Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(6): 1374-1386.e13, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38428425

RESUMEN

The World Health Organization declared mpox a public health emergency of international concern in July 2022. To investigate global mpox transmission and population-level changes associated with controlling spread, we built phylogeographic and phylodynamic models to analyze MPXV genomes from five global regions together with air traffic and epidemiological data. Our models reveal community transmission prior to detection, changes in case reporting throughout the epidemic, and a large degree of transmission heterogeneity. We find that viral introductions played a limited role in prolonging spread after initial dissemination, suggesting that travel bans would have had only a minor impact. We find that mpox transmission in North America began declining before more than 10% of high-risk individuals in the USA had vaccine-induced immunity. Our findings highlight the importance of broader routine specimen screening surveillance for emerging infectious diseases and of joint integration of genomic and epidemiological information for early outbreak control.


Asunto(s)
Enfermedades Transmisibles Emergentes , Epidemias , Mpox , Humanos , Brotes de Enfermedades , Mpox/epidemiología , Mpox/transmisión , Mpox/virología , Salud Pública , Monkeypox virus/fisiología
2.
Cell ; 184(25): 6010-6014, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34890548

RESUMEN

The COVID-19 information epidemic, or "infodemic," demonstrates how unlimited access to information may confuse and influence behaviors during a health emergency. However, the study of infodemics is relatively new, and little is known about their relationship with epidemics management. Here, we discuss unresolved issues and propose research directions to enhance preparedness for future health crises.


Asunto(s)
COVID-19/psicología , Infodemia , Difusión de la Información/ética , COVID-19/epidemiología , Epidemias/psicología , Humanos , Difusión de la Información/métodos , Salud Pública , Investigación/tendencias , SARS-CoV-2
3.
Nature ; 590(7844): 134-139, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33348340

RESUMEN

As countries in Europe gradually relaxed lockdown restrictions after the first wave, test-trace-isolate strategies became critical to maintain the incidence of coronavirus disease 2019 (COVID-19) at low levels1,2. Reviewing their shortcomings can provide elements to consider in light of the second wave that is currently underway in Europe. Here we estimate the rate of detection of symptomatic cases of COVID-19 in France after lockdown through the use of virological3 and participatory syndromic4 surveillance data coupled with mathematical transmission models calibrated to regional hospitalizations2. Our findings indicate that around 90,000 symptomatic infections, corresponding to 9 out 10 cases, were not ascertained by the surveillance system in the first 7 weeks after lockdown from 11 May to 28 June 2020, although the test positivity rate did not exceed the 5% recommendation of the World Health Organization (WHO)5. The median detection rate increased from 7% (95% confidence interval, 6-8%) to 38% (35-44%) over time, with large regional variations, owing to a strengthening of the system as well as a decrease in epidemic activity. According to participatory surveillance data, only 31% of individuals with COVID-19-like symptoms consulted a doctor in the study period. This suggests that large numbers of symptomatic cases of COVID-19 did not seek medical advice despite recommendations, as confirmed by serological studies6,7. Encouraging awareness and same-day healthcare-seeking behaviour of suspected cases of COVID-19 is critical to improve detection. However, the capacity of the system remained insufficient even at the low epidemic activity achieved after lockdown, and was predicted to deteriorate rapidly with increasing incidence of COVID-19 cases. Substantially more aggressive, targeted and efficient testing with easier access is required to act as a tool to control the COVID-19 pandemic. The testing strategy will be critical to enable partial lifting of the current restrictive measures in Europe and to avoid a third wave.


Asunto(s)
Prueba de COVID-19/estadística & datos numéricos , COVID-19/diagnóstico , COVID-19/prevención & control , Portador Sano/epidemiología , Modelos Biológicos , Distribución por Edad , COVID-19/epidemiología , COVID-19/transmisión , Portador Sano/prevención & control , Portador Sano/transmisión , Femenino , Francia/epidemiología , Conductas Relacionadas con la Salud , Hospitalización/estadística & datos numéricos , Humanos , Incidencia , Masculino , Pandemias/estadística & datos numéricos , Aceptación de la Atención de Salud/estadística & datos numéricos , Distanciamiento Físico , SARS-CoV-2/aislamiento & purificación , Factores de Tiempo , Negativa del Paciente al Tratamiento/estadística & datos numéricos , Organización Mundial de la Salud
4.
Nature ; 595(7869): 713-717, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34192736

RESUMEN

After the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain1. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave2. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model using genomic, mobility and epidemiological data from 10 European countries and estimate that in many countries more than half of the lineages circulating in late summer resulted from new introductions since 15 June 2020. The success in onward transmission of newly introduced lineages was negatively associated with the local incidence of COVID-19 during this period. The pervasive spread of variants in summer 2020 highlights the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered in strategies to control the current spread of variants that are more transmissible and/or evade immunity. Our findings indicate that more effective and coordinated measures are required to contain the spread through cross-border travel even as vaccination is reducing disease burden.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , COVID-19/epidemiología , COVID-19/prevención & control , Europa (Continente)/epidemiología , Genoma Viral/genética , Humanos , Incidencia , Locomoción , Filogenia , Filogeografía , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Factores de Tiempo , Viaje/estadística & datos numéricos
5.
BMC Infect Dis ; 24(1): 21, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166649

RESUMEN

BACKGROUND: France implemented a combination of non-pharmaceutical interventions (NPIs) to manage the COVID-19 pandemic between September 2020 and June 2021. These included a lockdown in the fall 2020 - the second since the start of the pandemic - to counteract the second wave, followed by a long period of nighttime curfew, and by a third lockdown in the spring 2021 against the Alpha wave. Interventions have so far been evaluated in isolation, neglecting the spatial connectivity between regions through mobility that may impact NPI effectiveness. METHODS: Focusing on September 2020-June 2021, we developed a regionally-based epidemic metapopulation model informed by observed mobility fluxes from daily mobile phone data and fitted the model to regional hospital admissions. The model integrated data on vaccination and variants spread. Scenarios were designed to assess the impact of the Alpha variant, characterized by increased transmissibility and risk of hospitalization, of the vaccination campaign and alternative policy decisions. RESULTS: The spatial model better captured the heterogeneity observed in the regional dynamics, compared to models neglecting inter-regional mobility. The third lockdown was similarly effective to the second lockdown after discounting for immunity, Alpha, and seasonality (51% vs 52% median regional reduction in the reproductive number R0, respectively). The 6pm nighttime curfew with bars and restaurants closed, implemented in January 2021, substantially reduced COVID-19 transmission. It initially led to 49% median regional reduction of R0, decreasing to 43% reduction by March 2021. In absence of vaccination, implemented interventions would have been insufficient against the Alpha wave. Counterfactual scenarios proposing a sequence of lockdowns in a stop-and-go fashion would have reduced hospitalizations and restriction days for low enough thresholds triggering and lifting restrictions. CONCLUSIONS: Spatial connectivity induced by mobility impacted the effectiveness of interventions especially in regions with higher mobility rates. Early evening curfew with gastronomy sector closed allowed authorities to delay the third wave. Stop-and-go lockdowns could have substantially lowered both healthcare and societal burdens if implemented early enough, compared to the observed application of lockdown-curfew-lockdown, but likely at the expense of several labor sectors. These findings contribute to characterize the effectiveness of implemented strategies and improve pandemic preparedness.


Asunto(s)
COVID-19 , Teléfono Celular , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , Francia/epidemiología , Instituciones de Salud
6.
PLoS Med ; 20(12): e1004317, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060611

RESUMEN

BACKGROUND: Asymptomatic and paucisymptomatic infections account for a substantial portion of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmissions. The value of intensified screening strategies, especially in emergency departments (EDs), in reaching asymptomatic and paucisymptomatic patients and helping to improve detection and reduce transmission has not been documented. The objective of this study was to evaluate in EDs whether an intensified SARS-CoV-2 screening strategy combining nurse-driven screening for asymptomatic/paucisymptomatic patients with routine practice (intervention) could contribute to higher detection of SARS-CoV-2 infections compared to routine practice alone, including screening for symptomatic or hospitalized patients (control). METHODS AND FINDINGS: We conducted a cluster-randomized, two-period, crossover trial from February 2021 to May 2021 in 18 EDs in the Paris metropolitan area, France. All adults visiting the EDs were eligible. At the start of the first period, 18 EDs were randomized to the intervention or control strategy by balanced block randomization with stratification, with the alternative condition being applied in the second period. During the control period, routine screening for SARS-CoV-2 included screening for symptomatic or hospitalized patients. During the intervention period, in addition to routine screening practice, a questionnaire about risk exposure and symptoms and a SARS-CoV-2 screening test were offered by nurses to all remaining asymptomatic/paucisymptomatic patients. The primary outcome was the proportion of newly diagnosed SARS-CoV-2-positive patients among all adults visiting the 18 EDs. Primary analysis was by intention-to-treat. The primary outcome was analyzed using a generalized linear mixed model (Poisson distribution) with the center and center by period as random effects and the strategy (intervention versus control) and period (modeled as a weekly categorical variable) as fixed effects with additional adjustment for community incidence. During the intervention and control periods, 69,248 patients and 69,104 patients, respectively, were included for a total of 138,352 patients. Patients had a median age of 45.0 years [31.0, 63.0], and women represented 45.7% of the patients. During the intervention period, 6,332 asymptomatic/paucisymptomatic patients completed the questionnaire; 4,283 were screened for SARS-CoV-2 by nurses, leading to 224 new SARS-CoV-2 diagnoses. A total of 1,859 patients versus 2,084 patients were newly diagnosed during the intervention and control periods, respectively (adjusted analysis: 26.7/1,000 versus 26.2/1,000, adjusted relative risk: 1.02 (95% confidence interval (CI) [0.94, 1.11]; p = 0.634)). The main limitation of this study is that it was conducted in a rapidly evolving epidemiological context. CONCLUSIONS: The results of this study showed that intensified screening for SARS-CoV-2 in EDs was unlikely to identify a higher proportion of newly diagnosed patients. TRIAL REGISTRATION: Trial registration number: ClinicalTrials.gov NCT04756609.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Femenino , Humanos , Persona de Mediana Edad , COVID-19/diagnóstico , COVID-19/epidemiología , Estudios Cruzados , Servicio de Urgencia en Hospital , Francia/epidemiología , Paris/epidemiología , Encuestas y Cuestionarios , Masculino
7.
Euro Surveill ; 28(5)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36729116

RESUMEN

BackgroundAs record cases of Omicron variant were registered in Europe in early 2022, schools remained a vulnerable setting undergoing large disruption.AimThrough mathematical modelling, we compared school protocols of reactive screening, regular screening, and reactive class closure implemented in France, in Baselland (Switzerland), and in Italy, respectively, and assessed them in terms of case prevention, testing resource demand, and schooldays lost.MethodsWe used a stochastic agent-based model of SARS-CoV-2 transmission in schools accounting for within- and across-class contacts from empirical contact data. We parameterised it to the Omicron BA.1 variant to reproduce the French Omicron wave in January 2022. We simulated the three protocols to assess their costs and effectiveness for varying peak incidence rates in the range experienced by European countries.ResultsWe estimated that at the high incidence rates registered in France during the Omicron BA.1 wave in January 2022, the reactive screening protocol applied in France required higher test resources compared with the weekly screening applied in Baselland (0.50 vs 0.45 tests per student-week), but achieved considerably lower control (8% vs 21% reduction of peak incidence). The reactive class closure implemented in Italy was predicted to be very costly, leading to > 20% student-days lost.ConclusionsAt high incidence conditions, reactive screening protocols generate a large and unplanned demand in testing resources, for marginal control of school transmissions. Comparable or lower resources could be more efficiently used through weekly screening. Our findings can help define incidence levels triggering school protocols and optimise their cost-effectiveness.


Asunto(s)
COVID-19 , Humanos , Suiza , Incidencia , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Francia/epidemiología , Italia/epidemiología , Instituciones Académicas
8.
BMC Med ; 20(1): 33, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35078469

RESUMEN

BACKGROUND: Vaccination is expected to change the epidemiology and management of SARS-CoV-2 epidemics. METHODS: We used an age-stratified compartmental model calibrated to French data to anticipate these changes and determine implications for the control of an autumn epidemic. We assumed vaccines reduce the risk of hospitalization, infection, and transmission if infected by 95%, 60%, and 50%, respectively. RESULTS: In our baseline scenario characterized by basic reproduction number R0=5 and a vaccine coverage of 70-80-90% among 12-17, 18-59, and ≥ 60 years old, important stress on healthcare is expected in the absence of measures. Unvaccinated adults ≥60 years old represent 3% of the population but 43% of hospitalizations. Given limited vaccine coverage, children aged 0-17 years old represent a third of infections and are responsible for almost half of transmissions. Unvaccinated individuals have a disproportionate contribution to transmission so that measures targeting them may help maximize epidemic control while minimizing costs for society compared to non-targeted approaches. Of all the interventions considered including repeated testing and non-pharmaceutical measures, vaccination of the unvaccinated is the most effective. CONCLUSIONS: With the Delta variant, vaccinated individuals are well protected against hospitalization but remain at risk of infection and should therefore apply protective behaviors (e.g., mask-wearing). Targeting non-vaccinated individuals may maximize epidemic control while minimizing costs for society. Vaccinating children protects them from the deleterious effects of non-pharmaceutical measures. Control strategies should account for the changing SARS-CoV-2 epidemiology.


Asunto(s)
COVID-19 , Epidemias , Adolescente , Adulto , Vacunas contra la COVID-19 , Niño , Preescolar , Modelos Epidemiológicos , Francia/epidemiología , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , SARS-CoV-2
9.
PLoS Comput Biol ; 17(3): e1008642, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705381

RESUMEN

The lower an individual's socioeconomic position, the higher their risk of poor health in low-, middle-, and high-income settings alike. As health inequities grow, it is imperative that we develop an empirically-driven mechanistic understanding of the determinants of health disparities, and capture disease burden in at-risk populations to prevent exacerbation of disparities. Past work has been limited in data or scope and has thus fallen short of generalizable insights. Here, we integrate empirical data from observational studies and large-scale healthcare data with models to characterize the dynamics and spatial heterogeneity of health disparities in an infectious disease case study: influenza. We find that variation in social and healthcare-based determinants exacerbates influenza epidemics, and that low socioeconomic status (SES) individuals disproportionately bear the burden of infection. We also identify geographical hotspots of influenza burden in low SES populations, much of which is overlooked in traditional influenza surveillance, and find that these differences are most predicted by variation in susceptibility and access to sickness absenteeism. Our results highlight that the effect of overlapping factors is synergistic and that reducing this intersectionality can significantly reduce inequities. Additionally, health disparities are expressed geographically, and targeting public health efforts spatially may be an efficient use of resources to abate inequities. The association between health and socioeconomic prosperity has a long history in the epidemiological literature; addressing health inequities in respiratory-transmitted infectious disease burden is an important step towards social justice in public health, and ignoring them promises to pose a serious threat.


Asunto(s)
Disparidades en Atención de Salud/estadística & datos numéricos , Gripe Humana , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Gripe Humana/epidemiología , Gripe Humana/transmisión , Masculino , Persona de Mediana Edad , Vigilancia en Salud Pública , Factores Socioeconómicos , Adulto Joven
10.
Lancet ; 395(10227): 871-877, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-32087820

RESUMEN

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) epidemic has spread from China to 25 countries. Local cycles of transmission have already occurred in 12 countries after case importation. In Africa, Egypt has so far confirmed one case. The management and control of COVID-19 importations heavily rely on a country's health capacity. Here we evaluate the preparedness and vulnerability of African countries against their risk of importation of COVID-19. METHODS: We used data on the volume of air travel departing from airports in the infected provinces in China and directed to Africa to estimate the risk of importation per country. We determined the country's capacity to detect and respond to cases with two indicators: preparedness, using the WHO International Health Regulations Monitoring and Evaluation Framework; and vulnerability, using the Infectious Disease Vulnerability Index. Countries were clustered according to the Chinese regions contributing most to their risk. FINDINGS: Countries with the highest importation risk (ie, Egypt, Algeria, and South Africa) have moderate to high capacity to respond to outbreaks. Countries at moderate risk (ie, Nigeria, Ethiopia, Sudan, Angola, Tanzania, Ghana, and Kenya) have variable capacity and high vulnerability. We identified three clusters of countries that share the same exposure to the risk originating from the provinces of Guangdong, Fujian, and the city of Beijing, respectively. INTERPRETATION: Many countries in Africa are stepping up their preparedness to detect and cope with COVID-19 importations. Resources, intensified surveillance, and capacity building should be urgently prioritised in countries with moderate risk that might be ill-prepared to detect imported cases and to limit onward transmission. FUNDING: EU Framework Programme for Research and Innovation Horizon 2020, Agence Nationale de la Recherche.


Asunto(s)
Defensa Civil , Infecciones por Coronavirus , Epidemias/prevención & control , Recursos en Salud , Modelos Teóricos , Neumonía Viral , Vigilancia de la Población , Poblaciones Vulnerables , África/epidemiología , COVID-19 , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Planificación en Salud , Humanos , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , Medición de Riesgo , Viaje
11.
Euro Surveill ; 26(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33413741

RESUMEN

We used a mathematical model to evaluate the impact of mass testing in the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Under optimistic assumptions, one round of mass testing may reduce daily infections by up to 20-30%. Consequently, very frequent testing would be required to control a quickly growing epidemic if other control measures were to be relaxed. Mass testing is most relevant when epidemic growth remains limited through a combination of interventions.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/prevención & control , Epidemias/prevención & control , Tamizaje Masivo , Modelos Teóricos , COVID-19/epidemiología , Prueba de COVID-19/estadística & datos numéricos , Francia/epidemiología , Humanos
12.
Euro Surveill ; 26(15)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33860748

RESUMEN

Following the spread of the SARS-CoV-2 B.1.1.7 variant, social distancing was strengthened in France in January 2021. Using a two-strain mathematical model calibrated on genomic surveillance, we estimated that curfew measures allowed hospitalisations to plateau by decreasing transmission of the historical strains while B.1.1.7 continued to grow. School holidays appear to have further slowed down progression in February. Without progressively strengthened social distancing, a rapid surge of hospitalisations is expected, despite the foreseen increase in vaccination rhythm.


Asunto(s)
COVID-19 , SARS-CoV-2 , Francia/epidemiología , Humanos , Instituciones Académicas
13.
PLoS Med ; 17(7): e1003193, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32678827

RESUMEN

BACKGROUND: In the early months of 2020, a novel coronavirus disease (COVID-19) spread rapidly from China across multiple countries worldwide. As of March 17, 2020, COVID-19 was officially declared a pandemic by the World Health Organization. We collected data on COVID-19 cases outside China during the early phase of the pandemic and used them to predict trends in importations and quantify the proportion of undetected imported cases. METHODS AND FINDINGS: Two hundred and eighty-eight cases have been confirmed out of China from January 3 to February 13, 2020. We collected and synthesized all available information on these cases from official sources and media. We analyzed importations that were successfully isolated and those leading to onward transmission. We modeled their number over time, in relation to the origin of travel (Hubei province, other Chinese provinces, other countries) and interventions. We characterized the importation timeline to assess the rapidity of isolation and epidemiologically linked clusters to estimate the rate of detection. We found a rapid exponential growth of importations from Hubei, corresponding to a doubling time of 2.8 days, combined with a slower growth from the other areas. We predicted a rebound of importations from South East Asia in the successive weeks. Time from travel to detection has considerably decreased since first importation, from 14.5 ± 5.5 days on January 5, 2020, to 6 ± 3.5 days on February 1, 2020. However, we estimated 36% of detection of imported cases. This study is restricted to the early phase of the pandemic, when China was the only large epicenter and foreign countries had not discovered extensive local transmission yet. Missing information in case history was accounted for through modeling and imputation. CONCLUSIONS: Our findings indicate that travel bans and containment strategies adopted in China were effective in reducing the exportation growth rate. However, the risk of importation was estimated to increase again from other sources in South East Asia. Surveillance and management of traveling cases represented a priority in the early phase of the epidemic. With the majority of imported cases going undetected (6 out of 10), countries experienced several undetected clusters of chains of local transmissions, fueling silent epidemics in the community. These findings become again critical to prevent second waves, now that countries have reduced their epidemic activity and progressively phase out lockdown.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Modelos Teóricos , Neumonía Viral/epidemiología , Viaje , Betacoronavirus , COVID-19 , China/epidemiología , Control de Enfermedades Transmisibles/métodos , Infecciones por Coronavirus/transmisión , Humanos , Pandemias , Neumonía Viral/transmisión , SARS-CoV-2
14.
BMC Med ; 18(1): 240, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32727547

RESUMEN

BACKGROUND: More than half of the global population is under strict forms of social distancing. Estimating the expected impact of lockdown and exit strategies is critical to inform decision makers on the management of the COVID-19 health crisis. METHODS: We use a stochastic age-structured transmission model integrating data on age profile and social contacts in Île-de-France to (i) assess the epidemic in the region, (ii) evaluate the impact of lockdown, and (iii) propose possible exit strategies and estimate their effectiveness. The model is calibrated to hospital admission data before lockdown. Interventions are modeled by reconstructing the associated changes in the contact matrices and informed by mobility reductions during lockdown evaluated from mobile phone data. Different types and durations of social distancing are simulated, including progressive and targeted strategies, with large-scale testing. RESULTS: We estimate the reproductive number at 3.18 [3.09, 3.24] (95% confidence interval) prior to lockdown and at 0.68 [0.66, 0.69] during lockdown, thanks to an 81% reduction of the average number of contacts. Model predictions capture the disease dynamics during lockdown, showing the epidemic curve reaching ICU system capacity, largely strengthened during the emergency, and slowly decreasing. Results suggest that physical contacts outside households were largely avoided during lockdown. Lifting the lockdown with no exit strategy would lead to a second wave overwhelming the healthcare system, if conditions return to normal. Extensive case finding and isolation are required for social distancing strategies to gradually relax lockdown constraints. CONCLUSIONS: As France experiences the first wave of COVID-19 pandemic in lockdown, intensive forms of social distancing are required in the upcoming months due to the currently low population immunity. Extensive case finding and isolation would allow the partial release of the socio-economic pressure caused by extreme measures, while avoiding healthcare demand exceeding capacity. Response planning needs to urgently prioritize the logistics and capacity for these interventions.


Asunto(s)
Betacoronavirus , Control de Enfermedades Transmisibles/métodos , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Aislamiento Social , COVID-19 , Infecciones por Coronavirus/epidemiología , Francia , Hospitalización/estadística & datos numéricos , Humanos , Neumonía Viral/epidemiología , SARS-CoV-2
15.
PLoS Comput Biol ; 15(4): e1006173, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30958817

RESUMEN

Seasonal influenza surveillance is usually carried out by sentinel general practitioners (GPs) who compile weekly reports based on the number of influenza-like illness (ILI) clinical cases observed among visited patients. This traditional practice for surveillance generally presents several issues, such as a delay of one week or more in releasing reports, population biases in the health-seeking behaviour, and the lack of a common definition of ILI case. On the other hand, the availability of novel data streams has recently led to the emergence of non-traditional approaches for disease surveillance that can alleviate these issues. In Europe, a participatory web-based surveillance system called Influenzanet represents a powerful tool for monitoring seasonal influenza epidemics thanks to aid of self-selected volunteers from the general population who monitor and report their health status through Internet-based surveys, thus allowing a real-time estimate of the level of influenza circulating in the population. In this work, we propose an unsupervised probabilistic framework that combines time series analysis of self-reported symptoms collected by the Influenzanet platforms and performs an algorithmic detection of groups of symptoms, called syndromes. The aim of this study is to show that participatory web-based surveillance systems are capable of detecting the temporal trends of influenza-like illness even without relying on a specific case definition. The methodology was applied to data collected by Influenzanet platforms over the course of six influenza seasons, from 2011-2012 to 2016-2017, with an average of 34,000 participants per season. Results show that our framework is capable of selecting temporal trends of syndromes that closely follow the ILI incidence rates reported by the traditional surveillance systems in the various countries (Pearson correlations ranging from 0.69 for Italy to 0.88 for the Netherlands, with the sole exception of Ireland with a correlation of 0.38). The proposed framework was able to forecast quite accurately the ILI trend of the forthcoming influenza season (2016-2017) based only on the available information of the previous years (2011-2016). Furthermore, to broaden the scope of our approach, we applied it both in a forecasting fashion to predict the ILI trend of the 2016-2017 influenza season (Pearson correlations ranging from 0.60 for Ireland and UK, and 0.85 for the Netherlands) and also to detect gastrointestinal syndrome in France (Pearson correlation of 0.66). The final result is a near-real-time flexible surveillance framework not constrained by any specific case definition and capable of capturing the heterogeneity in symptoms circulation during influenza epidemics in the various European countries.


Asunto(s)
Epidemias , Gripe Humana/epidemiología , Algoritmos , Biología Computacional , Interpretación Estadística de Datos , Epidemias/estadística & datos numéricos , Europa (Continente)/epidemiología , Humanos , Incidencia , Gripe Humana/diagnóstico , Internet , Modelos Estadísticos , Estaciones del Año , Autoinforme/estadística & datos numéricos , Vigilancia de Guardia , Síndrome , Aprendizaje Automático no Supervisado
16.
BMC Public Health ; 20(1): 1146, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32693787

RESUMEN

BACKGROUND: Although it is rarely fatal in developed countries, acute gastroenteritis (AGE) still induces significant morbidity and economic costs. The objective of this study was to identify factors associated with AGE in winter in the general population. METHODS: A prospective study was performed during winter seasons from 2014 to 2015 to 2016-2017. Participants filled an inclusion survey and reported weekly data on acute symptoms. Factors associated with having at least one AGE episode per winter season were analyzed using the generalized estimating equations (GEE) approach. RESULTS: They were 13,974 participants included in the study over the three seasons. On average, 8.1% of participants declared at least one AGE episode during a winter season. People over 60 declared fewer AGE episodes (adjusted OR (aOR) = 0.76, 95% CI [0.64; 0.89]) compared to individuals between 15 and 60 years old, as well as children between 10 and 15 (aOR = 0.60 [0.37; 0.98]). Overweight (aOR = 1.25 [1.07; 1.45]) and obese (aOR = 1.47 [1.19; 1.81]) individuals, those having frequent cold (aOR = 1.63 [1.37; 1.94]) and those with at least one chronic condition (aOR = 1.35 [1.16; 1.58]) had more AGE episodes. Living alone was associated with a higher AGE episode rate (aOR = 1.31 [1.09; 1.59]), as well as having pets at home (aOR = 1.23 [1.08; 1.41]). CONCLUSIONS: Having a better knowledge of AGE determinants will be useful to adapt public health prevention messages.


Asunto(s)
Gastroenteritis/epidemiología , Gastroenteritis/etiología , Salud Pública/estadística & datos numéricos , Enfermedad Aguda , Adolescente , Adulto , Niño , Preescolar , Femenino , Francia/epidemiología , Humanos , Internet , Masculino , Persona de Mediana Edad , Morbilidad , Sobrepeso/complicaciones , Sobrepeso/epidemiología , Estudios Prospectivos , Factores de Riesgo , Estaciones del Año , Encuestas y Cuestionarios , Adulto Joven
17.
Euro Surveill ; 25(4)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32019667

RESUMEN

As at 27 January 2020, 42 novel coronavirus (2019-nCoV) cases were confirmed outside China. We estimate the risk of case importation to Europe from affected areas in China via air travel. We consider travel restrictions in place, three reported cases in France, one in Germany. Estimated risk in Europe remains high. The United Kingdom, Germany and France are at highest risk. Importation from Beijing and Shanghai would lead to higher and widespread risk for Europe.


Asunto(s)
Viaje en Avión , Betacoronavirus , Infecciones por Coronavirus , Neumonía Viral , Política Pública , Medición de Riesgo , COVID-19 , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Brotes de Enfermedades , Europa (Continente)/epidemiología , Humanos , Modelos Teóricos , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , SARS-CoV-2
18.
Euro Surveill ; 25(14)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32290901

RESUMEN

Several French regions where coronavirus disease (COVID-19) has been reported currently show a renewed increase in ILI cases in the general practice-based Sentinelles network. We computed the number of excess cases by region from 24 February to 8 March 2020 and found a correlation with the number of reported COVID-19 cases so far. The data suggest larger circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the French population than apparent from confirmed cases.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Coronavirus , Gripe Humana/epidemiología , Pandemias , Neumonía Viral/epidemiología , Vigilancia de Guardia , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/transmisión , Brotes de Enfermedades , Francia/epidemiología , Humanos , Neumonía Viral/transmisión , SARS-CoV-2
19.
PLoS Comput Biol ; 14(8): e1006334, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30067732

RESUMEN

Annual incidence rates of varicella infection in the general population in France have been rather stable since 1991 when clinical surveillance started. Rates however show a statistically significant increase over time in children aged 0-3 years, and a decline in older individuals. A significant increase in day-care enrolment and structures' capacity in France was also observed in the last decade. In this work we investigate the potential interplay between an increase of contacts of young children possibly caused by earlier socialization in the community and varicella transmission dynamics. To this aim, we develop an age-structured mathematical model, informed with historical demographic data and contact matrix estimates in the country, accounting for longitudinal linear increase of early childhood contacts. While the reported overall varicella incidence is well reproduced independently of mixing variations, age-specific empirical trends are better captured by accounting for an increase in contacts among pre-school children in the last decades. We found that the varicella data are consistent with a 30% increase in the number of contacts at day-care facilities, which would imply a 50% growth in the contribution of 0-3y old children to overall yearly infections in 1991-2015. Our findings suggest that an earlier exposure to pathogens due to changes in day-care contact patterns, represents a plausible explanation for the epidemiological patterns observed in France. Obtained results suggest that considering temporal changes in social factors in addition to demographic ones is critical to correctly interpret varicella transmission dynamics.


Asunto(s)
Varicela/epidemiología , Guarderías Infantiles/tendencias , Factores de Edad , Preescolar , Transmisión de Enfermedad Infecciosa/historia , Femenino , Francia/epidemiología , Herpesvirus Humano 3 , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Modelos Teóricos , Vacunación
20.
BMC Public Health ; 19(1): 879, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31272411

RESUMEN

BACKGROUND: Influenza generates a significant societal impact on morbidity, mortality, and associated costs. The study objective was to identify factors associated with influenza-like-illness (ILI) episodes during seasonal influenza epidemics among the general population. METHODS: A prospective study was conducted with the GrippeNet.fr crowdsourced cohort between 2012/13 and 2017/18. After having completed a yearly profile survey detailing socio-demographic, lifestyle and health characteristics, participants reported weekly data on symptoms. Factors associated with at least one ILI episode per influenza epidemic, using the European Centre for Disease Prevention and Control case definition, were analyzed through a conditional logistic regression model. RESULTS: From 2012/13 to 2017/18, 6992 individuals participated at least once, and 61% of them were women (n = 4258). From 11% (n = 469/4140 in 2013/14) to 29% (n = 866/2943 in 2012/13) of individuals experienced at least one ILI during an influenza epidemic. Factors associated with higher risk for ILI were: gender female (OR = 1.29, 95%CI [1.20; 1.40]), young age (< 5 years old: 3.12 [2.05; 4.68]); from 5 to 14 years old: 1.53 [1.17; 2.00]), respiratory allergies (1.27 [1.18; 1.37]), receiving a treatment for chronic disease (1.20 [1.09; 1.32]), being overweight (1.18 [1.08; 1.29]) or obese (1.28 [1.14; 1.44]), using public transport (1.17 [1.07; 1.29]) and having contact with pets (1.18 [1.09; 1.27]). Older age (≥ 75 years old: 0.70 [0.56; 0.87]) and being vaccinated against influenza (0.91 [0.84; 0.99]) were found to be protective factors for ILI. CONCLUSIONS: This ILI risk factors analysis confirms and further completes the list of factors observed through traditional surveillance systems. It indicates that crowdsourced cohorts are effective to study ILI determinants at the population level. These findings could be used to adapt influenza prevention messages at the population level to reduce the spread of the disease.


Asunto(s)
Colaboración de las Masas , Gripe Humana/epidemiología , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA