Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 33(19-20): 1319-1345, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575677

RESUMEN

There are now many reports of human kidney organoids generated via the directed differentiation of human pluripotent stem cells (PSCs) based on an existing understanding of mammalian kidney organogenesis. Such kidney organoids potentially represent tractable tools for the study of normal human development and disease with improvements in scale, structure, and functional maturation potentially providing future options for renal regeneration. The utility of such organotypic models, however, will ultimately be determined by their developmental accuracy. While initially inferred from mouse models, recent transcriptional analyses of human fetal kidney have provided greater insight into nephrogenesis. In this review, we discuss how well human kidney organoids model the human fetal kidney and how the remaining differences challenge their utility.


Asunto(s)
Riñón/fisiología , Modelos Biológicos , Organoides/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Riñón/citología , Riñón/embriología , Riñón/crecimiento & desarrollo , Organoides/citología
2.
Hum Mol Genet ; 29(23): 3781-3792, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33305798

RESUMEN

Heterozygous mutations in the human SOX9 gene cause the skeletal malformation syndrome campomelic dysplasia which in 75% of 46, XY individuals is associated with male-to-female sex reversal. Although studies in homozygous Sox9 knockout mouse models confirmed that SOX9 is critical for testis development, mice heterozygous for the Sox9-null allele were reported to develop normal testes. This led to the belief that the SOX9 dosage requirement for testis differentiation is different between humans, which often require both alleles, and mice, in which one allele is sufficient. However, in prior studies, gonadal phenotypes in heterozygous Sox9 XY mice were assessed only by either gross morphology, histological staining or analyzed on a mixed genetic background. In this study, we conditionally inactivated Sox9 in somatic cells of developing gonads using the Nr5a1-Cre mouse line on a pure C57BL/6 genetic background. Section and whole-mount immunofluorescence for testicular and ovarian markers showed that XY Sox9 heterozygous gonads developed as ovotestes. Quantitative droplet digital PCR confirmed a 50% reduction of Sox9 mRNA as well as partial sex reversal shown by an upregulation of ovarian genes. Our data show that haploinsufficiency of Sox9 can perturb testis development in mice, suggesting that mice may provide a more accurate model of human disorders/differences of sex development than previously thought.


Asunto(s)
Displasia Campomélica/patología , Trastornos del Desarrollo Sexual/patología , Gónadas/patología , Heterocigoto , Factor de Transcripción SOX9/fisiología , Diferenciación Sexual , Factor Esteroidogénico 1/fisiología , Animales , Displasia Campomélica/etiología , Displasia Campomélica/metabolismo , Modelos Animales de Enfermedad , Trastornos del Desarrollo Sexual/etiología , Trastornos del Desarrollo Sexual/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
3.
Am J Pathol ; 192(5): 738-749, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35181335

RESUMEN

Kidney organoids derived from pluripotent stem cells and epithelial organoids derived from adult tissue (tubuloids) have been used to study various kidney disorders with a strong genetic component, such as polycystic kidney disease, Wilms tumor, and congenital nephrotic syndrome. However, complex disorders without clear genetic associations, such as acute kidney injury and many forms of chronic kidney disease, are only just beginning to be investigated using these in vitro approaches. Although organoids are a reductionist model, they contain clinically relevant cell populations that may help to elucidate human-specific pathogenic mechanisms. Thus, organoids may complement animal disease models to accelerate the translation of laboratory proof-of-concept research into clinical practice. This review discusses whether kidney organoids and tubuloids are suitable models for the study of complex human kidney disease and highlights their advantages and limitations compared with monolayer cell culture and animal models.


Asunto(s)
Lesión Renal Aguda , Células Madre Pluripotentes , Insuficiencia Renal Crónica , Animales , Diferenciación Celular , Femenino , Humanos , Riñón , Masculino , Organoides
4.
Clin Transplant ; 37(5): e14945, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36807636

RESUMEN

INTRODUCTION: Demand for donor kidneys far exceeds the availability of organs from deceased donors. Living donor kidneys are an important part of addressing this shortfall, and laparoscopic nephrectomy is an important strategy to reduce donor morbidity and increase the acceptability of living donation. AIM: To retrospectively review the intraoperative and postoperative safety, technique, and outcomes of patients undergoing donor nephrectomy at a single tertiary hospital in Sydney, Australia. METHOD: Retrospective capture and analysis of clinical, demographic, and operative data for all living donor nephrectomies performed between 2007 and 2022 at a single University Hospital in Sydney, Australia. RESULTS: Four hundred and seventy-two donor nephrectomies were performed: 471 were laparoscopic, two of which were converted from laparoscopic to open and hand-assisted nephrectomy, respectively, and one (.2%) underwent primary open nephrectomy. The mean warm ischemia time was 2.8 min (±1.3 SD, median 3 min, range 2-8 min) and the mean length of stay (LOS) was 4.1 days (±1.0 SD). The mean renal function on discharge was 103 µmol/L (±23.0 SD). Seventy-seven (16%) patients had a complication with no Clavien Dindo IV or V complications seen. Outcomes demonstrated no impact of donor age, gender, kidney side, relationship to the recipient, vascular complexity; or surgeon experience, on complication rate or LOS. CONCLUSION: Laparoscopic donor nephrectomy is a safe and effective procedure with minimal morbidity and no mortality in this series.


Asunto(s)
Trasplante de Riñón , Laparoscopía , Donadores Vivos , Nefrectomía , Humanos , Australia , Riñón/fisiología , Riñón/cirugía , Laparoscopía/métodos , Nefrectomía/métodos , Estudios Retrospectivos , Recolección de Tejidos y Órganos/métodos
5.
Cell Mol Life Sci ; 79(6): 296, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35570209

RESUMEN

Polymyxin antibiotics are often used as a last-line defense to treat life-threatening Gram-negative pathogens. However, polymyxin-induced kidney toxicity is a dose-limiting factor of paramount importance and can lead to suboptimal treatment. To elucidate the mechanism and develop effective strategies to overcome polymyxin toxicity, we employed a whole-genome CRISPR screen in human kidney tubular HK-2 cells and identified 86 significant genes that upon knock-out rescued polymyxin-induced toxicity. Specifically, we discovered that knockout of the inwardly rectifying potassium channels Kir4.2 and Kir5.1 (encoded by KCNJ15 and KCNJ16, respectively) rescued polymyxin-induced toxicity in HK-2 cells. Furthermore, we found that polymyxins induced cell depolarization via Kir4.2 and Kir5.1 and a significant cellular uptake of polymyxins was evident. All-atom molecular dynamics simulations revealed that polymyxin B1 spontaneously bound to Kir4.2, thereby increasing opening of the channel, resulting in a potassium influx, and changes of the membrane potential. Consistent with these findings, small molecule inhibitors (BaCl2 and VU0134992) of Kir potassium channels reduced polymyxin-induced toxicity in cell culture and mouse explant kidney tissue. Our findings provide critical mechanistic information that will help attenuate polymyxin-induced nephrotoxicity in patients and facilitate the design of novel, safer polymyxins.


Asunto(s)
Canales de Potasio de Rectificación Interna , Animales , Humanos , Riñón/metabolismo , Potenciales de la Membrana , Ratones , Polimixinas/metabolismo , Polimixinas/toxicidad , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo
6.
Development ; 146(12)2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31118232

RESUMEN

Recent advances in the generation of kidney organoids and the culture of primary nephron progenitors from mouse and human have been based on knowledge of the molecular basis of kidney development in mice. Although gene expression during kidney development has been intensely investigated, single cell profiling provides new opportunities to further subsect component cell types and the signalling networks at play. Here, we describe the generation and analysis of 6732 single cell transcriptomes from the fetal mouse kidney [embryonic day (E)18.5] and 7853 sorted nephron progenitor cells (E14.5). These datasets provide improved resolution of cell types and specific markers, including subdivision of the renal stroma and heterogeneity within the nephron progenitor population. Ligand-receptor interaction and pathway analysis reveals novel crosstalk between cellular compartments and associates new pathways with differentiation of nephron and ureteric epithelium cell types. We identify transcriptional congruence between the distal nephron and ureteric epithelium, showing that most markers previously used to identify ureteric epithelium are not specific. Together, this work improves our understanding of metanephric kidney development and provides a template to guide the regeneration of renal tissue.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Riñón/embriología , Receptor Cross-Talk , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Diferenciación Celular , Linaje de la Célula , Epitelio/embriología , Riñón/citología , Ligandos , Ratones , Ratones Endogámicos C57BL , Nefronas/embriología , Organogénesis , Transducción de Señal , Células Madre/citología , Transcriptoma , Uréter/embriología
7.
Development ; 146(5)2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30846463

RESUMEN

Kidney organoids have potential uses in disease modelling, drug screening and regenerative medicine. However, novel cost-effective techniques are needed to enable scaled-up production of kidney cell types in vitro We describe here a modified suspension culture method for the generation of kidney micro-organoids from human pluripotent stem cells. Optimisation of differentiation conditions allowed the formation of micro-organoids, each containing six to ten nephrons that were surrounded by endothelial and stromal populations. Single cell transcriptional profiling confirmed the presence and transcriptional equivalence of all anticipated renal cell types consistent with a previous organoid culture method. This suspension culture micro-organoid methodology resulted in a three- to fourfold increase in final cell yield compared with static culture, thereby representing an economical approach to the production of kidney cells for various biological applications.


Asunto(s)
Técnicas de Cultivo de Célula , Regulación del Desarrollo de la Expresión Génica , Riñón/citología , Células Madre Pluripotentes/citología , Albúminas/metabolismo , Diferenciación Celular , Células Cultivadas , Doxorrubicina/farmacología , Humanos , Nefronas/metabolismo , Organoides , Transducción de Señal , Transcripción Genética , Proteínas Wnt/metabolismo
8.
Nat Methods ; 16(1): 79-87, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573816

RESUMEN

The utility of human pluripotent stem cell-derived kidney organoids relies implicitly on the robustness and transferability of the protocol. Here we analyze the sources of transcriptional variation in a specific kidney organoid protocol. Although individual organoids within a differentiation batch showed strong transcriptional correlation, we noted significant variation between experimental batches, particularly in genes associated with temporal maturation. Single-cell profiling revealed shifts in nephron patterning and proportions of component cells. Distinct induced pluripotent stem cell clones showed congruent transcriptional programs, with interexperimental and interclonal variation also strongly associated with nephron patterning. Epithelial cells isolated from organoids aligned with total organoids at the same day of differentiation, again implicating relative maturation as a confounder. This understanding of experimental variation facilitated an optimized analysis of organoid-based disease modeling, thereby increasing the utility of kidney organoids for personalized medicine and functional genomics.


Asunto(s)
Riñón/metabolismo , Organoides/metabolismo , Diferenciación Celular/genética , Células Clonales , Células Epiteliales/citología , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Riñón/citología , Enfermedades Renales/genética , Enfermedades Renales/patología , Modelos Biológicos , Organoides/citología , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Transcripción Genética
9.
Kidney Int ; 100(4): 780-786, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34089762

RESUMEN

For decades, measurements of kidney microanatomy using 2-dimensional sections has provided us with a detailed knowledge of kidney morphology under physiological and pathological conditions. However, the rapid development of tissue clearing methods in recent years, in combination with the development of novel 3-dimensional imaging modalities have provided new insights into kidney structure and function. This review article describes a range of novel insights into kidney development and disease obtained recently using these new methodological approaches. For example, in the developing kidney these approaches have provided new understandings of ureteric branching morphogenesis, nephron progenitor cell proliferation and commitment, interactions between ureteric tip cells and nephron progenitor cells, and the establishment of nephron segmentation. In whole adult mouse kidneys, tissue clearing combined with light sheet microscopy can image and quantify the total number of glomeruli, a major breakthrough in the field. Similar approaches have provided new insights into the structure of the renal vasculature and innervation, tubulointerstitial remodeling, podocyte loss and hypertrophy, cyst formation, the evolution of cellular crescents, and the structure of the glomerular filtration barrier. Many more advances in the understanding of kidney biology and pathology can be expected as additional clearing and imaging techniques are developed and adopted by more investigators.


Asunto(s)
Podocitos , Uréter , Animales , Riñón/diagnóstico por imagen , Glomérulos Renales , Ratones , Nefronas , Organogénesis
10.
Proc Natl Acad Sci U S A ; 115(23): 5998-6003, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784808

RESUMEN

Nephrogenesis concludes by the 36th week of gestation in humans and by the third day of postnatal life in mice. Extending the nephrogenic period may reduce the onset of adult renal and cardiovascular disease associated with low nephron numbers. We conditionally deleted either Mtor or Tsc1 (coding for hamartin, an inhibitor of Mtor) in renal progenitor cells. Loss of one Mtor allele caused a reduction in nephron numbers; complete deletion led to severe paucity of glomeruli in the kidney resulting in early death after birth. By contrast, loss of one Tsc1 allele from renal progenitors resulted in a 25% increase in nephron endowment with no adverse effects. Increased progenitor engraftment rates ex vivo relative to controls correlated with prolonged nephrogenesis through the fourth postnatal day. Complete loss of both Tsc1 alleles in renal progenitors led to a lethal tubular lesion. The hamartin phenotypes are not dependent on the inhibitory effect of TSC on the Mtor complex but are dependent on Raptor.


Asunto(s)
Nefronas , Organogénesis/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Nefronas/química , Nefronas/citología , Nefronas/crecimiento & desarrollo , Nefronas/fisiología , Serina-Treonina Quinasas TOR/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa
11.
Development ; 144(6): 1087-1096, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28174247

RESUMEN

Human pluripotent stem cells, after directed differentiation in vitro, can spontaneously generate complex tissues via self-organisation of the component cells. Self-organisation can also reform embryonic organ structure after tissue disruption. It has previously been demonstrated that dissociated embryonic kidneys can recreate component epithelial and mesenchymal relationships sufficient to allow continued kidney morphogenesis. Here, we investigate the timing and underlying mechanisms driving self-organisation after dissociation of the embryonic kidney using time-lapse imaging, high-resolution confocal analyses and mathematical modelling. Organotypic self-organisation sufficient for nephron initiation was observed within a 24 h period. This involved cell movement, with structure emerging after the clustering of ureteric epithelial cells, a process consistent with models of random cell movement with preferential cell adhesion. Ureteric epithelialisation rapidly followed the formation of ureteric cell clusters with the reformation of nephron-forming niches representing a later event. Disruption of P-cadherin interactions was seen to impair this ureteric epithelial cell clustering without affecting epithelial maturation. This understanding could facilitate improved regulation of patterning within organoids and facilitate kidney engineering approaches guided by cell-cell self-organisation.


Asunto(s)
Células Epiteliales/citología , Riñón/embriología , Uréter/citología , Animales , Cadherinas/metabolismo , Adhesión Celular , Agregación Celular , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Simulación por Computador , Células Epiteliales/metabolismo , Ratones , Modelos Biológicos , Morfogénesis , Factores de Tiempo
12.
J Am Soc Nephrol ; 30(1): 63-78, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30518531

RESUMEN

BACKGROUND: Nephron number is a major determinant of long-term renal function and cardiovascular risk. Observational studies suggest that maternal nutritional and metabolic factors during gestation contribute to the high variability of nephron endowment. However, the underlying molecular mechanisms have been unclear. METHODS: We used mouse models, including DNA methyltransferase (Dnmt1, Dnmt3a, and Dnmt3b) knockout mice, optical projection tomography, three-dimensional reconstructions of the nephrogenic niche, and transcriptome and DNA methylation analysis to characterize the role of DNA methylation for kidney development. RESULTS: We demonstrate that DNA hypomethylation is a key feature of nutritional kidney growth restriction in vitro and in vivo, and that DNA methyltransferases Dnmt1 and Dnmt3a are highly enriched in the nephrogenic zone of the developing kidneys. Deletion of Dnmt1 in nephron progenitor cells (in contrast to deletion of Dnmt3a or Dnm3b) mimics nutritional models of kidney growth restriction and results in a substantial reduction of nephron number as well as renal hypoplasia at birth. In Dnmt1-deficient mice, optical projection tomography and three-dimensional reconstructions uncovered a significant reduction of stem cell niches and progenitor cells. RNA sequencing analysis revealed that global DNA hypomethylation interferes in the progenitor cell regulatory network, leading to downregulation of genes crucial for initiation of nephrogenesis, Wt1 and its target Wnt4. Derepression of germline genes, protocadherins, Rhox genes, and endogenous retroviral elements resulted in the upregulation of IFN targets and inhibitors of cell cycle progression. CONCLUSIONS: These findings establish DNA methylation as a key regulatory event of prenatal renal programming, which possibly represents a fundamental link between maternal nutritional factors during gestation and reduced nephron number.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Riñón/embriología , Organogénesis/genética , Células Madre/citología , Animales , Diferenciación Celular/genética , Células Cultivadas , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Ratones , Ratones Noqueados , Nefronas/citología , Nefronas/fisiología , Ratas , Ratas Wistar , Sensibilidad y Especificidad , Células Madre/fisiología , ADN Metiltransferasa 3B
13.
Kidney Int ; 93(3): 589-598, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29217079

RESUMEN

The regulation of final nephron number in the kidney is poorly understood. Cessation of nephron formation occurs when the self-renewing nephron progenitor population commits to differentiation. Transcription factors within this progenitor population, such as SIX2, are assumed to control expression of genes promoting self-renewal such that homozygous Six2 deletion results in premature commitment and an early halt to kidney development. In contrast, Six2 heterozygotes were assumed to be unaffected. Using quantitative morphometry, we found a paradoxical 18% increase in ureteric branching and final nephron number in Six2 heterozygotes, despite evidence for reduced levels of SIX2 protein and transcript. This was accompanied by a clear shift in nephron progenitor identity with a distinct subset of downregulated progenitor genes such as Cited1 and Meox1 while other genes were unaffected. The net result was an increase in nephron progenitor proliferation, as assessed by elevated EdU (5-ethynyl-2'-deoxyuridine) labeling, an increase in MYC protein, and transcriptional upregulation of MYC target genes. Heterozygosity for Six2 on an Fgf20-/- background resulted in premature differentiation of the progenitor population, confirming that progenitor regulation is compromised in Six2 heterozygotes. Overall, our studies reveal a unique dose response of nephron progenitors to the level of SIX2 protein in which the role of SIX2 in progenitor proliferation versus self-renewal is separable.


Asunto(s)
Proliferación Celular/genética , Autorrenovación de las Células/genética , Haploinsuficiencia , Proteínas de Homeodominio/genética , Morfogénesis/genética , Nefronas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Animales , Proteínas Reguladoras de la Apoptosis , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Genotipo , Heterocigoto , Proteínas de Homeodominio/metabolismo , Ratones Noqueados , Nefronas/embriología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/deficiencia
14.
J Math Biol ; 76(7): 1673-1697, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29392399

RESUMEN

The adult mammalian kidney has a complex, highly-branched collecting duct epithelium that arises as a ureteric bud sidebranch from an epithelial tube known as the nephric duct. Subsequent branching of the ureteric bud to form the collecting duct tree is regulated by subcellular interactions between the epithelium and a population of mesenchymal cells that surround the tips of outgrowing branches. The mesenchymal cells produce glial cell-line derived neurotrophic factor (GDNF), that binds with RET receptors on the surface of the epithelial cells to stimulate several subcellular pathways in the epithelium. Such interactions are known to be a prerequisite for normal branching development, although competing theories exist for their role in morphogenesis. Here we introduce the first agent-based model of ex vivo kidney uretic branching. Through comparison with experimental data, we show that growth factor-regulated growth mechanisms can explain early epithelial cell branching, but only if epithelial cell division depends in a switch-like way on the local growth factor concentration; cell division occurring only if the driving growth factor level exceeds a threshold. We also show how a recently-developed method, "Approximate Approximate Bayesian Computation", can be used to infer key model parameters, and reveal the dependency between the parameters controlling a growth factor-dependent growth switch. These results are consistent with a requirement for signals controlling proliferation and chemotaxis, both of which are previously identified roles for GDNF.


Asunto(s)
Riñón/crecimiento & desarrollo , Modelos Biológicos , Algoritmos , Animales , Teorema de Bayes , Proliferación Celular , Biología Computacional , Simulación por Computador , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Riñón/metabolismo , Conceptos Matemáticos , Ratones , Ratones Transgénicos , Morfogénesis , Técnicas de Cultivo de Órganos , Transducción de Señal , Análisis de Sistemas
15.
Dev Biol ; 418(2): 297-306, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27346698

RESUMEN

Morphogenesis of the mammalian kidney requires reciprocal interactions between two cellular domains at the periphery of the developing organ: the tips of the epithelial ureteric tree and adjacent regions of cap mesenchyme. While the presence of the cap mesenchyme is essential for ureteric branching, how it is specifically maintained at the tips is unclear. Using ex vivo timelapse imaging we show that cells of the cap mesenchyme are highly motile. Individual cap mesenchyme cells move within and between cap domains. They also attach and detach from the ureteric tip across time. Timelapse tracks collected for >800 cells showed evidence that this movement was largely stochastic, with cell autonomous migration influenced by opposing attractive, repulsive and cell adhesion cues. The resulting swarming behaviour maintains a distinct cap mesenchyme domain while facilitating dynamic remodelling in response to underlying changes in the tip.


Asunto(s)
Riñón/citología , Riñón/embriología , Células Madre Mesenquimatosas/citología , Uréter/citología , Uréter/embriología , Animales , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Riñón/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Morfogénesis/fisiología , Técnicas de Cultivo de Órganos , Procesos Estocásticos , Imagen de Lapso de Tiempo
17.
J Pathol ; 238(5): 665-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26800422

RESUMEN

Congenital medullary dysplasia with obstructive nephropathy is a common congenital disorder observed in paediatric patients and represents the foremost cause of renal failure. However, the molecular processes regulating normal papillary outgrowth during the postnatal period are unclear. In this study, transcriptional profiling of the renal medulla across postnatal development revealed enrichment of non-canonical Wnt signalling, vascular development, and planar cell polarity genes, all of which may contribute to perinatal medulla/papilla maturation. These pathways were investigated in a model of papillary hypoplasia with functional obstruction, the Crim1(KST264/KST264) transgenic mouse. Postnatal elongation of the renal papilla via convergent extension was unaffected in the Crim1(KST264/KST264) hypoplastic renal papilla. In contrast, these mice displayed a disorganized papillary vascular network, tissue hypoxia, and elevated Vegfa expression. In addition, we demonstrate the involvement of accompanying systemic hypoxia arising from placental insufficiency, in appropriate papillary maturation. In conclusion, this study highlights the requirement for normal vascular development in collecting duct patterning, development of appropriate nephron architecture, and perinatal papillary maturation, such that disturbances contribute to obstructive nephropathy.


Asunto(s)
Hipoxia Fetal/metabolismo , Médula Renal/irrigación sanguínea , Médula Renal/metabolismo , Neovascularización Patológica , Oxígeno/metabolismo , Anomalías Urogenitales/metabolismo , Reflujo Vesicoureteral/metabolismo , Animales , Animales Recién Nacidos , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Biología Computacional , Modelos Animales de Enfermedad , Hipoxia Fetal/genética , Hipoxia Fetal/patología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Edad Gestacional , Médula Renal/patología , Ratones Noqueados , Neovascularización Patológica/genética , Fenotipo , Anomalías Urogenitales/genética , Anomalías Urogenitales/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Reflujo Vesicoureteral/genética , Reflujo Vesicoureteral/patología , Vía de Señalización Wnt/genética
18.
Dev Biol ; 404(2): 88-102, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26116176

RESUMEN

ROBO2 plays a key role in regulating ureteric bud (UB) formation in the embryo, with mutations in humans and mice leading to supernumerary kidneys. Previous studies have established that the number and position of UB outgrowths is determined by the domain of metanephric mesenchymal Gdnf expression, which is expanded anteriorly in Robo2 mouse mutants. To clarify how this phenotype arises, we used high-resolution 3D imaging to reveal an increase in the number of nephrogenic cord cells, leading to extension of the metanephric mesenchyme field in Robo2-null mouse embryos. Ex vivo experiments suggested a dependence of this effect on proliferative signals from the Wolffian duct. Loss of Robo2 resulted in a failure of the normal separation of the mesenchyme from the Wolffian duct/ureteric epithelium, suggesting that aberrant juxtaposition of these two compartments in Robo2-null mice exposes the mesenchyme to abnormally high levels of proliferative stimuli. Our data suggest a new model in which SLIT-ROBO signalling acts not by attenuating Gdnf expression or activity, but instead by limiting epithelial/mesenchymal interactions in the nascent metanephros and restricting the extent of the nephrogenic field. These insights illuminate the aetiology of multiplex kidney formation in human individuals with ROBO2 mutations.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Proteínas de Homeodominio/genética , Riñón/embriología , Receptores Inmunológicos/genética , Factores de Transcripción/genética , Conductos Mesonéfricos/embriología , Animales , Línea Celular , Proliferación Celular , Células Epiteliales/citología , Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Proteínas de Homeodominio/biosíntesis , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Receptores Inmunológicos/metabolismo , Factores de Transcripción/biosíntesis
19.
Nephrology (Carlton) ; 20(5): 312-4, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25619899

RESUMEN

Kidney growth is dependent on functional interactions between mesenchymal nephron progenitors, the ureteric epithelium and surrounding stroma, which together make up the nephrogenic niche. Signalling between these populations regulates nephron progenitor maintenance, branching morphogenesis and nephron induction. Nephron endowment is sensitive to changes in the size of the nephron progenitor pool and to decreases in factors that promote branching morphogenesis. However, determining the morphogenic consequences of these disruptions in vivo has been challenging as quantitating kidney morphogenesis is hampered by the size, opacity and three-dimensional complexity of the tissue. The recent application of whole mount immunofluorescence and tissue clearing, coupled with multiscale imaging and quantitative analysis, has begun to give insights into the dynamics of kidney formation. This review focuses on how the quantitative nature of this approach has enabled mathematical modelling of cell cycle lengths, growth rates, cell number and branching rates and is advancing our understanding of kidney organogenesis.


Asunto(s)
Riñón/embriología , Organogénesis/fisiología , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Humanos , Riñón/citología , Modelos Biológicos
20.
Urol Case Rep ; 55: 102787, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39071853

RESUMEN

When localised prostate cancer recurs after treatment, it occurs predictably in sites such as the prostatic bed, pelvic lymph nodes, spine, lung, and liver. Urethral metastasis of prostate cancer is exceedingly rare. We report a case of urethral recurrence of prostate cancer presenting as new lower urinary tract symptoms in an 82-year-old male 10 years after robotic radical prostatectomy with a very low PSA level of 0.05µg/L. This rare case highlights the need to maintain a degree of suspicion for prostate cancer recurrence in patients with a late onset of or changing lower urinary tract symptoms after radical prostatectomy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA