RESUMEN
Niemann-Pick type C disease (NPC) is a rare inherited neurodegenerative disorder characterized by an accumulation of intracellular cholesterol within late endosomes and lysosomes due to NPC1 or NPC2 dysfunction. In this work, we tested the hypothesis that retromer impairment may be involved in the pathogenesis of NPC and may contribute to increased amyloidogenic processing of APP and enhanced BACE1-mediated proteolysis observed in NPC disease. Using NPC1-null cells, primary mouse NPC1-deficient neurons and NPC1-deficient mice (BALB/cNctr-Npc1m1N), we show that retromer function is impaired in NPC. This is manifested by altered transport of the retromer core components Vps26, Vps35 and/or retromer receptor sorLA and by retromer accumulation in neuronal processes, such as within axonal swellings. Changes in retromer distribution in NPC1 mouse brains were observed already at the presymptomatic stage (at 4-weeks of age), indicating that the retromer defect occurs early in the course of NPC disease and may contribute to downstream pathological processes. Furthermore, we show that cholesterol depletion in NPC1-null cells and in NPC1 mouse brains reverts retromer dysfunction, suggesting that retromer impairment in NPC is mechanistically dependent on cholesterol accumulation. Thus, we characterized retromer dysfunction in NPC and propose that the rescue of retromer impairment may represent a novel therapeutic approach against NPC.
Asunto(s)
Colesterol/metabolismo , Mutación con Pérdida de Función , Neuronas/metabolismo , Proteína Niemann-Pick C1/genética , Enfermedad de Niemann-Pick Tipo C/genética , Animales , Células CHO , Células Cultivadas , Cricetulus , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Neuronas/citología , Enfermedad de Niemann-Pick Tipo C/metabolismo , Cultivo Primario de Células , Receptores de LDL/metabolismo , Proteínas de Transporte Vesicular/metabolismoRESUMEN
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Increased Aß production plays a fundamental role in the pathogenesis of the disease and BACE1, the protease that triggers the amyloidogenic processing of APP, is a key protein and a pharmacological target in AD. Changes in neuronal activity have been linked to BACE1 expression and Aß generation, but the underlying mechanisms are still unclear. We provide clear evidence for the role of Casein Kinase 2 in the control of activity-driven BACE1 expression in cultured primary neurons, organotypic brain slices, and murine AD models. More specifically, we demonstrate that neuronal activity promotes Casein Kinase 2 dependent phosphorylation of the translation initiation factor eIF4B and this, in turn, controls BACE1 expression and APP processing. Finally, we show that eIF4B expression and phosphorylation are increased in the brain of APPPS1 and APP-KI mice, as well as in AD patients. Overall, we provide a definition of a mechanism linking brain activity with amyloid production and deposition, opening new perspectives from the therapeutic standpoint.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Quinasa de la Caseína II/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Potenciales de Acción , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Quinasa de la Caseína II/antagonistas & inhibidores , Modelos Animales de Enfermedad , Silenciador del Gen , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Presenilina-1/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Previous studies have identified a crucial role of the gut microbiome in modifying Alzheimer's disease (AD) progression. However, the mechanisms of microbiome-brain interaction in AD were so far unknown. Here, we identify microbiota-derived short chain fatty acids (SCFA) as microbial metabolites which promote Aß deposition. Germ-free (GF) AD mice exhibit a substantially reduced Aß plaque load and markedly reduced SCFA plasma concentrations; conversely, SCFA supplementation to GF AD mice increased the Aß plaque load to levels of conventionally colonized (specific pathogen-free [SPF]) animals and SCFA supplementation to SPF mice even further exacerbated plaque load. This was accompanied by the pronounced alterations in microglial transcriptomic profile, including upregulation of ApoE. Despite increased microglial recruitment to Aß plaques upon SCFA supplementation, microglia contained less intracellular Aß. Taken together, our results demonstrate that microbiota-derived SCFA are critical mediators along the gut-brain axis which promote Aß deposition likely via modulation of the microglial phenotype.
Asunto(s)
Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Microglía/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Femenino , Masculino , Ratones , Organismos Libres de Patógenos EspecíficosRESUMEN
Microglial dysfunction is a key pathological feature of Alzheimer's disease (AD), but little is known about proteome-wide changes in microglia during the course of AD and their functional consequences. Here, we performed an in-depth and time-resolved proteomic characterization of microglia in two mouse models of amyloid ß (Aß) pathology, the overexpression APPPS1 and the knock-in APP-NL-G-F (APP-KI) model. We identified a large panel of Microglial Aß Response Proteins (MARPs) that reflect heterogeneity of microglial alterations during early, middle and advanced stages of Aß deposition and occur earlier in the APPPS1 mice. Strikingly, the kinetic differences in proteomic profiles correlated with the presence of fibrillar Aß, rather than dystrophic neurites, suggesting that fibrillar Aß may trigger the AD-associated microglial phenotype and the observed functional decline. The identified microglial proteomic fingerprints of AD provide a valuable resource for functional studies of novel molecular targets and potential biomarkers for monitoring AD progression or therapeutic efficacy.
Alzheimer's disease is a progressive, irreversible brain disorder. Patients with Alzheimer's have problems with memory and other mental skills, which lead to more severe cognitive decline and, eventually, premature death. This is due to increasing numbers of nerve cells in the brain dying over time. A distinctive feature of Alzheimer's is the abnormally high accumulation of a protein called amyloid-ß, which forms distinctive clumps in the brain termed 'plaques'. The brain has a type of cells called the microglia that identify infections, toxic material and damaged cells, and prevent these from building up by clearing them away. In Alzheimer's disease, however, the microglia do not work properly, which is thought to contribute to the accumulation of amyloid-ß plaques. This means that people with mutations in the genes important for the microglia activity are also at higher risk of developing the disease. Although problems with the microglia play an important role in Alzheimer's, researchers still do not fully understand why microglia stop working in the first place. It is also not known exactly when and how the microglia change as Alzheimer's disease progresses. To unravel this mystery, Sebastian Monasor, Müller et al. carried out a detailed study of the molecular 'fingerprints' of microglia at each key stage of Alzheimer's disease. The experiments used microglia cells from two different strains of genetically altered mice, both of which develop the hallmarks of Alzheimer's disease, including amyloid-ß plaques, at similar rates. Analysis of the proteins in microglia cells from both strains revealed distinctive, large-scale changes corresponding to successive stages of the disease reflecting the gradual accumulation of plaques. Obvious defects in microglia function also appeared soon after plaques started to build up. Microscopy imaging of the brain tissue showed that although amyloid-ß plaques appeared at the same time, they looked different in each mouse strain. In one, plaques were more compact, while in the other, plaques appeared 'fluffier', like cotton wool. In mice with more compacted plaques, microglia recognized the plaques earlier and stopped working sooner, suggesting that plaque structure and microglia defects could be linked. These results shed new light on the role of microglia and their changing protein 'signals' during the different stages of Alzheimer's disease. In the future, this information could help identify people at risk for the disease, so that they can be treated as soon as possible, and to design new therapies to make microglia work again.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Proteoma/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Transgénicos , Microglía/patologíaRESUMEN
Microglia adopt numerous fates with homeostatic microglia (HM) and a microglial neurodegenerative phenotype (MGnD) representing two opposite ends. A number of variants in genes selectively expressed in microglia are associated with an increased risk for neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Among these genes are progranulin (GRN) and the triggering receptor expressed on myeloid cells 2 (TREM2). Both cause neurodegeneration by mechanisms involving loss of function. We have now isolated microglia from Grn-/- mice and compared their transcriptomes to those of Trem2-/-mice Surprisingly, while loss of Trem2 enhances the expression of genes associated with a homeostatic state, microglia derived from Grn-/- mice showed a reciprocal activation of the MGnD molecular signature and suppression of gene characteristic for HM The opposite mRNA expression profiles are associated with divergent functional phenotypes. Although loss of TREM2 and progranulin resulted in opposite activation states and functional phenotypes of microglia, FDG (fluoro-2-deoxy-d-glucose)-µPET of brain revealed reduced glucose metabolism in both conditions, suggesting that opposite microglial phenotypes result in similar wide spread brain dysfunction.
Asunto(s)
Cerebelo , Glucosa/metabolismo , Glicoproteínas de Membrana/deficiencia , Microglía/metabolismo , Tomografía de Emisión de Positrones , Progranulinas/deficiencia , Receptores Inmunológicos/deficiencia , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Ratones , Ratones NoqueadosRESUMEN
BACKGROUND: Heterozygous loss-of-function mutations in the progranulin gene (GRN) lead to frontotemporal lobar degeneration (FTLD) while the complete loss of progranulin (PGRN) function results in neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Thus the growth factor-like protein PGRN may play an important role in lysosomal degradation. In line with a potential lysosomal function, PGRN is partially localized and processed in lysosomes. In the central nervous system (CNS), PGRN is like other lysosomal proteins highly expressed in microglia, further supporting an important role in protein degradation. We have previously reported that cathepsin (Cat) D is elevated in GRN-associated FTLD patients and Grn knockout mice. However, the primary mechanism that causes impaired protein degradation and elevated CatD levels upon PGRN deficiency in NCL and FTLD remains unclear. METHODS: mRNA expression analysis of selected lysosomal hydrolases, lysosomal membrane proteins and autophagy-related genes was performed by NanoString nCounter panel. Protein expression, maturation and in vitro activity of Cat D, B and L in mouse embryonic fibroblasts (MEF) and brains of Grn knockout mice were investigated. To selectively characterize microglial and non-microglial brain cells, an acutely isolated microglia fraction using MACS microbeads (Miltenyi Biotec) conjugated with CD11b antibody and a microglia-depleted fraction were analyzed for protein expression and maturation of selected cathepsins. RESULTS: We demonstrate that loss of PGRN results in enhanced expression, maturation and in vitro activity of Cat D, B and L in mouse embryonic fibroblasts and brain extracts of aged Grn knockout mice. Consistent with an overall enhanced expression and activity of lysosomal proteases in brain of Grn knockout mice, we observed an age-dependent transcriptional upregulation of certain lysosomal proteases. Thus, lysosomal dysfunction is not reflected by transcriptional downregulation of lysosomal proteases but rather by the upregulation of certain lysosomal proteases in an age-dependent manner. Surprisingly, cell specific analyses identified early lysosomal deficits in microglia before enhanced cathepsin levels could be detected in other brain cells, suggesting different functional consequences on lysosomal homeostasis in microglia and other brain cells upon lack of PGRN. CONCLUSIONS: The present study uncovers early and selective lysosomal dysfunctions in Grn knockout microglia/macrophages. Dysregulated lysosomal homeostasis in microglia might trigger compensatory lysosomal changes in other brain cells.
Asunto(s)
Encéfalo/metabolismo , Lisosomas/metabolismo , Microglía/metabolismo , Progranulinas/genética , Proteínas/metabolismo , Animales , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones Noqueados , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/metabolismoRESUMEN
Metzincin metalloproteases have major roles in intercellular communication by modulating the function of membrane proteins. One of the proteases is the a-disintegrin-and-metalloprotease 10 (ADAM10) which acts as alpha-secretase of the Alzheimer's disease amyloid precursor protein. ADAM10 is also required for neuronal network functions in murine brain, but neuronal ADAM10 substrates are only partly known. With a proteomic analysis of Adam10-deficient neurons we identified 91, mostly novel ADAM10 substrate candidates, making ADAM10 a major protease for membrane proteins in the nervous system. Several novel substrates, including the neuronal cell adhesion protein NrCAM, are involved in brain development. Indeed, we detected mistargeted axons in the olfactory bulb of conditional ADAM10-/- mice, which correlate with reduced cleavage of NrCAM, NCAM and other ADAM10 substrates. In summary, the novel ADAM10 substrates provide a molecular basis for neuronal network dysfunctions in conditional ADAM10-/- mice and demonstrate a fundamental function of ADAM10 in the brain.