Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(10): 2393-2410.e14, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653235

RESUMEN

SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.


Asunto(s)
COVID-19 , Evasión Inmune , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , COVID-19/inmunología , COVID-19/virología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Animales , Citotoxicidad Inmunológica , Regulación hacia Abajo , Pulmón/inmunología , Pulmón/virología , Pulmón/patología
2.
Nature ; 615(7950): 143-150, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36630998

RESUMEN

The SARS-CoV-2 Omicron variant is more immune evasive and less virulent than other major viral variants that have so far been recognized1-12. The Omicron spike (S) protein, which has an unusually large number of mutations, is considered to be the main driver of these phenotypes. Here we generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate, and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly owing to mutations in the receptor-binding motif; however, unlike naturally occurring Omicron, it efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although virus bearing Omicron S caused less severe disease than the ancestral virus, its virulence was not attenuated to the level of Omicron. Further investigation showed that mutating non-structural protein 6 (nsp6) in addition to the S protein was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that although the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of the S protein.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Factores de Virulencia , Virulencia , Animales , Ratones , Línea Celular , Evasión Inmune , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Humanos , Vacunas contra la COVID-19/inmunología , Pulmón/citología , Pulmón/virología , Replicación Viral , Mutación
3.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33259812

RESUMEN

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Antivirales , COVID-19/genética , COVID-19/patología , Chlorocebus aethiops , Efecto Citopatogénico Viral , Citoesqueleto , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Fosfoproteínas/genética , Transporte de Proteínas , Proteoma/genética , SARS-CoV-2/genética , Transducción de Señal , Células Vero , Tratamiento Farmacológico de COVID-19
4.
J Infect Dis ; 229(2): 485-492, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37856283

RESUMEN

BACKGROUND: Universities returned to in-person learning in 2021 while SARS-CoV-2 spread remained high. At the time, it was not clear whether in-person learning would be a source of disease spread. METHODS: We combined surveillance testing, universal contact tracing, and viral genome sequencing to quantify introductions and identify likely on-campus spread. RESULTS: Ninety-one percent of viral genotypes occurred once, indicating no follow-on transmission. Less than 5% of introductions resulted in >3 cases, with 2 notable exceptions of 40 and 47 cases. Both partially overlapped with outbreaks defined by contact tracing. In both cases, viral genomics eliminated over half the epidemiologically linked cases but added an equivalent or greater number of individuals to the transmission cluster. CONCLUSIONS: Public health interventions prevented within-university transmission for most SARS-CoV-2 introductions, with only 2 major outbreaks being identified January to May 2021. The genetically linked cases overlap with outbreaks identified by contact tracing; however, they persisted in the university population for fewer days and rounds of transmission than estimated via contact tracing. This underscores the effectiveness of test-trace-isolate strategies in controlling undetected spread of emerging respiratory infectious diseases. These approaches limit follow-on transmission in both outside-in and internal transmission conditions.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Universidades , SARS-CoV-2/genética , Trazado de Contacto/métodos , Brotes de Enfermedades/prevención & control
5.
Genome Res ; 31(3): 512-528, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33419731

RESUMEN

Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is caused in part by mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated mosquito small RNA genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) made up of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of cross talk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses.


Asunto(s)
Culicidae/genética , Culicidae/virología , Elementos Transponibles de ADN/genética , Genómica , ARN Interferente Pequeño/genética , Virus , Animales
6.
PLoS Pathog ; 18(2): e1010268, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35120176

RESUMEN

Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness.


Asunto(s)
Ebolavirus/genética , Infecciones por Filoviridae/virología , Filoviridae/genética , Replicación Viral , Animales , Línea Celular , Chlorocebus aethiops , Prueba de Complementación Genética , Genoma Viral , Fiebre Hemorrágica Ebola/virología , Interacciones Microbiota-Huesped , Humanos , Cuerpos de Inclusión/virología , Células Madre Pluripotentes Inducidas/virología , Macrófagos/virología , ARN Viral , Genética Inversa , Células Vero , Virión/genética
9.
J Infect Dis ; 228(Suppl 7): S712-S720, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290053

RESUMEN

BACKGROUND: The filovirus Bundibugyo virus (BDBV) causes severe disease with a mortality rate of approximately 20%-51%. The only licensed filovirus vaccine in the United States, Ervebo, consists of a recombinant vesicular stomatitis virus (rVSV) vector that expresses Ebola virus (EBOV) glycoprotein (GP). Ervebo was shown to rapidly protect against fatal Ebola disease in clinical trials; however, the vaccine is only indicated against EBOV. Recent outbreaks of other filoviruses underscore the need for additional vaccine candidates, particularly for BDBV infections. METHODS: To examine whether the rVSV vaccine candidate rVSVΔG/BDBV-GP could provide therapeutic protection against BDBV, we inoculated seven cynomolgus macaques with 1000 plaque-forming units of BDBV, administering rVSVΔG/BDBV-GP vaccine to 6 of them 20-23 minutes after infection. RESULTS: Five of the treated animals survived infection (83%) compared to an expected natural survival rate of 21% in this macaque model. All treated animals showed an early circulating immune response, while the untreated animal did not. Surviving animals showed evidence of both GP-specific IgM and IgG production, while animals that succumbed did not produce significant IgG. CONCLUSIONS: This small, proof-of-concept study demonstrated early treatment with rVSVΔG/BDBV-GP provides a survival benefit in this nonhuman primate model of BDBV infection, perhaps through earlier initiation of adaptive immunity.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Estomatitis Vesicular , Vacunas Virales , Animales , Estomatitis Vesicular/prevención & control , Anticuerpos Antivirales , Vesiculovirus/genética , Glicoproteínas/genética , Macaca fascicularis , Inmunoglobulina G
10.
Clin Infect Dis ; 76(3): e227-e233, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35737948

RESUMEN

BACKGROUND: In January 2022, US guidelines shifted to recommend isolation for 5 days from symptom onset, followed by 5 days of mask-wearing. However, viral dynamics and variant and vaccination impact on culture conversion are largely unknown. METHODS: We conducted a longitudinal study on a university campus, collecting daily anterior nasal swabs for at least 10 days for reverse-transcription polymerase chain reaction (RT-PCR) testing and culture, with antigen rapid diagnostic testing (RDT) on a subset. We compared culture positivity beyond day 5, time to culture conversion, and cycle threshold trend when calculated from diagnostic test, from symptom onset, by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, and by vaccination status. We evaluated sensitivity and specificity of RDT on days 4-6 compared with culture. RESULTS: Among 92 SARS-CoV-2 RT-PCR-positive participants, all completed the initial vaccine series; 17 (18.5%) were infected with Delta and 75 (81.5%) with Omicron. Seventeen percent of participants had positive cultures beyond day 5 from symptom onset, with the latest on day 12. There was no difference in time to culture conversion by variant or vaccination status. For 14 substudy participants, sensitivity and specificity of day 4-6 RDT were 100% and 86%, respectively. CONCLUSIONS: The majority of our Delta- and Omicron-infected cohort culture-converted by day 6, with no further impact of booster vaccination on sterilization or cycle threshold decay. We found that rapid antigen testing may provide reassurance of lack of infectiousness, though guidance to mask for days 6-10 is supported by our finding that 17% of participants remained culture-positive after isolation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios Longitudinales , SARS-CoV-2/genética , COVID-19/diagnóstico , Estudios de Cohortes , Inmunización Secundaria
11.
Clin Infect Dis ; 76(3): e400-e408, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616119

RESUMEN

BACKGROUND: The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible in vaccinated and unvaccinated populations. The dynamics that govern its establishment and propensity toward fixation (reaching 100% frequency in the SARS-CoV-2 population) in communities remain unknown. Here, we describe the dynamics of Omicron at 3 institutions of higher education (IHEs) in the greater Boston area. METHODS: We use diagnostic and variant-specifying molecular assays and epidemiological analytical approaches to describe the rapid dominance of Omicron following its introduction into 3 IHEs with asymptomatic surveillance programs. RESULTS: We show that the establishment of Omicron at IHEs precedes that of the state and region and that the time to fixation is shorter at IHEs (9.5-12.5 days) than in the state (14.8 days) or region. We show that the trajectory of Omicron fixation among university employees resembles that of students, with a 2- to 3-day delay. Finally, we compare cycle threshold values in Omicron vs Delta variant cases on college campuses and identify lower viral loads among college affiliates who harbor Omicron infections. CONCLUSIONS: We document the rapid takeover of the Omicron variant at IHEs, reaching near-fixation within the span of 9.5-12.5 days despite lower viral loads, on average, than the previously dominant Delta variant. These findings highlight the transmissibility of Omicron, its propensity to rapidly dominate small populations, and the ability of robust asymptomatic surveillance programs to offer early insights into the dynamics of pathogen arrival and spread.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Universidades , Boston
12.
Vet Pathol ; 60(4): 473-487, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37170900

RESUMEN

The liver is an early systemic target of Ebola virus (EBOV), but characterization beyond routine histopathology and viral antigen distribution is limited. We hypothesized Ebola virus disease (EVD) systemic proinflammatory responses would be reflected in temporally altered liver myeloid phenotypes. We utilized multiplex fluorescent immunohistochemistry (mfIHC), multispectral whole slide imaging, and image analysis to quantify molecular phenotypes of myeloid cells in the liver of rhesus macaques (Macaca mulatta; n = 21) infected with EBOV Kikwit. Liver samples included uninfected controls (n = 3), 3 days postinoculation (DPI; n = 3), 4 DPI (n = 3), 5 DPI (n = 3), 6 DPI (n = 3), and terminal disease (6-8 DPI; n = 6). Alterations in hepatic macrophages occurred at ≥ 5 DPI characterized by a 1.4-fold increase in CD68+ immunoreactivity and a transition from primarily CD14-CD16+ to CD14+CD16- macrophages, with a 2.1-fold decrease in CD163 expression in terminal animals compared with uninfected controls. An increase in the neutrophil chemoattractant and alarmin S100A9 occurred within hepatic myeloid cells at 5 DPI, followed by rapid neutrophil influx at ≥ 6 DPI. An acute rise in the antiviral myxovirus resistance protein 1 (MxA) occurred at ≥ 4 DPI, with a predilection for enhanced expression in uninfected cells. Distinctive expression of major histocompatibility complex (MHC) class II was observed in hepatocytes during terminal disease. Results illustrate that EBOV causes macrophage phenotype alterations as well as neutrophil influx and prominent activation of interferon host responses in the liver. Results offer insight into potential therapeutic strategies to prevent and/or modulate the host proinflammatory response to normalize hepatic myeloid functionality.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Fiebre Hemorrágica Ebola/veterinaria , Fiebre Hemorrágica Ebola/patología , Ebolavirus/fisiología , Macaca mulatta , Hígado/patología , Fenotipo
13.
J Infect Dis ; 226(10): 1704-1711, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-35993116

RESUMEN

BACKGROUND: Throughout the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, healthcare workers (HCWs) have faced risk of infection from within the workplace via patients and staff as well as from the outside community, complicating our ability to resolve transmission chains in order to inform hospital infection control policy. Here we show how the incorporation of sequences from public genomic databases aided genomic surveillance early in the pandemic when circulating viral diversity was limited. METHODS: We sequenced a subset of discarded, diagnostic SARS-CoV-2 isolates between March and May 2020 from Boston Medical Center HCWs and combined this data set with publicly available sequences from the surrounding community deposited in GISAID with the goal of inferring specific transmission routes. RESULTS: Contextualizing our data with publicly available sequences reveals that 73% (95% confidence interval, 63%-84%) of coronavirus disease 2019 cases in HCWs are likely novel introductions rather than nosocomial spread. CONCLUSIONS: We argue that introductions of SARS-CoV-2 into the hospital environment are frequent and that expanding public genomic surveillance can better aid infection control when determining routes of transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias/prevención & control , COVID-19/epidemiología , Control de Infecciones , Personal de Salud , Hospitales
14.
Clin Infect Dis ; 75(1): e208-e215, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34755830

RESUMEN

BACKGROUND: The factors associated with severe acute respiratory coronavirus 2 (SARS-CoV-2) reinfection remain poorly defined. METHODS: We identified patients with SARS-CoV-2 infection and at least 1 repeat reverse transcription polymerase chain reaction result a minimum of 90 days after the initial positive test and before 21 January 2021. Those with a repeat positive test were deemed to have reinfection (n = 75), and those with only negative tests were classified as convalescents (n = 1594). Demographics, coronavirus disease 2019 (COVID-19) severity, and treatment histories were obtained from the Boston Medical Center electronic medical record. Humoral responses were analyzed using SARS-CoV-2-specific enzyme-linked immunosorbent assays and pseudovirus neutralizations in a subset of reinfection (n = 16) and convalescent samples (n = 32). Univariate, multivariate, and time to event analyses were used to identify associations. RESULTS: Individuals with reinfection had more frequent testing at shorter intervals compared with the convalescents. Unstable housing was associated with more than 2-fold greater chance of reinfection. Preexisting comorbidities and COVID-19 severity after the initial infection were not associated with reinfection. SARS-CoV-2 immunoglobulin G levels and pseudovirus neutralization were not different within the early weeks after primary infection and at a timepoint at least 90 days later in the 2 groups. In the convalescents, but not in those with reinfection, the late as compared with early humoral responses were significantly higher. CONCLUSIONS: Reinfection associates with unstable housing, which is likely a marker for virus exposure, and reinfection occurs in the presence of SARS-CoV-2 antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Vivienda , Humanos , Reinfección/epidemiología
15.
Antimicrob Agents Chemother ; 66(11): e0084122, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36222522

RESUMEN

The genus Orthopoxvirus contains several human pathogens, including vaccinia, monkeypox, cowpox, and variola virus, the causative agent of smallpox. Although there are a few effective vaccines, widespread prophylactic vaccination has ceased and is unlikely to resume, making therapeutics increasingly important to treat poxvirus disease. Here, we described efforts to improve the potency of the anti-poxvirus small molecule CMLDBU6128. This class of small molecules, referred to as pyridopyrimidinones (PDPMs), showed a wide range of biological activities. Through the synthesis and testing of several exploratory chemical libraries based on this molecule, we identified several compounds that had increased potency from the micromolar into the nanomolar range. Two compounds, designated (12) and (16), showed inhibitory concentrations of 326 nM and 101 nM, respectively, which was more than a 10-fold increase in potency to CMLDBU6128 with an inhibitory concentration of around 6 µM. We also expanded our investigation of the breadth of action of these molecules and showed that they can inhibit the replication of variola virus, a related orthopoxvirus. Together, these findings highlighted the promise of this new class of antipoxviral agents as broad-spectrum small molecules with significant potential to be developed as antiviral therapy. This would add a small molecule option for therapy of spreading diseases, including monkeypox and cowpox viruses, that would also be expected to have efficacy against smallpox.


Asunto(s)
Mpox , Orthopoxvirus , Viruela , Vaccinia , Virus de la Viruela , Humanos , Viruela/tratamiento farmacológico , Vaccinia/tratamiento farmacológico , Virus Vaccinia
17.
J Virol ; 95(19): e0086221, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34260266

RESUMEN

SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we generated a panel of phenotypically diverse, SARS-CoV-2-infectible human cell lines representing different body organs and performed longitudinal survey of cellular proteins and pathways broadly affected by the virus. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cells and primary-like cardiomyocytes, and found that SARS-CoV-2 targeted the proximal pathway components, including Janus kinase 1 (JAK1), tyrosine kinase 2 (Tyk2), and the interferon receptor subunit 1 (IFNAR1), resulting in cellular desensitization to type I IFN. Detailed mechanistic investigation of IFNAR1 showed that the protein underwent ubiquitination upon SARS-CoV-2 infection. Furthermore, chemical inhibition of JAK kinases enhanced infection of stem cell-derived cultures, indicating that the virus benefits from inhibiting the JAK-STAT pathway. These findings suggest that the suppression of interferon signaling is a mechanism widely used by the virus to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19. IMPORTANCE SARS-CoV-2 can infect various organs in the human body, but the molecular interface between the virus and these organs remains unexplored. In this study, we generated a panel of highly infectible human cell lines originating from various body organs and employed these cells to identify cellular processes commonly or distinctly disrupted by SARS-CoV-2 in different cell types. One among the universally impaired processes was interferon signaling. Systematic analysis of this pathway in diverse culture systems showed that SARS-CoV-2 targets the proximal JAK-STAT pathway components, destabilizes the type I interferon receptor though ubiquitination, and consequently renders the infected cells resistant to type I interferon. These findings illuminate how SARS-CoV-2 can continue to propagate in different tissues even in the presence of a disseminated innate immune response.


Asunto(s)
COVID-19/metabolismo , Interacciones Microbiota-Huesped/fisiología , Quinasas Janus/metabolismo , SARS-CoV-2/metabolismo , Línea Celular , Regulación de la Expresión Génica , Humanos , Evasión Inmune , Inmunidad Innata , Interferón Tipo I/metabolismo , Janus Quinasa 1/metabolismo , Miocitos Cardíacos , Receptor de Interferón alfa y beta/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , TYK2 Quinasa/metabolismo , Replicación Viral
18.
Pediatr Res ; 92(2): 536-540, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34718351

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a pandemic that has and will continue to affect many pregnant women. Knowledge regarding the risk of vertical transmission is limited. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swabs typically have been used to confirm the diagnosis among infants, but whether the virus can be detected in other biological specimens, and therefore potentially transmitted in other ways, is unknown. Positive SARS-CoV-2 RT-PCR has been reported from feces and urine from adult patients. We hypothesize that the presence of SARS-CoV-2 in infant urine and fecal samples after prenatal COVID-19 exposure is low. METHODS: We examined the presence of SARS-CoV-2 RNA using RT-PCR in urine and fecal samples among 42 infants born to SARS-CoV-2-infected mothers during different stages of pregnancy. RESULTS: A urine sample was collected from 39 of 42 infants and fecal samples from all 42 infants shortly after birth. Although the majority of the women had the symptomatic disease (85.6%), we were unable to detect the presence of SARS-CoV-2 virus from any infant urine or fecal samples. CONCLUSIONS: SARS-CoV-2 was not detected in infant urine or feces after maternal infection during pregnancy, providing further evidence for low rates of perinatal transmission. IMPACT: SARS-CoV-2 was not detected in the urine or feces of infants of mothers with COVID-19 during various time points in pregnancy. This study provides further evidence for low rates of perinatal transmission of SARS-CoV-2. Results help to provide guidance on perinatal care practices for infants exposed to COVID-19 in utero.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Adulto , Heces , Femenino , Humanos , Lactante , Transmisión Vertical de Enfermedad Infecciosa , Embarazo , Complicaciones Infecciosas del Embarazo/diagnóstico , Complicaciones Infecciosas del Embarazo/epidemiología , ARN Viral , ADN Polimerasa Dirigida por ARN , SARS-CoV-2
19.
Anal Chem ; 93(8): 4100-4107, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33596049

RESUMEN

We report a confocal interferometric mid-infrared photothermal (MIP) microscope for ultra-sensitive and spatially resolved chemical imaging of individual viruses. The interferometric scattering principle is applied to detect the very weak photothermal signal induced by infrared absorption of chemical bonds. Spectroscopic MIP detection of single vesicular stomatitis viruses (VSVs) and poxviruses is demonstrated. The single virus spectra show high consistency within the same virus type. The dominant spectral peaks are contributed by the amide I and amide II vibrations attributed to the viral proteins. The ratio of these two peaks is significantly different between VSVs and poxviruses, highlighting the potential of using interferometric MIP microscopy for label-free differentiation of viral particles. This all-optical chemical imaging method opens a new way for spectroscopic detection of biological nanoparticles in a label-free manner and may facilitate in predicting and controlling the outbreaks of emerging virus strains.


Asunto(s)
Microscopía , Vibración , Virus ADN , Interferometría , Análisis Espectral
20.
Am J Pathol ; 190(7): 1449-1460, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32275904

RESUMEN

Zaire ebolavirus (EBOV) causes Ebola virus disease (EVD), which carries a fatality rate between 25% and 90% in humans. Liver pathology is a hallmark of terminal EVD; however, little is known about temporal disease progression. We used multiplexed fluorescent immunohistochemistry and in situ hybridization in combination with whole slide imaging and image analysis (IA) to quantitatively characterize temporospatial signatures of viral and host factors as related to EBOV pathogenesis. Eighteen rhesus monkeys euthanized between 3 and 8 days post-infection, and 3 uninfected controls were enrolled in this study. Compared with semiquantitative histomorphologic ordinal scoring, quantitative IA detected subtle and progressive features of early and terminal EVD that was not feasible with routine approaches. Sinusoidal macrophages were the earliest cells to respond to infection, expressing proinflammatory cytokine interleukin 6 (IL6) mRNA, which was subsequently also observed in fibrovascular compartments. The mRNA of interferon-stimulated gene-15 (ISG-15), also known as ISG15 ubiquitin like modifier (ISG15), was observed early, with a progressive and ubiquitous hybridization signature involving mesenchymal and epithelial compartments. ISG-15 mRNA was prominent near infected cells, but not in infected cells, supporting the hypothesis that bystander cells produce a robust interferon gene response. This study contributes to our current understanding of early EVD progression and illustrates the value that digital pathology and quantitative IA serve in infectious disease research.


Asunto(s)
Biomarcadores/análisis , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno/fisiología , Hígado/virología , Animales , Ebolavirus , Femenino , Fiebre Hemorrágica Ebola/inmunología , Hígado/inmunología , Hígado/patología , Estudios Longitudinales , Macaca mulatta , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA