Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 26(6): 101081, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38293907

RESUMEN

PURPOSE: Progressive inherited retinal degenerations (IRDs) affecting rods and cones are clinically and genetically heterogeneous and can lead to blindness with limited therapeutic options. The major gene defects have been identified in subjects of European and Asian descent with only few reports of North African descent. METHODS: Genome, targeted next-generation, and Sanger sequencing was applied to cohort of ∼4000 IRDs cases. Expression analyses were performed including Chip-seq database analyses, on human-derived retinal organoids (ROs), retinal pigment epithelium cells, and zebrafish. Variants' pathogenicity was accessed using 3D-modeling and/or ROs. RESULTS: Here, we identified a novel gene defect with three distinct pathogenic variants in UBAP1L in 4 independent autosomal recessive IRD cases from Tunisia. UBAP1L is expressed in the retinal pigment epithelium and retina, specifically in rods and cones, in line with the phenotype. It encodes Ubiquitin-associated protein 1-like, containing a solenoid of overlapping ubiquitin-associated domain, predicted to interact with ubiquitin. In silico and in vitro studies, including 3D-modeling and ROs revealed that the solenoid of overlapping ubiquitin-associated domain is truncated and thus ubiquitin binding most likely abolished secondary to all variants identified herein. CONCLUSION: Biallelic UBAP1L variants are a novel cause of IRDs, most likely enriched in the North African population.


Asunto(s)
Distrofias de Conos y Bastones , Linaje , Pez Cebra , Humanos , Distrofias de Conos y Bastones/genética , Distrofias de Conos y Bastones/patología , Masculino , Femenino , Pez Cebra/genética , Animales , Genes Recesivos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Mutación/genética , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Conos/metabolismo , Retina/patología , Retina/metabolismo , Adulto , Túnez , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Fenotipo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología
2.
Ophthalmology ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583493

RESUMEN

PURPOSE: To describe the clinical outcome and late-stage findings of extensive macular atrophy with pseudodrusen-like appearance (EMAP). DESIGN: Retrospective cohort study. PARTICIPANTS: Seventy-eight patients (156 eyes) affected by EMAP. METHODS: We collected data on best-corrected visual acuity, kinetic perimetry, OCT, short-wavelength autofluorescence, and near-infrared autofluorescence findings. Genetic testing for the TIMP3 and C1QTNF5 genes was performed via Sanger sequencing for 58 patients, with no pathogenic variants identified. MAIN OUTCOME MEASURES: The primary outcomes were best-corrected visual acuity at the last examination, visual field at the last examination, and incidence rates and time-to-event curves for blindness with the United States Social Security Administration and World Health Organization (WHO) criteria, foveal involvement, and atrophy enlargement beyond the 30° and 55° field of view. Imaging findings at the last examination were secondary outcomes. RESULTS: At the most recent visit, mean age was 70.9 ± 5.2 years. Using United States criteria, 58.1% of the patients were blind, and 25.8% were blind according to WHO criteria. All eyes showed large central scotomas, which were associated with visual field constriction in 22.2% of eyes. We detected focal openings or large dehiscences of Bruch's membrane (BM) in 25.4% of eyes. Near-infrared autofluorescence showed increased visibility of the choroidal vessels beyond the atrophy in 87.2% of eyes. The incidence rates for blindness were 3.95 per 100 patient-years with United States criteria and 1.54 per 100 patient-years according to WHO criteria. The incidence rates were 22.8 per 100 eye-years for foveal involvement, 12.0 per 100 eye-years for atrophy enlargement beyond 30°, and 6.6 per 100 eye-years for atrophy enlargement beyond 55°. The estimates were not influenced by the age at onset. CONCLUSIONS: We identified characteristic imaging findings, including BM ruptures, in elder patients with EMAP and calculated incidence rates for different functional and anatomic outcomes. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
Am J Hum Genet ; 106(6): 859-871, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32470375

RESUMEN

Congenital cone-rod synaptic disorder (CRSD), also known as incomplete congenital stationary night blindness (iCSNB), is a non-progressive inherited retinal disease (IRD) characterized by night blindness, photophobia, and nystagmus, and distinctive electroretinographic features. Here, we report bi-allelic RIMS2 variants in seven CRSD-affected individuals from four unrelated families. Apart from CRSD, neurodevelopmental disease was observed in all affected individuals, and abnormal glucose homeostasis was observed in the eldest affected individual. RIMS2 regulates synaptic membrane exocytosis. Data mining of human adult bulk and single-cell retinal transcriptional datasets revealed predominant expression in rod photoreceptors, and immunostaining demonstrated RIMS2 localization in the human retinal outer plexiform layer, Purkinje cells, and pancreatic islets. Additionally, nonsense variants were shown to result in truncated RIMS2 and decreased insulin secretion in mammalian cells. The identification of a syndromic stationary congenital IRD has a major impact on the differential diagnosis of syndromic congenital IRD, which has previously been exclusively linked with degenerative IRD.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Proteínas de Unión al GTP/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación con Pérdida de Función , Miopía/genética , Proteínas del Tejido Nervioso/genética , Ceguera Nocturna/genética , Adulto , Alelos , Empalme Alternativo , Encéfalo/metabolismo , Línea Celular , Niño , Preescolar , Diagnóstico Diferencial , Salud de la Familia , Femenino , Francia , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Glucosa/metabolismo , Humanos , Secreción de Insulina , Masculino , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Páncreas/metabolismo , Linaje , Retina/metabolismo , Arabia Saudita , Senegal
4.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806195

RESUMEN

Variants in the X-linked retinitis pigmentosa GTPase regulator gene (RPGR) and, specifically, in its retinal opening reading frame-15 isoform (RPGRORF15) may cause rod-cone (RCD), cone, and cone-rod dystrophies (CDs and CRDs). While RPGR-related RCDs have been frequently evaluated, the characteristics and progression of RPGR-related CD/CRDs are largely unknown. Therefore, the goal of our work was to perform genotype-phenotype correlations specifically in RPGRORF15-related CD/CRDs. This retrospective longitudinal study included 34 index patients and two affected relatives with a molecular diagnosis of RPGR-related CD/CRDs. Patients were recruited at the "Quinze-Vingts" Hospital, Paris, France and screened for mutations in RPGRORF15 at the Institut de la Vision, Paris, France. We identified 29 distinct variants, of which 27 were truncating. All were located in the 3' half of the RPGRORF15 transcript. Twenty of them were novel. Fifteen subjects were affected by CD, the remaining had CRD. When analyzing the longitudinal data, a progressive decline in visual acuity (VA) was noted, with more than 60% of the patients reaching VA ≥ 1 LogMar in the best eye after the fifth decade of life. To our knowledge, this is the largest described study of a cohort of CD/CRD patients affected by RPGRORF15 variants. Longitudinal data showed a rapidly progressive disease, possibly locating an optimal window of intervention for future therapies in younger ages.


Asunto(s)
Distrofias de Conos y Bastones , Proteínas del Ojo , Retinitis Pigmentosa , Distrofias de Conos y Bastones/genética , Proteínas del Ojo/genética , Genes Reguladores , Humanos , Estudios Longitudinales , Mutación , Linaje , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Estudios Retrospectivos
5.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743034

RESUMEN

Inherited retinal diseases (IRD) are a group of heterogeneous disorders, most of which lead to blindness with limited therapeutic options. Pathogenic variants in RBP4, coding for a major blood carrier of retinol, retinol-binding protein 4, are responsible for a peculiar form of IRD. The aim of this study was to investigate if retinal function of an RBP4-related IRD patient can be improved by retinol administration. Our patient presented a peculiar white-dot retinopathy, reminiscent of vitamin A deficient retinopathy. Using a customized next generation sequencing (NGS) IRD panel we discovered a novel loss-of-function homozygous pathogenic variant in RBP4: c.255G >A, p.(Trp85*). Western blotting revealed the absence of RBP4 protein in the patient's serum. Blood retinol levels were undetectable. The patient was put on a high-dose oral retinol regimen (50,000 UI twice a week). Subjective symptoms and retinal function markedly and sustainably improved at 5-months and 1-year follow-up. Here we show that this novel IRD case can be treated by oral retinol administration.


Asunto(s)
Distrofias Retinianas , Vitamina A , Humanos , Retina/metabolismo , Distrofias Retinianas/tratamiento farmacológico , Distrofias Retinianas/genética , Proteínas Plasmáticas de Unión al Retinol/genética , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Vitamina A/uso terapéutico
6.
Hum Mutat ; 42(4): 323-341, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538369

RESUMEN

Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder. We describe here the clinical and genetic data from a French cohort of 45 families, 25 of which carry novel variants, in the context of 822 previously reported choroideremia families. Most of the variants represent loss-of-function mutations with eleven families having large (i.e. ≥6 kb) genomic deletions, 18 small insertions, deletions or insertion deletions, six showing nonsense variants, eight splice site variants and two missense variants likely to affect splicing. Similarly, 822 previously published families carry mostly loss-of-function variants. Recurrent variants are observed worldwide, some of which linked to a common ancestor, others arisen independently in specific CHM regions prone to mutations. Since all exons of CHM may harbor variants, Sanger sequencing combined with quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification experiments are efficient to achieve the molecular diagnosis in patients with typical choroideremia features.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Coroideremia , Proteínas Adaptadoras Transductoras de Señales/genética , Coroideremia/diagnóstico , Coroideremia/genética , Coroideremia/terapia , Exones , Femenino , Heterocigoto , Humanos , Masculino , Mutación
7.
Hum Mutat ; 42(6): 641-666, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33847019

RESUMEN

Cyclic nucleotide-gated channel ß1 (CNGB1) encodes the 240-kDa ß subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.


Asunto(s)
Distrofias de Conos y Bastones/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Estudios de Cohortes , Distrofias de Conos y Bastones/clasificación , Distrofias de Conos y Bastones/epidemiología , Distrofias de Conos y Bastones/patología , Análisis Mutacional de ADN , Estudios de Asociación Genética , Humanos , Mutación
8.
Clin Genet ; 99(2): 298-302, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33124039

RESUMEN

Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.


Asunto(s)
Proteínas Portadoras/genética , Distrofias de Conos y Bastones/genética , Adulto , Estudios de Asociación Genética , Humanos , Masculino , Linaje , Repeticiones WD40
9.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922602

RESUMEN

Mutations in GPR179 lead to autosomal recessive complete congenital stationary night blindness (cCSNB). This condition represents a signal transmission defect from the photoreceptors to the ON-bipolar cells. To confirm the phenotype, better understand the pathogenic mechanism in vivo, and provide a model for therapeutic approaches, a Gpr179 knock-out mouse model was genetically and functionally characterized. We confirmed that the insertion of a neo/lac Z cassette in intron 1 of Gpr179 disrupts the same gene. Spectral domain optical coherence tomography reveals no obvious retinal structure abnormalities. Gpr179 knock-out mice exhibit a so-called no-b-wave (nob) phenotype with severely reduced b-wave amplitudes in the electroretinogram. Optomotor tests reveal decreased optomotor responses under scotopic conditions. Consistent with the genetic disruption of Gpr179, GPR179 is absent at the dendritic tips of ON-bipolar cells. While proteins of the same signal transmission cascade (GRM6, LRIT3, and TRPM1) are correctly localized, other proteins (RGS7, RGS11, and GNB5) known to regulate GRM6 are absent at the dendritic tips of ON-bipolar cells. These results add a new model of cCSNB, which is important to better understand the role of GPR179, its implication in patients with cCSNB, and its use for the development of therapies.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/patología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Miopía/genética , Miopía/patología , Ceguera Nocturna/genética , Ceguera Nocturna/patología , Receptores Acoplados a Proteínas G/fisiología , Retina/patología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Retina/metabolismo , Transducción de Señal
10.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360642

RESUMEN

The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.


Asunto(s)
Distrofias de Conos y Bastones/patología , Genes Recesivos , Proteínas Mitocondriales/genética , Mutación , Canales de Potasio/genética , Adulto , Distrofias de Conos y Bastones/etiología , Distrofias de Conos y Bastones/metabolismo , Femenino , Humanos , Masculino , Linaje , Fenotipo
11.
Retina ; 40(8): 1603-1615, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31479088

RESUMEN

PURPOSE: To document the rod-cone dystrophy phenotype of patients with Usher syndrome type 1 (USH1) harboring MYO7A mutations. METHODS: Retrospective cohort study of 53 patients (42 families) with biallelic MYO7A mutations who underwent comprehensive examination, including functional visual tests and multimodal retinal imaging. Genetic analysis was performed either using a multiplex amplicon panel or through direct sequencing. Data were analyzed with IBM SPSS Statistics software v. 21.0. RESULTS: Fifty different genetic variations including 4 novel were identified. Most patients showed a typical rod-cone dystrophy phenotype, with best-corrected visual acuity and central visual field deteriorating linearly with age. At age 29, binocular visual field demonstrated an average preservation of 50 central degrees, constricting by 50% within 5 years. Structural changes based on spectral domain optical coherence tomography, short wavelength autofluorescence, and near-infrared autofluorescence measurements did not however correlate with age. Our study revealed a higher percentage of epiretinal membranes and cystoid macular edema in patients with MYO7A mutations compared with rod-cone dystrophy patients with other mutations. Subgroup analyses did not reveal substantial genotype-phenotype correlations. CONCLUSION: To the best of our knowledge, this is the largest French cohort of patients with MYO7A mutations reported to date. Functional visual characteristics of this subset of patients followed a linear decline as in other typical rod-cone dystrophy, but structural changes were variable indicating the need for a case-by-case evaluation for prognostic prediction and choice of potential therapies.


Asunto(s)
Distrofias de Conos y Bastones/genética , Mutación , Miosina VIIa/genética , Síndromes de Usher/genética , Adolescente , Adulto , Niño , Preescolar , Distrofias de Conos y Bastones/diagnóstico , Distrofias de Conos y Bastones/fisiopatología , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Francia , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Síndromes de Usher/diagnóstico , Síndromes de Usher/fisiopatología , Agudeza Visual/fisiología , Pruebas del Campo Visual , Campos Visuales/fisiología , Adulto Joven
12.
Hum Mutat ; 40(6): 765-787, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30825406

RESUMEN

Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.


Asunto(s)
Canales de Calcio Tipo L/genética , Enfermedades Hereditarias del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación , Miopía/genética , Ceguera Nocturna/genética , Análisis de Secuencia de ADN/métodos , Predisposición Genética a la Enfermedad , Hemicigoto , Humanos , Intrones , Masculino , Linaje , Empalme del ARN , Mutación Silenciosa
13.
Am J Hum Genet ; 98(5): 1011-1019, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27063057

RESUMEN

Congenital stationary night blindness (CSNB) is a heterogeneous group of non-progressive inherited retinal disorders with characteristic electroretinogram (ERG) abnormalities. Riggs and Schubert-Bornschein are subtypes of CSNB and demonstrate distinct ERG features. Riggs CSNB demonstrates selective rod photoreceptor dysfunction and occurs due to mutations in genes encoding proteins involved in rod phototransduction cascade; night blindness is the only symptom and eye examination is otherwise normal. Schubert-Bornschein CSNB is a consequence of impaired signal transmission between the photoreceptors and bipolar cells. Schubert-Bornschein CSNB is subdivided into complete CSNB with an ON bipolar signaling defect and incomplete CSNB with both ON and OFF pathway involvement. Both subtypes are associated with variable degrees of night blindness or photophobia, reduced visual acuity, high myopia, and nystagmus. Whole-exome sequencing of a family screened negative for mutations in genes associated with CSNB identified biallelic mutations in the guanine nucleotide-binding protein subunit beta-3 gene (GNB3). Two siblings were compound heterozygous for a deletion (c.170_172delAGA [p.Lys57del]) and a nonsense mutation (c.1017G>A [p.Trp339(∗)]). The maternal aunt was homozygous for the nonsense mutation (c.1017G>A [p.Trp339(∗)]). Mutational analysis of GNB3 in a cohort of 58 subjects with CSNB identified a sporadic case individual with a homozygous GNB3 mutation (c.200C>T [p.Ser67Phe]). GNB3 encodes the ß subunit of G protein heterotrimer (Gαßγ) and is known to modulate ON bipolar cell signaling and cone transducin function in mice. Affected human subjects showed an unusual CSNB phenotype with variable degrees of ON bipolar dysfunction and reduced cone sensitivity. This unique retinal disorder with dual anomaly in visual processing expands our knowledge about retinal signaling.


Asunto(s)
Enfermedades Hereditarias del Ojo/etiología , Genes Recesivos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/etiología , Proteínas de Unión al GTP Heterotriméricas/genética , Mutación/genética , Miopía/etiología , Ceguera Nocturna/etiología , Alelos , Secuencia de Aminoácidos , Animales , Estudios de Casos y Controles , Electrorretinografía , Enfermedades Hereditarias del Ojo/patología , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Genotipo , Proteínas de Unión al GTP Heterotriméricas/química , Homocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Miopía/patología , Ceguera Nocturna/patología , Linaje , Fenotipo , Conformación Proteica , Homología de Secuencia de Aminoácido , Agudeza Visual/genética
14.
Mol Vis ; 25: 373-381, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31367175

RESUMEN

Purpose: Intraocular pressure leading to glaucoma is a major cause of childhood blindness in developing countries. In this study, we sought to identify gene variants potentially associated with primary congenital glaucoma (PCG) in the Mauritanian population. Methods: Using next-generation sequencing (NGS), a panel of PCG candidate genes was screened in a search for DNA mutations in four families with multiple occurrences of PCG. Results: Targeted exome sequencing analysis revealed predicted pathogenic mutations in four genes: CYP1B1 (c.217_218delTC, p.Ser73Valfs*150), MYOC (878C>A, p.T293K), NTF4 (c.601T>G, p.Cys201Gly), and WDR36 (c.2078A>G, p.Asn693Ser), each carried by a different family. Conclusions: Genetic variation associated with PCG in this study reflects the ethnic heterogeneity of the Mauritanian population. However, a larger cohort is needed to identify additional families carrying these mutations and confirm their biologic role.


Asunto(s)
Estudios de Asociación Genética , Glaucoma/congénito , Glaucoma/genética , Mutación/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Análisis Mutacional de ADN , Familia , Femenino , Pruebas Genéticas , Humanos , Masculino , Mauricio , Linaje , Péptidos/química
15.
Clin Genet ; 95(2): 329-333, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30267408

RESUMEN

Genetic investigations were performed in three brothers from a consanguineous union, the two oldest diagnosed with rod-cone dystrophy (RCD), the youngest with early-onset cone-rod dystrophy and the two youngest with nephrotic-range proteinuria. Targeted next-generation sequencing did not identify homozygous pathogenic variant in the oldest brother. Whole exome sequencing (WES) applied to the family identified compound heterozygous variants in CC2D2A (c.2774G>C p.(Arg925Pro); c.4730_4731delinsTGTATA p.(Ala1577Valfs*5)) in the three brothers with a homozygous deletion in CNGA3 (c.1235_1236del p.(Glu412Valfs*6)) in the youngest correcting his diagnosis to achromatopsia plus RCD. None of the three subjects had cerebral abnormalities or learning disabilities inconsistent with Meckel-Gruber and Joubert syndromes, usually associated with CC2D2A mutations. Interestingly, an African woman with RCD shared the CC2D2A missense variant (c.2774G>C p.(Arg925Pro); with c.3182+355_3825del p.(?)). The two youngest also carried compound heterozygous variants in CUBN (c.7906C>T rs137998687 p.(Arg2636*); c.10344C>G p.(Cys3448Trp)) that may explain their nephrotic-range proteinuria. Our study identifies for the first time CC2D2A mutations in isolated RCD and underlines the power of WES to decipher complex phenotypes.


Asunto(s)
Distrofias de Conos y Bastones/diagnóstico , Distrofias de Conos y Bastones/genética , Proteínas del Citoesqueleto/genética , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Alelos , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Linaje , Adulto Joven
16.
Retina ; 39(5): 867-878, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29370033

RESUMEN

PURPOSE: Autosomal dominant vitreoretinochoroidopathy is an extremely rare disease, which belongs to the BEST1-related disease spectrum. METHODS: Report of five patients with an initial diagnosis of atypical rod-cone dystrophy, for whom autosomal dominant vitreoretinochoroidopathy was retrospectively diagnosed on genetic results using targeted next-generation sequencing. Each patient had a comprehensive ophthalmic examination including multimodal retinal imaging and functional evaluation. RESULTS: Visual acuity ranged from <20/800 to 20/25. Two patients had narrowed angle with history of acute angle-closure glaucoma for one patient. Full-field electroretinogram showed severe reduction of both scotopic and photopic responses for 3/5 patients. Electrooculogram could be performed for one of the two patients with moderate alterations of full-field electroretinogram. It revealed severe light rise abnormalities with decreased Arden ratio (125% right eye, 145% left eye) in keeping with generalized severe dysfunction of the retinal pigment epithelium. On fundoscopy, the pathognomonic circumferential hyperpigmented band of the peripheral retina was totally absent in two patients. CONCLUSION: This report highlights the high phenotypic variability of autosomal dominant vitreoretinochoroidopathy, which may be misdiagnosed, especially in advanced forms with severe generalized photoreceptor dysfunction mimicking retinitis pigmentosa. Targeted next-generation sequencing can contribute to the proper clinical diagnosis, especially in case of atypical phenotypic features of autosomal dominant vitreoretinochoroidopathy.


Asunto(s)
Enfermedades de la Coroides/diagnóstico , Enfermedades Hereditarias del Ojo/diagnóstico , Proteínas del Ojo/genética , Pruebas Genéticas/métodos , Degeneración Retiniana/diagnóstico , Campos Visuales , Anciano , Enfermedades de la Coroides/genética , Enfermedades de la Coroides/metabolismo , Diagnóstico Diferencial , Electrorretinografía , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/metabolismo , Proteínas del Ojo/metabolismo , Femenino , Angiografía con Fluoresceína , Estudios de Seguimiento , Fondo de Ojo , Humanos , Persona de Mediana Edad , Oftalmoscopía , Linaje , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Estudios Retrospectivos , Tomografía de Coherencia Óptica
17.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614660

RESUMEN

We investigated the prevalence of reported deep-intronic variants in a French cohort of 70 patients with Stargardt disease harboring a monoallelic pathogenic variant on the exonic regions of ABCA4. Direct Sanger sequencing of selected intronic regions of ABCA4 was conducted. Complete phenotypic analysis and correlation with the genotype was performed in case a known intronic pathogenic variant was identified. All other variants found on the analyzed sequences were queried for minor allele frequency and possible pathogenicity by in silico predictions. The second mutated allele was found in 14 (20%) subjects. The three known deep-intronic variants found were c.5196+1137G>A in intron 36 (6 subjects), c.4539+2064C>T in intron 30 (4 subjects) and c.4253+43G>A in intron 28 (4 subjects). Even though the phenotype depends on the compound effect of the biallelic variants, a genotype-phenotype correlation suggests that the c.5196+1137G>A was mostly associated with a mild phenotype and the c.4539+2064C>T with a more severe one. A variable effect was instead associated with the variant c.4253+43G>A. In addition, two novel variants, c.768+508A>G and c.859-245_859-243delinsTGA never associated with Stargardt disease before, were identified and a possible splice defect was predicted in silico. Our study calls for a larger cohort analysis including targeted locus sequencing and 3D protein modeling to better understand phenotype-genotype correlations associated with deep-intronic changes and patients' selection for clinical trials.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Mutación , Análisis de Secuencia de ADN/métodos , Enfermedad de Stargardt/genética , Adulto , Anciano , Simulación por Computador , Femenino , Francia , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Intrones , Masculino , Persona de Mediana Edad , Fenotipo , Prevalencia , Estudios Retrospectivos , Adulto Joven
18.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31574917

RESUMEN

Phenotypes observed in a large cohort of patients with cone and cone-rod dystrophies (COD/CORDs) are described based on multimodal retinal imaging features in order to help in analyzing massive next-generation sequencing data. Structural abnormalities of 58 subjects with molecular diagnosis of COD/CORDs were analyzed through specific retinal imaging including spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (BAF/IRAF). Findings were analyzed with the underlying genetic defects. A ring of increased autofluorescence was mainly observed in patients with CRX and GUCY2D mutations (33% and 22% of cases respectively). "Speckled" autofluorescence was observed with mutations in three different genes (ABCA4 64%; C2Orf71 and PRPH2, 18% each). Peripapillary sparing was only found in association with mutations in ABCA4, although only present in 40% of such genotypes. Regarding SD-OCT, specific outer retinal abnormalities were more commonly observed in particular genotypes: focal retrofoveal interruption and GUCY2D mutations (50%), foveal sparing and CRX mutations (50%), and outer retinal atrophy associated with hyperreflective dots and ABCA4 mutations (69%). This study outlines the phenotypic heterogeneity of COD/CORDs hampering statistical correlations. A larger study correlating retinal imaging with genetic results is necessary to identify specific clinical features that may help in selecting pathogenic variants generated by high-throughput sequencing.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Fenotipo , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Adolescente , Adulto , Alelos , Biomarcadores , Niño , Preescolar , Distrofias de Conos y Bastones/diagnóstico , Distrofias de Conos y Bastones/genética , Electrorretinografía , Femenino , Fondo de Ojo , Estudios de Asociación Genética/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Células Fotorreceptoras Retinianas Conos/metabolismo , Tomografía de Coherencia Óptica , Adulto Joven
19.
Hum Mutat ; 39(7): 887-913, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29659094

RESUMEN

MER tyrosine kinase (MERTK) encodes a surface receptor localized at the apical membrane of the retinal pigment epithelium. It plays a critical role in photoreceptor outer segment internalization prior to phagocytosis. Mutations in MERTK have been associated with severe autosomal recessive retinal dystrophies in the RCS rat and in humans. We present here a comprehensive review of all reported MERTK disease causing variants with the associated phenotype. In addition, we provide further data and insights of a large cohort of 1,195 inherited retinal dystrophies (IRD) index cases applying state-of-the-art genotyping techniques and summarize current knowledge. A total of 79 variants have now been identified underlying rod-cone dystrophy and cone-rod dystrophy including 11 novel variants reported here. The mutation spectrum in MERTK includes 33 missense, 12 nonsense, 12 splice defects, 12 small deletions, two small insertion-deletions, three small duplications, and two exonic and three gross deletions. Altogether, mutations in MERTK account for ∼2% of IRD cases with a severe retinal phenotype. These data are important for current and future therapeutic trials including gene replacement therapy or cell-based therapy.


Asunto(s)
Mutación/genética , Retina/metabolismo , Enfermedades de la Retina/genética , Tirosina Quinasa c-Mer/genética , Animales , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple/genética , Ratas , Retina/patología , Enfermedades de la Retina/patología , Epitelio Pigmentado de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA