofluorescence, immunoblots, high-performance liquid chromatography (to measure creatine levels), qRT-PCR, transepithelial electrical resistance, barrier function, actin localization, wound healing, mitochondrial oxygen consumption, and glycolysis extracellular acidification rate assays. Organoids from colon cells of CRT-knockout mice and control mice were analyzed by qRT-PCR, immunoblot, and transepithelial electrical resistance. RESULTS: CRT localized around tight junctions (TJs) of T84 IECs. In analyses of IECs with CRT knockdown or overexpression, we found that CRT regulates intracellular creatine, barrier formation, and wound healing. CRT-knockout organoids also had diminished barrier formation. In the absence of adequate creatine, IECs transition toward a stressed, glycolysis-predominant form of metabolism; this resulted in leaky TJs and mislocalization of actin and TJ proteins. Colon tissues from patients with IBD had reduced levels of CRT messenger RNA compared with those from control individuals. CONCLUSIONS: In an analysis of IEC cell lines and colonoids derived from CRT-knockout mice, we found that CRT regulates energy balance in IECs and thereby epithelial integrity and barrier function. Mucosal biopsy specimens from patients with ulcerative colitis and inactive Crohn's disease have lower levels of CRT, which might contribute to the reduced barrier function observed in patients with IBD.


Asunto(s)
Colitis Ulcerosa/patología , Colon/patología , Enfermedad de Crohn/patología , Mucosa Intestinal/patología , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Adulto , Animales , Biopsia , Estudios de Casos y Controles , Línea Celular , Metabolismo Energético , Células Epiteliales/citología , Células Epiteliales/patología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Persona de Mediana Edad , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Uniones Estrechas/patología
9.
Hepatology ; 71(6): 2105-2117, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31529728

RESUMEN

BACKGROUND AND AIMS: Acetaminophen (APAP) overdose represents the most frequent cause of acute liver failure, resulting in death or liver transplantation in more than one third of patients in the United States. The effectiveness of the only antidote, N-acetylcysteine, declines rapidly after APAP ingestion, long before patients are admitted to the clinic with symptoms of severe liver injury. The direct hepatotoxicity of APAP triggers a cascade of innate immune responses that may exacerbate or limit the progression of tissue damage. A better understanding of this complex mechanism will help uncover targets for therapeutic interventions. APPROACH AND RESULTS: We observed that APAP challenge caused stabilization of hypoxia-inducible factors (HIFs) in the liver and hepatic macrophages (MΦs), particularly HIF-2α. Genetic deletion of the HIF-2α gene in myeloid cells (HIF-2αmye/- ) markedly exacerbated APAP-induced liver injury (AILI) without affecting APAP bioactivation and detoxification. In contrast, hepatic and serum levels of the hepatoprotective cytokine interleukin 6 (IL-6), its downstream signal transducer and transcription factor 3 activation in hepatocytes, as well as hepatic MΦ IL-6 expression were markedly reduced in HIF-2αmye/- mice compared to wild-type mice post-APAP challenge. In vitro experiments revealed that hypoxia induced IL-6 production in hepatic MΦs and that such induction was abolished in HIF-2α-deleted hepatic MΦs. Restoration of IL-6 by administration of exogenous IL-6 ameliorated AILI in HIF-2αmye/- mice. Finally, IL-6-mediated hepatoprotection against AILI was abolished in hepatocyte-specific IL-6 receptor knockout mice. CONCLUSIONS: The data demonstrate that APAP treatment leads to HIF-2α stabilization in hepatic MΦs and that HIF-2α subsequently reprograms hepatic MΦs to produce the hepatoprotective cytokine IL-6, thereby ameliorating AILI.


Asunto(s)
Acetaminofén/toxicidad , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Enfermedad Hepática Inducida por Sustancias y Drogas , Hipoxia , Interleucina-6/metabolismo , Macrófagos del Hígado/metabolismo , Analgésicos no Narcóticos/toxicidad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Expresión Génica , Hipoxia/inmunología , Hipoxia/metabolismo , Inmunidad Innata , Inactivación Metabólica , Ratones , Ratones Noqueados , Transducción de Señal
10.
FASEB J ; 34(6): 7718-7732, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32293760

RESUMEN

Liver inflammation is a common extraintestinal manifestation in inflammatory bowel disease (IBD), yet, the mechanisms driving gut-liver axis inflammation remain poorly understood. IBD leads to a breakdown in the integrity of the intestinal barrier causing an increase in portal and systemic gut-derived antigens, which challenge the liver. Here, we examined the role of platelet activating factor receptor (PAFR) in colitis-associated liver damage using dextran sulfate sodium (DSS) and anti-CD40-induced colitis models. Both DSS and anti-CD40 models exhibited liver inflammation associated with colitis. Colitis reduced global PAFR protein expression in mouse livers causing an exclusive re-localization of PAFR to the portal triad. The global decrease in liver PAFR was associated with increased sirtuin 1 while relocalized PAFR expression was limited to Kupffer cells (KCs) and co-localized with toll-like receptor 4. DSS activated the NLRP3-inflammasome and increased interleukin (IL)-1ß in the liver. Antagonism of PAFR amplified the inflammasome response by increasing NLRP3, caspase-1, and IL-1ß protein levels in the liver. LPS also increased NLRP3 response in human hepatocytes, however, overexpression of PAFR restored the levels of NLPR3 and caspase-1 proteins. Interestingly, KCs depletion also increased IL-1ß protein in mouse liver after DSS challenge. These data suggest a protective role for PAFR-expressing KCs during colitis and that regulation of PAFR is important for gut-liver axis homeostasis.


Asunto(s)
Colitis/metabolismo , Colitis/patología , Inflamación/metabolismo , Inflamación/patología , Hígado/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Caspasa 1/metabolismo , Células Cultivadas , Colitis/inducido químicamente , Colon/metabolismo , Colon/patología , Sulfato de Dextran/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Interleucina-1beta/metabolismo , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo
11.
Am J Pathol ; 194(6): 1156-1157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749611
12.
Immunol Rev ; 273(1): 112-20, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27558331

RESUMEN

The interaction of neutrophils (PMNs) and epithelial cells are requisite lines of communication during mucosal inflammatory responses. Consequences of such interactions often determine endpoint organ function, and for this reason, much interest has developed around defining the constituents of the tissue microenvironment of inflammatory lesions. Physiologic in vitro and in vivo models have aided in the discovery of components that define the basic inflammatory machinery that mold the inflammatory tissue microenvironment. Here, we will review the recent literature related to the contribution of PMNs to molding of the tissue microenvironment, with an emphasis on the gastrointestinal (GI) tract. We focus on endogenous pathways for promoting tissue homeostasis and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.


Asunto(s)
Microambiente Celular , Células Epiteliales/fisiología , Inflamación/inmunología , Mucosa Intestinal/fisiología , Neutrófilos/fisiología , Animales , Comunicación Celular , Movimiento Celular , Homeostasis , Humanos
13.
J Biol Chem ; 293(16): 6039-6051, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29487135

RESUMEN

Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function.


Asunto(s)
Colitis/metabolismo , Colon/metabolismo , Metabolismo Energético , Hipoxantina/metabolismo , Mucosa Intestinal/metabolismo , Animales , Colitis/patología , Colon/patología , Femenino , Mucosa Intestinal/patología , Metaboloma , Ratones , Ratones Endogámicos C57BL , Consumo de Oxígeno , Permeabilidad , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
14.
Am J Pathol ; 188(5): 1183-1194, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29454749

RESUMEN

Interactions between the gut microbiota and the host are important for health, where dysbiosis has emerged as a likely component of mucosal disease. The specific constituents of the microbiota that contribute to mucosal disease are not well defined. The authors sought to define microbial components that regulate homeostasis within the intestinal mucosa. Using an unbiased, metabolomic profiling approach, a selective depletion of indole and indole-derived metabolites was identified in murine and human colitis. Indole-3-propionic acid (IPA) was selectively diminished in circulating serum from human subjects with active colitis, and IPA served as a biomarker of disease remission. Administration of indole metabolites showed prominent induction of IL-10R1 on cultured intestinal epithelia that was explained by activation of the aryl hydrocarbon receptor. Colonization of germ-free mice with wild-type Escherichia coli, but not E. coli mutants unable to generate indole, induced colonic epithelial IL-10R1. Moreover, oral administration of IPA significantly ameliorated disease in a chemically induced murine colitis model. This work defines a novel role of indole metabolites in anti-inflammatory pathways mediated by epithelial IL-10 signaling and identifies possible avenues for utilizing indoles as novel therapeutics in mucosal disease.


Asunto(s)
Colitis/metabolismo , Indoles/metabolismo , Mucosa Intestinal/metabolismo , Microbiota/fisiología , Receptores de Interleucina-10/metabolismo , Animales , Línea Celular , Colitis/inducido químicamente , Sulfato de Dextran , Modelos Animales de Enfermedad , Homeostasis/fisiología , Humanos , Metabolómica , Ratones
15.
J Immunol ; 199(8): 2976-2984, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28893958

RESUMEN

Commensal interactions between the enteric microbiota and distal intestine play important roles in regulating human health. Short-chain fatty acids (SCFAs), such as butyrate, produced through anaerobic microbial metabolism represent a major energy source for the host colonic epithelium and enhance epithelial barrier function through unclear mechanisms. Separate studies revealed that the epithelial anti-inflammatory IL-10 receptor α subunit (IL-10RA) is also important for barrier formation. Based on these findings, we examined if SCFAs promote epithelial barrier through IL-10RA-dependent mechanisms. Using human intestinal epithelial cells (IECs), we discovered that SCFAs, particularly butyrate, enhanced IEC barrier formation, induced IL-10RA mRNA, IL-10RA protein, and transactivation through activated Stat3 and HDAC inhibition. Loss and gain of IL-10RA expression directly correlates with IEC barrier formation and butyrate represses permeability-promoting claudin-2 tight-junction protein expression through an IL-10RA-dependent mechanism. Our findings provide a novel mechanism by which microbial-derived butyrate promotes barrier through IL-10RA-dependent repression of claudin-2.


Asunto(s)
Bacterias Anaerobias/fisiología , Butiratos/metabolismo , Colon/patología , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/fisiología , Receptores de Interleucina-10/metabolismo , Uniones Estrechas/metabolismo , Butiratos/inmunología , Línea Celular , Células Cultivadas , Claudina-2/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Receptores de Interleucina-10/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Simbiosis , Activación Transcripcional , Migración Transendotelial y Transepitelial , Regulación hacia Arriba
16.
Semin Immunol ; 27(3): 177-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25818531

RESUMEN

Inflammatory diseases in mucosal organs as diverse as the lung, liver and intestine inevitably require the intimate interactions between neutrophils and epithelia. The physiologic consequences of such interactions often determine endpoint organ function, and for this reason, much recent interest has developed in identifying mechanisms and novel targets to promote the resolution of mucosal inflammation. Physiologically-relevant in vitro and in vivo model systems have aided in discovery of novel pathways to define basic inflammatory mechanisms and approaches to defining the concepts of inflammatory resolution. Here, we will review the recent literature regarding the contribution of neutrophils to inflammatory resolution, with an emphasis on the role of the tissue microenvironment, endogenous pathways for promoting resolution and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of pro-resolving pathways and lend insight into the complexity of treating mucosal inflammation.


Asunto(s)
Células Epiteliales/inmunología , Homeostasis/inmunología , Inflamación/inmunología , Membrana Mucosa/inmunología , Neutrófilos/inmunología , Comunicación Celular/inmunología , Hipoxia de la Célula/inmunología , Movimiento Celular/inmunología , Microambiente Celular/inmunología , Humanos , Membrana Mucosa/citología , Membrana Mucosa/patología , Consumo de Oxígeno/inmunología , Consumo de Oxígeno/fisiología , Nucleósidos de Purina/metabolismo
17.
Am J Pathol ; 187(8): 1772-1786, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28618253

RESUMEN

During the acute respiratory distress syndrome, epithelial cells, primarily alveolar type (AT) I cells, die and slough off, resulting in enhanced permeability. ATII cells proliferate and spread onto the denuded basement membrane to reseal the barrier. Repair of the alveolar epithelium is critical for clinical recovery; however, mechanisms underlying ATII cell proliferation and spreading are not well understood. We hypothesized that hypoxia-inducible factor (HIF)1α promotes proliferation and spreading of ATII cells during repair after lung injury. Mice were treated with lipopolysaccharide or hydrochloric acid. HIF activation in ATII cells after injury was demonstrated by increased luciferase activity in oxygen degradation domain-Luc (HIF reporter) mice and expression of the HIF1α target gene GLUT1. ATII cell proliferation during repair was attenuated in ATII cell-specific HIF1α knockout (SftpcCreERT2+/-;HIF1αf/f) mice. The HIF target vascular endothelial growth factor promoted ATII cell proliferation in vitro and after lung injury in vivo. In the scratch wound assay of cell spreading, HIF stabilization accelerated, whereas HIF1α shRNA delayed wound closure. SDF1 and its receptor, CXCR4, were found to be HIF1α-regulated genes in ATII cells and were up-regulated during lung injury. Stromal cell-derived factor 1/CXCR4 inhibition impaired cell spreading and delayed the resolution of permeability after lung injury. We conclude that HIF1α is activated in ATII cells after lung injury and promotes proliferation and spreading during repair.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Células Epiteliales Alveolares/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Alveolos Pulmonares/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular , Proliferación Celular/fisiología , Quimiocina CXCL12/metabolismo , Modelos Animales de Enfermedad , Ratones , Permeabilidad , Ratas , Receptores CXCR4/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/fisiología
19.
J Immunol ; 197(4): 1425-34, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402702

RESUMEN

Proinflammatory consequences have been described for lysophosphatidylcholine, a lipid product of cellular injury, signaling via the G protein-coupled receptor G2A on myeloid and lymphoid inflammatory cells. This prompted the hypothesis that genetic deletion of G2A would limit intestinal inflammation in a mouse model of colitis induced by dextran sodium sulfate. Surprisingly, G2A(-/-) mice exhibited significantly worsened colitis compared with wild-type mice, as demonstrated by disease activity, colon shortening, histology, and elevated IL-6 and IL-5 in colon tissues. Investigation of inflammatory cells recruited to inflamed G2A(-/-) colons showed significantly more TNF-α(+) and Ly6C(hi)MHCII(-) proinflammatory monocytes and eosinophils than in wild-type colons. Both monocytes and eosinophils were pathogenic as their depletion abolished the excess inflammation in G2A(-/-) mice. G2A(-/-) mice also had less IFN-γ in inflamed colon tissues than wild-type mice. Fewer CD4(+) lymphocytes were recruited to inflamed G2A(-/-) colons, and fewer colonic lymphocytes produced IFN-γ upon ex vivo stimulation. Administration of IFN-γ to G2A(-/-) mice during dextran sodium sulfate exposure abolished the excess colitic inflammation and reduced colonic IL-5 and eosinophil numbers to levels seen in wild-type mice. Furthermore, IFN-γ reduced the numbers of TNF-α(+) monocyte and enhanced their maturation from Ly6C(hi)MHCII(-) to Ly6C(int)MHCII(+) Taken together, the data suggest that G2A signaling serves to dampen intestinal inflammation via the production of IFN-γ, which, in turn, enhances monocyte maturation to a less inflammatory program and ultimately reduces eosinophil-induced injury of colonic tissues.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Colitis/patología , Interferón gamma/biosíntesis , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA