Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Gen Virol ; 102(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34236957

RESUMEN

Mosquito-borne flaviviruses are significant contributors to the arboviral disease burdens both in Australia and globally. While routine arbovirus surveillance remains a vital exercise to identify known flaviviruses in mosquito populations, novel or divergent and emerging species can be missed by these traditional methods. The MAVRIC (monoclonal antibodies to viral RNA intermediates in cells) system is an ELISA-based method for broad-spectrum isolation of positive-sense and double-stranded RNA (dsRNA) viruses based on detection of dsRNA in infected cells. While the MAVRIC ELISA has successfully been used to detect known and novel flaviviruses in Australian mosquitoes, we previously reported that dsRNA could not be detected in dengue virus-infected cells using this method. In this study we identified additional flaviviruses which evade detection of dsRNA by the MAVRIC ELISA. Utilising chimeric flaviviruses we demonstrated that this outcome may be dictated by the non-structural proteins and/or untranslated regions of the flaviviral genome. In addition, we report a modified fixation method that enables improved detection of flavivirus dsRNA and inactivation of non-enveloped viruses from mosquito populations using the MAVRIC system. This study demonstrates the utility of anti-dsRNA monoclonal antibodies for identifying viral replication in insect and vertebrate cell systems and highlights a unique characteristic of flavivirus replication.


Asunto(s)
Culicidae/virología , Flavivirus/aislamiento & purificación , Flavivirus/fisiología , ARN Bicatenario/análisis , ARN Viral/análisis , Aedes/virología , Animales , Anticuerpos Monoclonales , Australia , Línea Celular , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Virus del Dengue/fisiología , Ensayo de Inmunoadsorción Enzimática , Flavivirus/genética , ARN Bicatenario/inmunología , ARN Viral/inmunología , Proteínas del Envoltorio Viral/análisis , Proteínas del Envoltorio Viral/metabolismo , Proteínas no Estructurales Virales/análisis , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
2.
J Gen Virol ; 101(4): 440-452, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32003709

RESUMEN

We report the isolation of Australian strains of Bustos virus and Ngewotan virus, two insect-specific viruses in the newly identified taxon Negevirus, originally isolated from Southeast Asian mosquitoes. Consistent with the expected insect-specific tropism of negeviruses, these isolates of Ngewotan and Bustos viruses, alongside the Australian negevirus Castlerea virus, replicated exclusively in mosquito cells but not in vertebrate cells, even when their temperature was reduced to 34 °C. Our data confirmed the existence of two structural proteins, putatively one membrane protein forming the majority of the virus particle, and one glycoprotein forming a projection on the apex of the virions. We generated and characterized 71 monoclonal antibodies to both structural proteins of the two viruses, most of which were neutralizing. Overall, these data increase our knowledge of negevirus mechanisms of infection and replication in vitro.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Culicidae/virología , Virus de Insectos/fisiología , Proteínas Estructurales Virales/inmunología , Virión/metabolismo , Replicación Viral/genética , Animales , Australia , Línea Celular , Chlorocebus aethiops , Cricetinae , Genoma Viral , Glicoproteínas/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad del Huésped/fisiología , Hibridomas/inmunología , Virus de Insectos/genética , Virus de Insectos/inmunología , Virus de Insectos/aislamiento & purificación , Proteínas de la Membrana/inmunología , Microscopía Electrónica , Filogenia , Células Vero , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Virión/ultraestructura
3.
Transfusion ; 60(11): 2655-2660, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32830340

RESUMEN

Japanese encephalitis virus (JEV) is endemic to tropical areas in Asia and the Western Pacific. It can cause fatal encephalitis, although most infected individuals are asymptomatic. JEV is mainly transmitted to humans through the bite of an infected mosquito, but can also be transmitted through blood transfusion. To manage the potential risk of transfusion transmission, pathogen inactivation (PI) technologies, such as THERAFLEX MB-Plasma and THERAFLEX UV-Platelets systems, have been developed. We examined the efficacy of these two PI systems to inactivate JEV. STUDY DESIGN AND METHODS: Japanese encephalitis virus-spiked plasma units were treated using the THERAFLEX MB-Plasma system (visible light doses, 20, 40, 60, and 120 [standard] J/cm2) in the presence of methylene blue at approximately 0.8 µmol/L and spiked platelet concentrates (PCs) were treated using the THERAFLEX UV-Platelets system (UVC doses, 0.05, 0.10, 0.15, and 0.20 [standard] J/cm2). Samples were taken before the first and after each illumination dose and tested for infectivity using an immunoplaque assay. RESULTS: Treatment of plasma with the THERAFLEX MB-Plasma system resulted in an average of 6.59 log reduction in JEV infectivity at one-sixth of the standard visible light dose (20 J/cm2). For PCs, treatment with the THERAFLEX UV-Platelet system resulted in an average of 7.02 log reduction in JEV infectivity at the standard UVC dose (0.20 J/cm2). CONCLUSIONS: The THERAFLEX MB-Plasma and THERAFLEX UV-Platelets systems effectively inactivated JEV in plasma or PCs, and thus these PI technologies could be an effective option to reduce the risk of JEV transfusion transmission.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/crecimiento & desarrollo , Luz , Azul de Metileno/farmacología , Plasma/virología , Inactivación de Virus , Humanos , Inactivación de Virus/efectos de los fármacos , Inactivación de Virus/efectos de la radiación
4.
J Gen Virol ; 99(4): 596-609, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29533743

RESUMEN

Liao ning virus (LNV) was first isolated in 1996 from mosquitoes in China, and has been shown to replicate in selected mammalian cell lines and to cause lethal haemorrhagic disease in experimentally infected mice. The first detection of LNV in Australia was by deep sequencing of mosquito homogenates. We subsequently isolated LNV from mosquitoes of four genera (Culex, Anopheles, Mansonia and Aedes) in New South Wales, Northern Territory, Queensland and Western Australia; the earliest of these Australian isolates were obtained from mosquitoes collected in 1988, predating the first Chinese isolates. Genetic analysis revealed that the Australian LNV isolates formed two new genotypes: one including isolates from eastern and northern Australia, and the second comprising isolates from the south-western corner of the continent. In contrast to findings reported for the Chinese LNV isolates, the Australian LNV isolates did not replicate in vertebrate cells in vitro or in vivo, or produce signs of disease in wild-type or immunodeficient mice. A panel of human and animal sera collected from regions where the virus was found in high prevalence also showed no evidence of LNV-specific antibodies. Furthermore, high rates of virus detection in progeny reared from infected adult female mosquitoes, coupled with visualization of the virus within the ovarian follicles by immunohistochemistry, suggest that LNV is transmitted transovarially. Thus, despite relatively minor genomic differences between Chinese and Australian LNV strains, the latter display a characteristic insect-specific phenotype.


Asunto(s)
Aedes/virología , Anopheles/virología , Culex/virología , Mosquitos Vectores/virología , Infecciones por Reoviridae/virología , Reoviridae/aislamiento & purificación , Aedes/fisiología , Animales , Anopheles/fisiología , Australia , China , Culex/fisiología , Femenino , Genoma Viral , Genotipo , Especificidad del Huésped , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mosquitos Vectores/fisiología , Fenotipo , Filogenia , Reoviridae/clasificación , Reoviridae/genética , Reoviridae/fisiología , Infecciones por Reoviridae/transmisión , Replicación Viral
5.
Arch Virol ; 162(11): 3529-3534, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28785815

RESUMEN

Three new viruses classifiable within the Totivirus and Orbivirus genera were detected from Anopheles mosquito species collected in Eastern Australia. The viruses could not be isolated in C6/36 mosquito cell cultures but were shown to replicate in their mosquito hosts by small RNA analysis. The viruses grouped phylogenetically with other viruses recently detected in insects. These discoveries contribute to a better understanding of commensal viruses in Australian mosquitoes and the evolution of these viruses.


Asunto(s)
Anopheles/virología , Orbivirus/aislamiento & purificación , Totivirus/aislamiento & purificación , Distribución Animal , Animales , Australia , Línea Celular , Orbivirus/genética , Filogenia , Totivirus/genética
6.
Emerg Infect Dis ; 22(5): 833-40, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27088588

RESUMEN

To better understand the diversity of bunyaviruses and their circulation in Australia, we sequenced 5 viruses (Gan Gan, Trubanaman, Kowanyama, Yacaaba, and Taggert) isolated and serologically identified 4 decades ago as members of the family Bunyaviridae. Gan Gan and Trubanaman viruses almost perfectly matched 2 recently isolated, purportedly novel viruses, Salt Ash and Murrumbidgee viruses, respectively. Kowanyama and Yacaaba viruses were identified as being related to members of a large clade containing pathogenic viruses. Taggert virus was confirmed as being a nairovirus; several viruses of this genus are pathogenic to humans. The genetic relationships and historical experimental infections in mice reveal the potential for these viruses to lead to disease emergence.


Asunto(s)
Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/virología , Bunyaviridae/genética , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Secuencia de Aminoácidos , Animales , Australia/epidemiología , Bunyaviridae/clasificación , Bunyaviridae/aislamiento & purificación , Bunyaviridae/ultraestructura , Infecciones por Bunyaviridae/transmisión , Enfermedades Transmisibles Emergentes/transmisión , Genoma Viral , Humanos , Filogenia , ARN Viral , Proteínas Virales/química , Proteínas Virales/genética
7.
J Gen Virol ; 97(5): 1087-1093, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26878841

RESUMEN

A novel flavivirus, provisionally named Bamaga virus (BgV), was isolated from Culex annulirostris mosquitoes collected from northern Australia. Phylogenetic analysis of the complete nucleotide sequence of the BgV genome revealed it clustered with the yellow fever virus (YFV) group, and was most closely related to Edge Hill virus (EHV), another Australian flavivirus, with 61.9 % nucleotide and 63.7 % amino acid sequence identity. Antigenic analysis of the envelope and pre-membrane proteins of BgV further revealed epitopes common to EHV, dengue and other mosquito-borne flaviviruses. However, in contrast to these viruses, BgV displayed restricted growth in a range of vertebrate cell lines with no or relatively slow replication in inoculated cultures. There was also restricted BgV replication in virus-challenged mice. Our results indicate that BgV is an evolutionary divergent member of the YFV group of flaviviruses, and represents a novel system to study mechanisms of virus host-restriction and transmission.

8.
Viruses ; 16(4)2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675859

RESUMEN

In Australia, Soldier flies (Inopus spp.) are economically significant pests of sugarcane that currently lack a viable management strategy. Despite various research efforts, the mechanisms underlying the damage caused by soldier fly larvae remain poorly understood. Our study aims to explore whether this damage is associated with the transmission of plant viruses during larval feeding. We also explore the larval transcriptome to identify any entomopathogenic viruses with the potential to be used as biocontrol agents in future pest management programs. Seven novel virus sequences are identified and characterised using de novo assembly of RNA-Seq data obtained from salivary glands of larvae. The novel virus sequences belong to different virus families and are tentatively named SF-associated anphevirus (SFaAV), SF-associated orthomyxo-like virus (SFaOV), SF-associated narna-like virus (SFaNV), SF-associated partiti-like virus (SFaPV), SF-associated toti-like virus (SFaTV-1 and SFaTV-2) and SF-associated densovirus (SFaDV). These newly identified viruses are more likely insect-associated viruses, as phylogenetic analyses show that they cluster with other insect-specific viruses. Small RNA analysis indicates prominent peaks at both 21 nt and 26-29 nt, suggesting the activation of host siRNA and piwiRNA pathways. Our study helps to improve understanding of the virome of soldier flies and could identify insect viruses for deployment in novel pest management strategies.


Asunto(s)
Dípteros , Perfilación de la Expresión Génica , Larva , Filogenia , Saccharum , Animales , Larva/virología , Dípteros/virología , Australia , Saccharum/virología , Transcriptoma , Virus de Insectos/genética , Virus de Insectos/clasificación , Virus de Plantas/genética , Virus de Plantas/clasificación , Genoma Viral
9.
Res Sq ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585799

RESUMEN

Jingmen tick virus (JMTV) is a recently discovered segmented RNA virus, closely related to flaviviruses. It was identified for the first time in 2014, in China and subsequently in Brazil. Following this discovery, JMTV-related sequences have been identified in arthropods, vertebrates (including humans), plants, fungus and environmental samples from Asia, America, Africa, Europe and Oceania. Several studies suggest an association between these segmented flavi-like viruses, termed jingmenviruses, and febrile illness in humans. The development of rapid diagnostic assays for these viruses is therefore crucial to be prepared for a potential epidemic, for the early detection of these viruses via vector surveillance or hospital diagnosis. In this study, we designed a RT-qPCR assay to detect tick-associated jingmenviruses, validated it and tested its range and limit of detection with six tick-associated jingmenviruses using in vitro transcripts. Then we screened ticks collected in Corsica (France) from different livestock species, in order to determine the distribution of these viruses on the island. In total, 6,269 ticks from eight species were collected from 763 cattle, 538 horses, 106 sheep and 218 wild boars and grouped in 1,715 pools. We report the first detection of JMTV in Corsica, in Rhipicephalus bursa, Hyalomma marginatum and R. sanguineus ticks collected from cattle and sheep. The highest prevalence was found in the Rhipicephalus genus. The complete genome of a Corsican JMTV was obtained from a pool of Rhipicephalus bursa ticks and shares between 94.7% and 95.1% nucleotide identity with a JMTV sequence corresponding to a human patient in Kosovo and groups phylogenetically with European JMTV strains. These results show that a Mediterranean island such as Corsica could act as a sentinel zone for future epidemics.

10.
NPJ Vaccines ; 8(1): 93, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369653

RESUMEN

West Nile virus (WNV) causes skin lesions in farmed crocodiles leading to the depreciation of the value of their hides and significant economic losses. However, there is no commercially available vaccine designed for use in crocodilians against WNV. We tested chimeric virus vaccines composed of the non-structural genes of the insect-specific flavivirus Binjari virus (BinJV) and genes encoding the structural proteins of WNV. The BinJV/WNV chimera, is antigenically similar to wild-type WNV but replication-defective in vertebrates. Intramuscular injection of two doses of BinJV/WNV in hatchling saltwater crocodiles (Crocodylus porosus) elicited a robust neutralising antibody response and conferred protection against viremia and skin lesions after challenge with WNV. In contrast, mock-vaccinated crocodiles became viraemic and 22.2% exhibited WNV-induced lesions. This suggests that the BinJV/WNV chimera is a safe and efficacious vaccine for preventing WNV-induced skin lesions in farmed crocodilians.

11.
Viruses ; 14(6)2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35746612

RESUMEN

In Australia, soldier flies are major pests of sugarcane, and they can cause significant yield losses in some areas, possibly due to the virus' transmission to the plants. We sequenced fly larvae salivary glands and identified a novel jingmenvirus, putatively named Inopus flavus jingmenvirus 1 (IFJV1). Phylogenetic trees confirmed that IFJV1 groups with insect-associated jingmenviruses, newly identified flavivirus-like viruses with a segmented genome. After the design and the validation of molecular detection systems for IFJV1, larval homogenates were passaged on insect and vertebrate cells, but IFJV1 could only be detected in the first two passages in insect cells and not at all in vertebrate cells. Despite this lack of consistent replication in laboratory models, this virus does replicate in its host Inopus flavus, as sequenced, small RNA from the larvae matched the IFJV1 sequences. Moreover, they were found to be predominantly 21 nucleotides long and map to the whole sequences on both strands, which is typical of an actively replicating virus. This discovery confirms the worldwide presence of jingmenviruses which, until now, had only been detected on four continents. However, the study of IFJV1 tropism and the possible pathogenicity to its host or the sugarcane it parasitizes requires the development of a stable replication model.


Asunto(s)
Dípteros , Saccharum , Animales , Australia , Dípteros/genética , Larva , Filogenia
12.
Front Microbiol ; 13: 997058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299728

RESUMEN

Jingmenviruses are a group of viruses identified recently, in 2014, and currently classified by the International Committee on Taxonomy of Viruses as unclassified Flaviviridae. These viruses closely related to flaviviruses are unique due to the segmented nature of their genome. The prototype jingmenvirus, Jingmen tick virus (JMTV), was discovered in Rhipicephalus microplus ticks collected from China in 2010. Jingmenviruses genomes are composed of four to five segments, encoding for up to seven structural proteins and two non-structural proteins, both of which display strong similarities with flaviviral non-structural proteins (NS2B/NS3 and NS5). Jingmenviruses are currently separated into two phylogenetic clades. One clade includes tick- and vertebrate-associated jingmenviruses, which have been detected in ticks and mosquitoes, as well as in humans, cattle, monkeys, bats, rodents, sheep, and tortoises. In addition to these molecular and serological detections, over a hundred human patients tested positive for jingmenviruses after developing febrile illness and flu-like symptoms in China and Serbia. The second phylogenetic clade includes insect-associated jingmenvirus sequences, which have been detected in a wide range of insect species, as well as in crustaceans, plants, and fungi. In addition to being found in various types of hosts, jingmenviruses are endemic, as they have been detected in a wide range of environments, all over the world. Taken together, all of these elements show that jingmenviruses correspond exactly to the definition of emerging viruses at risk of causing a pandemic, since they are already endemic, have a close association with arthropods, are found in animals in close contact with humans, and have caused sporadic cases of febrile illness in multiple patients. Despite these arguments, the vast majority of published data is from metagenomics studies and many aspects of jingmenvirus replication remain to be elucidated, such as their tropism, cycle of transmission, structure, and mechanisms of replication and restriction or epidemiology. It is therefore crucial to prioritize jingmenvirus research in the years to come, to be prepared for their emergence as human or veterinary pathogens.

13.
Nat Commun ; 13(1): 1279, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277507

RESUMEN

Subgenomic flaviviral RNAs (sfRNAs) are virus-derived noncoding RNAs produced by pathogenic mosquito-borne flaviviruses (MBF) to counteract the host antiviral response. To date, the ability of non-pathogenic flaviviruses to produce and utilise sfRNAs remains largely unexplored, and it is unclear what role XRN1 resistance plays in flavivirus evolution and host adaptation. Herein the production of sfRNAs by several insect-specific flaviviruses (ISFs) that replicate exclusively in mosquitoes is shown, and the secondary structures of their complete 3'UTRs are determined. The xrRNAs responsible for the biogenesis of ISF sfRNAs are also identified, and the role of these sfRNAs in virus replication is demonstrated. We demonstrate that 3'UTRs of all classical ISFs, except Anopheles spp-asscoaited viruses, and of the dual-host associated ISF Binjari virus contain duplicated xrRNAs. We also reveal novel structural elements in the 3'UTRs of dual host-associated and Anopheles-associated classical ISFs. Structure-based phylogenetic analysis demonstrates that xrRNAs identified in Anopheles spp-associated ISF are likely ancestral to xrRNAs of ISFs and MBFs. In addition, our data provide evidence that duplicated xrRNAs are selected in the evolution of flaviviruses to provide functional redundancy, which preserves the production of sfRNAs if one of the structures is disabled by mutations or misfolding.


Asunto(s)
Culicidae , Flavivirus , Regiones no Traducidas 3'/genética , Animales , Flavivirus/genética , Genoma Viral , Filogenia , ARN Viral/química , ARN Viral/genética
14.
J Med Chem ; 65(8): 6231-6249, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35439007

RESUMEN

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/virología , Exorribonucleasas/antagonistas & inhibidores , Exorribonucleasas/química , Humanos , Metiltransferasas , Simulación del Acoplamiento Molecular , ARN Viral/genética , S-Adenosilmetionina , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Sulfonamidas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química
15.
Elife ; 112022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35900198

RESUMEN

Mimivirus is the prototype of the Mimiviridae family of giant dsDNA viruses. Little is known about the organization of the 1.2 Mb genome inside the membrane-limited nucleoid filling the ~0.5 µm icosahedral capsids. Cryo-electron microscopy, cryo-electron tomography, and proteomics revealed that it is encased into a ~30-nm diameter helical protein shell surprisingly composed of two GMC-type oxidoreductases, which also form the glycosylated fibrils decorating the capsid. The genome is arranged in 5- or 6-start left-handed super-helices, with each DNA-strand lining the central channel. This luminal channel of the nucleoprotein fiber is wide enough to accommodate oxidative stress proteins and RNA polymerase subunits identified by proteomics. Such elegant supramolecular organization would represent a remarkable evolutionary strategy for packaging and protecting the genome, in a state ready for immediate transcription upon unwinding in the host cytoplasm. The parsimonious use of the same protein in two unrelated substructures of the virion is unexpected for a giant virus with thousand genes at its disposal.


Asunto(s)
Virus Gigantes , Mimiviridae , Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Genoma Viral , Virus Gigantes/genética , Mimiviridae/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Oxidorreductasas/metabolismo
16.
Viruses ; 14(9)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36146689

RESUMEN

Mosquitoes (n = 4381 in 198 pools) were collected in March and April 2018 to survey the presence of West Nile virus Kunjin strain in mosquito populations around crocodile farms in the Darwin region of the Northern Territory (NT) of Australia. While no Kunjin virus was detected in these mosquitoes, we applied our viral replicative intermediates screening system termed monoclonal antibodies to viral RNA intermediates in cells or MAVRIC to this set of samples. This resulted in the detection of 28 pools with virus replicating in C6/36 mosquito cells and the identification of three insect viruses from three distinct virus classes. We demonstrate the persistence of the insect-specific flavivirus Palm Creek virus in Coquillettidia xanthogaster mosquitoes from Darwin over almost a decade, with limited genetic drift. We also detected a novel Hubei macula-like virus 3 strain in samples from two mosquito genera, suggesting the virus, for which the sequence was originally detected in spiders and soybean thrips, might be involved in a horizontal transmission cycle between arthropods and plants. Overall, these data demonstrate the strength of the optimized MAVRIC system and contribute to our general knowledge of the mosquito virome and insect viruses.


Asunto(s)
Arbovirus , Culicidae , Flavivirus , Virus de Insectos , Virus del Nilo Occidental , Animales , Anticuerpos Monoclonales , Arbovirus/genética , Flavivirus/genética , Virus de Insectos/genética , Northern Territory , ARN Viral/genética , Viroma , Virus del Nilo Occidental/genética
17.
Viruses ; 14(6)2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35746812

RESUMEN

The Kunjin strain of West Nile virus (WNVKUN) is a mosquito-transmitted flavivirus that can infect farmed saltwater crocodiles in Australia and cause skin lesions that devalue the hides of harvested animals. We implemented a surveillance system using honey-baited nucleic acid preservation cards to monitor WNVKUN and another endemic flavivirus pathogen, Murray Valley encephalitis virus (MVEV), on crocodile farms in northern Australia. The traps were set between February 2018 and July 2020 on three crocodile farms in Darwin (Northern Territory) and one in Cairns (North Queensland) at fortnightly intervals with reduced trapping during the winter months. WNVKUN RNA was detected on all three crocodile farms near Darwin, predominantly between March and May of each year. Two of the NT crocodile farms also yielded the detection of MVE viral RNA sporadically spread between April and November in 2018 and 2020. In contrast, no viral RNA was detected on crocodile farms in Cairns during the entire trapping period. The detection of WNVKUN and MVEV transmission by FTATM cards on farms in the Northern Territory generally correlated with the detection of their transmission to sentinel chicken flocks in nearby localities around Darwin as part of a separate public health surveillance program. While no isolates of WNVKUN or MVEV were obtained from mosquitoes collected on Darwin crocodile farms immediately following the FTATM card detections, we did isolate another flavivirus, Kokobera virus (KOKV), from Culex annulirostris mosquitoes. Our studies support the use of the FTATM card system as a sensitive and accurate method to monitor the transmission of WNVKUN and other arboviruses on crocodile farms to enable the timely implementation of mosquito control measures. Our detection of MVEV transmission and isolation of KOKV from mosquitoes also warrants further investigation of their potential role in causing diseases in crocodiles and highlights a "One Health" issue concerning arbovirus transmission to crocodile farm workers. In this context, the introduction of FTATM cards onto crocodile farms appears to provide an additional surveillance tool to detect arbovirus transmission in the Darwin region, allowing for a more timely intervention of vector control by relevant authorities.


Asunto(s)
Caimanes y Cocodrilos , Arbovirus , Culicidae , Virus de la Encefalitis del Valle Murray , Ácidos Nucleicos , Salud Única , Virus del Nilo Occidental , Animales , Arbovirus/genética , Culicidae/genética , Virus de la Encefalitis del Valle Murray/genética , Granjas , Flavivirus , Mosquitos Vectores , Northern Territory , ARN Viral/genética , Virus del Nilo Occidental/genética
18.
Viruses ; 13(4)2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805437

RESUMEN

The genus Flavivirus contains pathogenic vertebrate-infecting flaviviruses (VIFs) and insect-specific flaviviruses (ISF). ISF transmission to vertebrates is inhibited at multiple stages of the cellular infection cycle, via yet to be elucidated specific antiviral responses. The zinc-finger antiviral protein (ZAP) in vertebrate cells can bind CpG dinucleotides in viral RNA, limiting virus replication. Interestingly, the genomes of ISFs contain more CpG dinucleotides compared to VIFs. In this study, we investigated whether ZAP prevents two recently discovered lineage II ISFs, Binjari (BinJV) and Hidden Valley viruses (HVV) from replicating in vertebrate cells. BinJV protein and dsRNA replication intermediates were readily observed in human ZAP knockout cells when cultured at 34 °C. In ZAP-expressing cells, inhibition of the interferon response via interferon response factors 3/7 did not improve BinJV protein expression, whereas treatment with kinase inhibitor C16, known to reduce ZAP's antiviral function, did. Importantly, at 34 °C, both BinJV and HVV successfully completed the infection cycle in human ZAP knockout cells evident from infectious progeny virus in the cell culture supernatant. Therefore, we identify vertebrate ZAP as an important barrier that protects vertebrate cells from ISF infection. This provides new insights into flavivirus evolution and the mechanisms associated with host switching.


Asunto(s)
Aedes/virología , Flavivirus/genética , Flavivirus/fisiología , Proteínas de Unión al ARN/genética , Temperatura , Replicación Viral/genética , Células A549 , Aedes/citología , Animales , Línea Celular , Chlorocebus aethiops , Flavivirus/clasificación , Técnicas de Inactivación de Genes , Genoma Viral , Humanos , Células Vero
19.
mSphere ; 5(5)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907949

RESUMEN

Traditional screening for arboviruses in mosquitoes requires a priori knowledge and the utilization of appropriate assays for their detection. Mosquitoes can also provide other valuable information, including unexpected or novel arboviruses, nonarboviral pathogens ingested from hosts they feed on, and their own genetic material. Metagenomic analysis using next-generation sequencing (NGS) is a rapidly advancing technology that allows us to potentially obtain all this information from a mosquito sample without any prior knowledge of virus, host, or vector. Moreover, it has been recently demonstrated that pathogens, including arboviruses and parasites, can be detected in mosquito excreta by molecular methods. In this study, we investigated whether RNA viruses could be detected in mosquito excreta by NGS. Excreta samples were collected from Aedes vigilax and Culex annulirostris experimentally exposed to either Ross River or West Nile viruses and from field mosquitoes collected across Queensland, Australia. Total RNA was extracted from the excreta samples, reverse transcribed to cDNA, and sequenced using the Illumina NextSeq 500 platform. Bioinformatic analyses from the generated reads demonstrate that mosquito excreta provide sufficient RNA for NGS, allowing the assembly of near-full-length viral genomes. We detected Australian Anopheles totivirus, Wuhan insect virus 33, and Hubei odonate virus 5 and identified seven potentially novel viruses closely related to members of the order Picornavirales (2/7) and to previously described, but unclassified, RNA viruses (5/7). Our results suggest that metagenomic analysis of mosquito excreta has great potential for virus discovery and for unbiased arbovirus surveillance in the near future.IMPORTANCE When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance.


Asunto(s)
Aedes/virología , Culex/virología , Heces/virología , Virus de Insectos/clasificación , Viroma/genética , Animales , Arbovirus/clasificación , Arbovirus/aislamiento & purificación , Australia , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de Insectos/aislamiento & purificación , Metagenómica
20.
PLoS Negl Trop Dis ; 14(3): e0008166, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32203536

RESUMEN

Flaviviruses such as yellow fever, dengue or Zika viruses are responsible for significant human and veterinary diseases worldwide. These viruses contain an RNA genome, prone to mutations, which enhances their potential to emerge as pathogens. Bamaga virus (BgV) is a mosquito-borne flavivirus in the yellow fever virus group that we have previously shown to be host-restricted in vertebrates and horizontally transmissible by Culex mosquitoes. Here, we aimed to characterise BgV host-restriction and to investigate the mechanisms involved. We showed that BgV could not replicate in a wide range of vertebrate cell lines and animal species. We determined that the mechanisms involved in BgV host-restriction were independent of the type-1 interferon response and RNAse L activity. Using a BgV infectious clone and two chimeric viruses generated as hybrids between BgV and West Nile virus, we demonstrated that BgV host-restriction occurred post-cell entry. Notably, BgV host-restriction was shown to be temperature-dependent, as BgV replicated in all vertebrate cell lines at 34°C but only in a subset at 37°C. Serial passaging of BgV in Vero cells resulted in adaptive mutants capable of efficient replication at 37°C. The identified mutations resulted in amino acid substitutions in NS4A-S124F, NS4B-N244K and NS5-G2C, all occurring close to a viral protease cleavage site (NS4A/2K and NS4B/NS5). These mutations were reverse engineered into infectious clones of BgV, which revealed that NS4B-N244K and NS5-G2C were sufficient to restore BgV replication in vertebrate cells at 37°C, while NS4A-S124F further increased replication efficiency. When these mutant viruses were injected into immunocompetent mice, alongside BgV and West Nile virus chimeras, infection and neurovirulence were enhanced as determined by clinical scores, seroconversion, micro-neutralisation, viremia, histopathology and immunohistochemistry, confirming the involvement of these residues in the attenuation of BgV. Our studies identify a new mechanism of host-restriction and attenuation of a mosquito-borne flavivirus.


Asunto(s)
Infecciones por Flavivirus/virología , Flavivirus/genética , Flavivirus/patogenicidad , Mutación , Proteínas no Estructurales Virales/genética , Animales , Encéfalo/patología , Encéfalo/virología , Línea Celular , Chlorocebus aethiops , Culicidae/virología , Modelos Animales de Enfermedad , Endorribonucleasas/metabolismo , Femenino , Flavivirus/fisiología , Infecciones por Flavivirus/metabolismo , Infecciones por Flavivirus/patología , Células HEK293 , Humanos , Masculino , Ratones , Mosquitos Vectores/virología , Células Vero , Virulencia/genética , Replicación Viral , Virus del Nilo Occidental/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA