RESUMEN
PURPOSE OF REVIEW: Glioblastoma is the commonest primary brain cancer in adults whose outcomes are amongst the worst of any cancer. The current treatment pathway comprises surgery and postoperative chemoradiotherapy though unresectable diffusely infiltrative tumour cells remain untreated for several weeks post-diagnosis. Intratumoural heterogeneity combined with increased hypoxia in the postoperative tumour microenvironment potentially decreases the efficacy of adjuvant interventions and fails to prevent early postoperative regrowth, called rapid early progression (REP). In this review, we discuss the clinical implications and biological foundations of post-surgery REP. Subsequently, clinical interventions potentially targeting this phenomenon are reviewed systematically. RECENT FINDINGS: Early interventions include early systemic chemotherapy, neoadjuvant immunotherapy, local therapies delivered during surgery (including Gliadel wafers, nanoparticles and stem cell therapy) and several radiotherapy techniques. We critically appraise and compare these strategies in terms of their efficacy, toxicity, challenges and potential to prolong survival. Finally, we discuss the most promising strategies that could benefit future glioblastoma patients. There is biological rationale to suggest that early interventions could improve the outcome of glioblastoma patients and they should be investigated in future trials.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Carmustina/uso terapéutico , Quimioradioterapia , Glioblastoma/tratamiento farmacológico , Glioblastoma/terapia , Humanos , Microambiente TumoralRESUMEN
PURPOSE: A DCE-MRI technique that can provide both high spatiotemporal resolution and whole-brain coverage for quantitative microvascular analysis is highly desirable but currently challenging to achieve. In this study, we sought to develop and validate a novel dual-temporal resolution (DTR) DCE-MRI-based methodology for deriving accurate, whole-brain high-spatial resolution microvascular parameters. METHODS: Dual injection DTR DCE-MRI was performed and composite high-temporal and high-spatial resolution tissue gadolinium-based-contrast agent (GBCA) concentration curves were constructed. The high-temporal but low-spatial resolution first-pass GBCA concentration curves were then reconstructed pixel-by-pixel to higher spatial resolution using a process we call LEGATOS. The accuracy of kinetic parameters (Ktrans , vp , and ve ) derived using LEGATOS was evaluated through simulations and in vivo studies in 17 patients with vestibular schwannoma (VS) and 13 patients with glioblastoma (GBM). Tissue from 15 tumors (VS) was examined with markers for microvessels (CD31) and cell density (hematoxylin and eosin [H&E]). RESULTS: LEGATOS derived parameter maps offered superior spatial resolution and improved parameter accuracy compared to the use of high-temporal resolution data alone, provided superior discrimination of plasma volume and vascular leakage effects compared to other high-spatial resolution approaches, and correlated with tissue markers of vascularity (P ≤ 0.003) and cell density (P ≤ 0.006). CONCLUSION: The LEGATOS method can be used to generate accurate, high-spatial resolution microvascular parameter estimates from DCE-MRI.
Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , HumanosAsunto(s)
Neoplasias Encefálicas , Glioma , Imagen por Resonancia Magnética , Tractos Piramidales , Humanos , Glioma/diagnóstico por imagen , Glioma/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Imagen por Resonancia Magnética/métodos , Tractos Piramidales/diagnóstico por imagen , Cuidados Preoperatorios/métodos , Medición de Riesgo , Resultado del Tratamiento , Reproducibilidad de los Resultados , Corteza Cerebral/diagnóstico por imagen , Complicaciones Posoperatorias/diagnóstico por imagenRESUMEN
OBJECT: Endoscopic third ventriculostomy (ETV) uses anatomical spaces of the ventricular system to reach the third ventricle floor and create an alternative pathway for cerebrospinal fluid flow. Optimal ETV trajectories have been previously proposed in the literature, designed to grant access to the third ventricle floor without a displacement of eloquent periventricular structures. However, in hydrocephalus, there is a significant variability to the configuration of the ventricular system, implying that the optimal ETV trajectory and cranial entry point needs to be planned on a case-by-case basis. In the current study, we created a mathematical model, which tailors the optimal ETV entry point to the individual case by incorporating the ventricle dimensions. METHODS: We retrospectively reviewed the imaging of 30 consecutive pediatric patients with varying degrees of ventriculomegaly. Three dimensional radioanatomical models were created using preoperative MRI scans to simulate the optimal ETV trajectory and entry point for each case. The surface location of cranial entry points for individual ETV trajectories was recorded as Cartesian coordinates centered at Bregma. The distance from the Bregma in the coronal plane represented as "x", and the distance from the coronal suture in the sagittal plane represented as "y". The correlation between the ventricle dimensions and the x, y coordinates were tested using linear regression models. RESULTS: The distance of the optimal ETV entry point from the Bregma in the coronal plane ("x") and from the coronal suture in the sagittal plane ("y") correlated well with the frontal horn ratio (FHR). The coordinates for x and y were fitted along the following linear equations: x = 85.8 FHR-13.3 (r 2 = 0.84, p < 0.001) and y = -69.6 FHR + 16.7 (r 2 = 0.83, p < 0.001). CONCLUSION: The surface location of the optimal cranial ETV entry point correlates well with the ventricle size. We provide the first model that can be used as a surgical planning aid for a case specific ETV entry site with the incorporation of the ventricle size.
Asunto(s)
Hidrocefalia/cirugía , Neuroendoscopía/métodos , Tercer Ventrículo/cirugía , Ventriculostomía/métodos , Adolescente , Niño , Preescolar , Femenino , Humanos , Hidrocefalia/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Lactante , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
BACKGROUND: Eyebrow craniotomy is a recently described minimally invasive approach for tackling primarily pathology of the anterior skull base. The removal of the orbital bar may further expand the surgical corridor of this exposure, but the extent of benefit is poorly quantified. We assessed the effect of orbital bar removal with regards to surgical access in the eyebrow craniotomy using classic morphometric measurements in cadaver heads. Using surgical phantoms and neuronavigation, we also measured the 'working volume', a new parameter for characterising the volume of surgical access in these approaches. METHODS: Silicon injected cadaver heads (n = 5) were used for morphometric analysis of the eyebrow craniotomy with and without orbital bar removal. Working depths and 'working areas' of surgical access were measured as defined by key anatomical landmarks. The eyebrow craniotomy with or without orbital bar removal was also simulated using surgical phantoms (n = 3, 90-120 points per trial), calibrated against a frameless neuronavigation system. Working volume was derived from reference coordinates recorded along the anatomical borders of the eyebrow craniotomy using the "α-shape algorithm" in R statistics. RESULTS: In cadaver heads, eyebrow craniotomy with removal of the orbital bar reduced the working depth to the ipsilateral anterior clinoid process (42 ± 2 versus 33 ± 3 mm; p < 0.05), but the working areas as defined by deep neurovascular and bony landmarks was statistically unchanged (total working areas of 418 ± 80 cm(2) versus 334 ± 48 cm(2); p = 0.4). In surgical phantom studies, however, working-volume for the simulated eyebrow craniotomies was increased with orbital bar removal (16 ± 1 cm(3) versus 21 ± 1 cm(3); p < 0.01). CONCLUSIONS: In laboratory studies, orbital bar removal in eyebrow craniotomy provides a modest reduction in working depth and increase in the working volume. But this must be weighed up against the added morbidity of the procedure. Working volume, a newly developed parameter may provide a more meaningful endpoint for characterising the surgical access for different surgical approaches and it could be applied to other operative cases undertaken with frameless neuronavigation.
Asunto(s)
Cadáver , Simulación por Computador , Craneotomía/métodos , Órbita/cirugía , Base del Cráneo/cirugía , Algoritmos , Cejas , Humanos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Modelos Anatómicos , Neuronavegación/métodos , Hueso Esfenoides/cirugíaRESUMEN
Background: Nonauditory symptoms can be a prominent feature in patients with sporadic vestibular schwannoma (VS), but the cause of these symptoms is unknown. Inflammation is hypothesized to play a key role in the growth and symptomatic presentation of sporadic VS, and in this study, we investigated through translocator protein (TSPO) positron emission tomography (PET) whether inflammation occurred within the "normal appearing" brain of such patients and its association with tumor growth. Methods: Dynamic PET datasets from 15 patients with sporadic VS (8 static and 7 growing) who had been previously imaged using the TSPO tracer [11C](R)-PK11195 were included. Parametric images of [11C](R)-PK11195 binding potential (BPND) and the distribution volume ratio (DVR) were derived and compared across VS growth groups within both contralateral and ipsilateral gray (GM) and white matter (WM) regions. Voxel-wise cluster analysis was additionally performed to identify anatomical regions of increased [11C](R)-PK11195 binding. Results: Compared with static tumors, growing VS demonstrated significantly higher cortical (GM, 1.070 vs. 1.031, Pâ =â .03) and whole brain (GM & WM, 1.045 vs. 1.006, Pâ =â .03) [11C](R)-PK11195 DVR values. The voxel-wise analysis supported the region-based analysis and revealed clusters of high TSPO binding within the precentral, postcentral, and prefrontal cortex in patients with growing VS. Conclusions: We present the first in vivo evidence of increased TSPO expression and inflammation within the brains of patients with growing sporadic VS. These results provide a potential mechanistic insight into the development of nonauditory symptoms in these patients and highlight the need for further studies interrogating the role of neuroinflammation in driving VS symptomatology.
RESUMEN
Myeloid cells are highly prevalent in glioblastoma (GBM), existing in a spectrum of phenotypic and activation states. We now have limited knowledge of the tumor microenvironment (TME) determinants that influence the localization and the functions of the diverse myeloid cell populations in GBM. Here, we have utilized orthogonal imaging mass cytometry with single-cell and spatial transcriptomic approaches to identify and map the various myeloid populations in the human GBM tumor microenvironment (TME). Our results show that different myeloid populations have distinct and reproducible compartmentalization patterns in the GBM TME that is driven by tissue hypoxia, regional chemokine signaling, and varied homotypic and heterotypic cellular interactions. We subsequently identified specific tumor subregions in GBM, based on composition of identified myeloid cell populations, that were linked to patient survival. Our results provide insight into the spatial organization of myeloid cell subpopulations in GBM, and how this is predictive of clinical outcome.
Asunto(s)
Glioblastoma , Células Mieloides , Microambiente Tumoral , Glioblastoma/patología , Glioblastoma/metabolismo , Humanos , Células Mieloides/metabolismo , Células Mieloides/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Análisis de la Célula Individual , Hipoxia/metabolismo , Perfilación de la Expresión GénicaRESUMEN
A key limitation of current dynamic contrast enhanced (DCE) MRI techniques is the requirement for full-dose gadolinium-based contrast agent (GBCA) administration. The purpose of this feasibility study was to develop and assess a new low GBCA dose protocol for deriving high-spatial resolution kinetic parameters from brain DCE-MRI. Nineteen patients with intracranial skull base tumours were prospectively imaged at 1.5 T using a single-injection, fixed-volume low GBCA dose, dual temporal resolution interleaved DCE-MRI acquisition. The accuracy of kinetic parameters (ve, Ktrans, vp) derived using this new low GBCA dose technique was evaluated through both Monte-Carlo simulations (mean percent deviation, PD, of measured from true values) and an in vivo study incorporating comparison with a conventional full-dose GBCA protocol and correlation with histopathological data. The mean PD of data from the interleaved high-temporal-high-spatial resolution approach outperformed use of high-spatial, low temporal resolution datasets alone (p < 0.0001, t-test). Kinetic parameters derived using the low-dose interleaved protocol correlated significantly with parameters derived from a full-dose acquisition (p < 0.001) and demonstrated a significant association with tissue markers of microvessel density (p < 0.05). Our results suggest accurate high-spatial resolution kinetic parameter mapping is feasible with significantly reduced GBCA dose.
Asunto(s)
Neoplasias Encefálicas , Medios de Contraste , Humanos , Estudios de Factibilidad , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patologíaRESUMEN
This study aimed to develop and evaluate a new DCE-MRI processing technique that combines LEGATOS, a dual-temporal resolution DCE-MRI technique, with multi-kinetic models. This technique enables high spatial resolution interrogation of flow and permeability effects, which is currently challenging to achieve. Twelve patients with neurofibromatosis type II-related vestibular schwannoma (20 tumours) undergoing bevacizumab therapy were imaged at 1.5 T both before and at 90 days following treatment. Using the new technique, whole-brain, high spatial resolution images of the contrast transfer coefficient (Ktrans), vascular fraction (vp), extravascular extracellular fraction (ve), capillary plasma flow (Fp), and the capillary permeability-surface area product (PS) could be obtained, and their predictive value was examined. Of the five microvascular parameters derived using the new method, baseline PS exhibited the strongest correlation with the baseline tumour volume (p = 0.03). Baseline ve showed the strongest correlation with the change in tumour volume, particularly the percentage tumour volume change at 90 days after treatment (p < 0.001), and PS demonstrated a larger reduction at 90 days after treatment (p = 0.0001) when compared to Ktrans or Fp alone. Both the capillary permeability-surface area product (PS) and the extravascular extracellular fraction (ve) significantly differentiated the 'responder' and 'non-responder' tumour groups at 90 days (p < 0.05 and p < 0.001, respectively). These results highlight that this novel DCE-MRI analysis approach can be used to evaluate tumour microvascular changes during treatment and the need for future larger clinical studies investigating its role in predicting antiangiogenic therapy response.
RESUMEN
Bilateral vestibular schwannoma is the hallmark of NF2-related schwannomatosis, a rare tumour predisposition syndrome associated with a lifetime of surgical interventions, radiotherapy and off-label use of the anti-angiogenic drug bevacizumab. Unilateral vestibular schwannoma develops sporadically in non-NF2-related schwannomatosis patients for which there are no drug treatment options available. Tumour-infiltrating immune cells such as macrophages and T-cells correlate with increased vestibular schwannoma growth, which is suggested to be similar in sporadic and NF2-related schwannomatosis tumours. However, differences between NF2-related schwannomatosis and the more common sporadic disease include NF2-related schwannomatosis patients presenting an increased number of tumours, multiple tumour types and younger age at diagnosis. A comparison of the tumour microenvironment in sporadic and NF2-related schwannomatosis tumours is therefore required to underpin the development of immunotherapeutic targets, identify the possibility of extrapolating ex vivo data from sporadic vestibular schwannoma to NF2-related schwannomatosis and help inform clinical trial design with the feasibility of co-recruiting sporadic and NF2-related schwannomatosis patients. This study drew together bulk transcriptomic data from three published Affymetrix microarray datasets to compare the gene expression profiles of sporadic and NF2-related schwannomatosis vestibular schwannoma and subsequently deconvolved to predict the abundances of distinct tumour immune microenvironment populations. Data were validated using quantitative PCR and Hyperion imaging mass cytometry. Comparative bioinformatic analyses revealed close similarities in NF2-related schwannomatosis and sporadic vestibular schwannoma tumours across the three datasets. Significant inflammatory markers and signalling pathways were closely matched in NF2-related schwannomatosis and sporadic vestibular schwannoma, relating to the proliferation of macrophages, angiogenesis and inflammation. Bulk transcriptomic and imaging mass cytometry data identified macrophages as the most abundant immune population in vestibular schwannoma, comprising one-third of the cell mass in both NF2-related schwannomatosis and sporadic tumours. Importantly, there were no robust significant differences in signalling pathways, gene expression, cell type abundance or imaging mass cytometry staining between NF2-related schwannomatosis and sporadic vestibular schwannoma. These data indicate strong similarities in the tumour immune microenvironment of NF2-related schwannomatosis and sporadic vestibular schwannoma.
RESUMEN
Background: Glioblastoma is a high-grade aggressive neoplasm whose outcomes have not changed in decades. In the current treatment pathway, tumour growth continues and remains untreated for several weeks post-diagnosis. Intensified upfront therapy could target otherwise untreated tumour cells and improve the treatment outcome. POBIG will evaluate the safety and feasibility of single-fraction preoperative radiotherapy for newly diagnosed glioblastoma, assessed by the maximum tolerated dose (MTD) and maximum tolerated irradiation volume (MTIV). Methods: POBIG is an open-label, dual-centre phase I dose and volume escalation trial that has received ethical approval. Patients with a new radiological diagnosis of glioblastoma will be screened for eligibility. This is deemed sufficient due to the high accuracy of imaging and to avoid treatment delay. Eligible patients will receive a single fraction of preoperative radiotherapy ranging from 6 to 14 Gy followed by their standard of care treatment comprising maximal safe resection and postoperative chemoradiotherapy (60 Gy/30 fr) with concurrent and adjuvant temozolomide). Preoperative radiotherapy will be directed to the part of the tumour that is highest risk for remaining as postoperative residual disease (hot spot). Part of the tumour will remain unirradiated (cold spot) and sampled separately for diagnostic purposes. Dose/volume escalation will be guided by a Continual Reassessment Method (CRM) model. Translational opportunities will be afforded through comparison of irradiated and unirradiated primary glioblastoma tissue. Discussion: POBIG will help establish the role of radiotherapy in preoperative modalities for glioblastoma. Trial registration: NCT03582514 (clinicaltrials.gov).
RESUMEN
Accurate vascular input function (VIF) derivation is essential in brain dynamic contrast-enhanced (DCE) MRI. The optimum site for VIF estimation is, however, debated. This study sought to compare VIFs extracted from the internal carotid artery (ICA) and its branches with an arrival-corrected vascular output function (VOF) derived from the superior sagittal sinus (VOFSSS). DCE-MRI datasets from sixty-six patients with different brain tumours were retrospectively analysed and plasma gadolinium-based contrast agent (GBCA) concentration-time curves used to extract VOF/VIFs from the SSS, the ICA, and the middle cerebral artery. Semi-quantitative parameters across each first-pass VOF/VIF were compared and the relationship between these parameters and GBCA dose was evaluated. Through a test-retest study in 12 patients, the repeatability of each semiquantitative VOF/VIF parameter was evaluated; and through comparison with histopathological data the accuracy of kinetic parameter estimates derived using each VOF/VIF and the extended Tofts model was also assessed. VOFSSS provided a superior surrogate global input function compared to arteries, with greater contrast-to-noise (p < 0.001), higher peak (p < 0.001, repeated-measures ANOVA), and a greater sensitivity to interindividual plasma GBCA concentration. The repeatability of VOFSSS derived semi-quantitative parameters was good to excellent (ICC = 0.717-0.888) outperforming arterial based approaches. In contrast to arterial VIFs, kinetic parameters obtained using a SSS derived VOF permitted detection of intertumoural differences in both microvessel surface area and cell density within resected tissue specimens. These results support the usage of an arrival-corrected VOFSSS as a surrogate vascular input function for kinetic parameter mapping in brain DCE-MRI.
Asunto(s)
Imagen por Resonancia Magnética , Seno Sagital Superior , Algoritmos , Encéfalo/diagnóstico por imagen , Medios de Contraste , Humanos , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Seno Sagital Superior/diagnóstico por imagenRESUMEN
Glioblastoma is a high-grade aggressive neoplasm characterised by significant intra-tumoral spatial heterogeneity. Personalising therapy for this tumour requires non-invasive tools to visualise its heterogeneity to monitor treatment response on a regional level. To date, efforts to characterise glioblastoma's imaging features and heterogeneity have focussed on individual imaging biomarkers, or high-throughput radiomic approaches that consider a vast number of imaging variables across the tumour as a whole. Habitat imaging is a novel approach to cancer imaging that identifies tumour regions or 'habitats' based on shared imaging characteristics, usually defined using multiple imaging biomarkers. Habitat imaging reflects the evolution of imaging biomarkers and offers spatially preserved assessment of tumour physiological processes such perfusion and cellularity. This allows for regional assessment of treatment response to facilitate personalised therapy. In this review, we explore different methodologies to derive imaging habitats in glioblastoma, strategies to overcome its technical challenges, contrast experiences to other cancers, and describe potential clinical applications.
RESUMEN
Stereotactic radiosurgery (SRS) is an established, effective therapy against vestibular schwannoma (VS). The mechanisms of tumour response are, however, unknown and in this study we sought to evaluate changes in the irradiated VS tumour microenvironment through a multinuclear MRI approach. Five patients with growing sporadic VS underwent a multi-timepoint comprehensive MRI protocol, which included diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE) MRI and a spiral 23Na-MRI acquisition for total sodium concentration (TSC) quantification. Post-treatment voxelwise changes in TSC, DTI metrics and DCE-MRI derived microvascular biomarkers (Ktrans, ve and vp) were evaluated and compared against pre-treatment values. Changes in tumour TSC and microvascular parameters were observable as early as 2 weeks post-treatment, preceding changes in structural imaging. At 6 months post-treatment there were significant voxelwise increases in tumour TSC (p < 0.001) and mean diffusivity (p < 0.001, repeated-measures ANOVA) with marked decreases in tumour microvascular parameters (p < 0.001, repeated-measures ANOVA). This study presents the first in vivo evaluation of alterations in the VS tumour microenvironment following SRS, demonstrating that changes in tumour sodium homeostasis and microvascular parameters can be imaged as early as 2 weeks following treatment. Future studies should seek to investigate these clinically relevant MRI metrics as early biomarkers of SRS response.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Imagen por Resonancia Magnética/métodos , Neuroma Acústico/patología , Neuroma Acústico/radioterapia , Sodio/metabolismo , Microambiente Tumoral , Anciano , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora/métodos , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Radiocirugia , Resultado del TratamientoRESUMEN
OBJECTIVE: Inflammation and angiogenesis may play a role in the growth of sporadic and neurofibromatosis type 2 (NF2)-related vestibular schwannoma (VS). The similarities in microvascular and inflammatory microenvironment have not been investigated. The authors sought to compare the tumor microenvironment (TME) in sporadic and NF2-related VSs using a combined imaging and tissue analysis approach. METHODS: Diffusion MRI and high-temporal-resolution dynamic contrast-enhanced (DCE) MRI data sets were prospectively acquired in 20 NF2-related and 24 size-matched sporadic VSs. Diffusion metrics (mean diffusivity, fractional anisotropy) and DCE-MRI-derived microvascular biomarkers (transfer constant [Ktrans], fractional plasma volume, tissue extravascular-extracellular space [ve], longitudinal relaxation rate, tumoral blood flow) were compared across both VS groups, and regression analysis was used to evaluate the effect of tumor size, pretreatment tumor growth rate, and tumor NF2 status (sporadic vs NF2-related) on each imaging parameter. Tissues from 17 imaged sporadic VSs and a separate cohort of 12 NF2-related VSs were examined with immunohistochemistry markers for vessels (CD31), vessel permeability (fibrinogen), and macrophage density (Iba1). The expression of vascular endothelial growth factor (VEGF) and VEGF receptor 1 was evaluated using immunohistochemistry, Western blotting, and double immunofluorescence. RESULTS: Imaging data demonstrated that DCE-MRI-derived microvascular characteristics were similar in sporadic and NF2-related VSs. Ktrans (p < 0.001), ve (p ≤ 0.004), and tumoral free water content (p ≤ 0.003) increased with increasing tumor size and pretreatment tumor growth rate. Regression analysis demonstrated that with the exception of mean diffusivity (p < 0.001), NF2 status had no statistically significant effect on any of the imaging parameters or the observed relationship between the imaging parameters and tumor size (p > 0.05). Tissue analysis confirmed the imaging metrics among resected sporadic VSs and demonstrated that across all VSs studied, there was a close association between vascularity and Iba1+ macrophage density (r = 0.55, p = 0.002). VEGF was expressed by Iba1+ macrophages. CONCLUSIONS: The authors present the first in vivo comparative study of microvascular and inflammatory characteristics in sporadic and NF2-related VSs. The imaging and tissue analysis results indicate that inflammation is a key contributor to TME and should be viewed as a therapeutic target in both VS groups.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Neurofibromatosis 2/patología , Neuroma Acústico/patología , Microambiente Tumoral , Adulto , Anisotropía , Agua Corporal , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Inflamación , Masculino , Microcirculación , Persona de Mediana Edad , Proteínas de Neoplasias/análisis , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/patología , Neurofibromatosis 2/diagnóstico por imagen , Neuroma Acústico/química , Neuroma Acústico/diagnóstico por imagen , Neuroma Acústico/genética , Macrófagos Asociados a Tumores/metabolismo , Factor A de Crecimiento Endotelial Vascular/análisis , Receptor 1 de Factores de Crecimiento Endotelial Vascular/análisis , Adulto JovenRESUMEN
In neurosurgery there are several situations that require transgression of the temporal cortex. For example, a subset of patients with temporal lobe epilepsy require surgical resection (most typically, en-bloc anterior temporal lobectomy). This procedure is the gold standard to alleviate seizures but is associated with chronic cognitive deficits. In recent years there have been multiple attempts to find the optimum balance between minimising the size of resection in order to preserve cognitive function, while still ensuring seizure freedom. Some attempts involve reducing the distance that the resection stretches back from the temporal pole, whilst others try to preserve one or more of the temporal gyri. More recent advanced surgical techniques (selective amygdalo-hippocamptectomies) try to remove the least amount of tissue by going under (sub-temporal), over (trans-Sylvian) or through the temporal lobe (middle-temporal), which have been related to better cognitive outcomes. Previous comparisons of these surgical techniques focus on comparing seizure freedom or behaviour post-surgery, however there have been no systematic studies showing the effect of surgery on white matter connectivity. The main aim of this study, therefore, was to perform systematic 'pseudo-neurosurgery' based on existing resection methods on healthy neuroimaging data and measuring the effect on long-range connectivity. We use anatomical connectivity maps (ACM) to determine long-range disconnection, which is complementary to existing measures of local integrity such as fractional anisotropy or mean diffusivity. ACMs were generated for each diffusion scan in order to compare whole-brain connectivity with an 'ideal resection', nine anterior temporal lobectomy and three selective approaches. For en-bloc resections, as distance from the temporal pole increased, reduction in connectivity was evident within the arcuate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and the uncinate fasciculus. Increasing the height of resections dorsally reduced connectivity within the uncinate fasciculus. Sub-temporal amygdalohippocampectomy resections were associated with connectivity patterns most similar to the 'ideal' baseline resection, compared to trans-Sylvian and middle-temporal approaches. In conclusion, we showed the utility of ACM in assessing long-range disconnections/disruptions during temporal lobe resections, where we identified the sub-temporal resection as the least disruptive to long-range connectivity which may explain its better cognitive outcome. These results have a direct impact on understanding the amount and/or type of cognitive deficit post-surgery, which may not be obtainable using local measures of white matter integrity.
Asunto(s)
Encéfalo/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Encéfalo/cirugía , Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Red Nerviosa/cirugía , Procedimientos Neuroquirúrgicos , Sustancia Blanca/cirugíaRESUMEN
BACKGROUND: Inflammation is hypothesized to be a key event in the growth of sporadic vestibular schwannoma (VS). In this study we sought to investigate the relationship between inflammation and tumor growth in vivo using the PET tracer 11C-(R)-PK11195 and dynamic contrast enhanced (DCE) MRI derived vascular biomarkers. METHODS: Nineteen patients with sporadic VS (8 static, 7 growing, and 4 shrinking tumors) underwent prospective imaging with dynamic 11C-(R)-PK11195 PET and a comprehensive MR protocol, including high temporal resolution DCE-MRI in 15 patients. An intertumor comparison of 11C-(R)-PK11195 binding potential (BPND) and DCE-MRI derived vascular biomarkers (Ktrans, vp, ve) across the 3 different tumor growth cohorts was undertaken. Tissue of 8 tumors was examined with immunohistochemistry markers for inflammation (Iba1), neoplastic cells (S-100 protein), vessels (CD31), the PK11195 target translocator protein (TSPO), fibrinogen for vascular permeability, and proliferation (Ki-67). Results were correlated with PET and DCE-MRI data. RESULTS: Compared with static tumors, growing VS displayed significantly higher mean 11C-(R)-PK11195 BPND (-0.07 vs 0.47, P = 0.020), and higher mean tumor Ktrans (0.06 vs 0.14, P = 0.004). Immunohistochemistry confirmed the imaging findings and demonstrated that TSPO is predominantly expressed in macrophages. Within growing VS, macrophages rather than tumor cells accounted for the majority of proliferating cells. CONCLUSION: We present the first in vivo imaging evidence of increased inflammation within growing sporadic VS. Our results demonstrate that 11C-(R)-PK11195 specific binding and DCE-MRI derived parameters can be used as imaging biomarkers of inflammation and vascular permeability in this tumor group.
Asunto(s)
Permeabilidad Capilar , Inflamación , Neuroma Acústico/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Proteínas de Unión al Calcio/metabolismo , Radioisótopos de Carbono , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Fibrinógeno/metabolismo , Humanos , Inmunohistoquímica , Isoquinolinas , Antígeno Ki-67/metabolismo , Imagen por Resonancia Magnética , Masculino , Proteínas de Microfilamentos/metabolismo , Persona de Mediana Edad , Neuroma Acústico/metabolismo , Neuroma Acústico/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Tomografía de Emisión de Positrones , Receptores de GABA/metabolismo , Proteínas S100/metabolismo , Carga TumoralRESUMEN
UNLABELLED: (11)C-Methionine PET is a well-established technique for evaluating tumor extent for diagnosis and treatment planning in neurooncology. Image interpretation is typically performed using the ratio of uptake within the tumor to a reference region. The precise location of this reference region is important as local variations in methionine uptake may significantly alter the result, particularly for lesions at the border of gray and white matter. Selection of a reference region can be highly user dependant, and identifying a representative normal region may be complicated by midline or multifocal tumors. We hypothesized that current coregistration methods would enable interpretation of methionine PET images with reference to an averaged normal uptake map, allowing better standardization of scan analysis and increasing the sensitivity to tumor infiltration, particularly of white matter regions. METHODS: A normal methionine uptake map was prepared from the normal hemispheres of 20 scans performed on patients with benign or low-grade lesions. Affine and nonlinear coregistration algorithms were evaluated for spatial normalization of the images to a previously developed PET template. A standardized method for applying the normal uptake map in brain tumors was developed and evaluated in a sample of 18 scans (6 grade II, 6 grade III, and 6 grade IV gliomas). Tumor extent was compared with that derived from a mirrored contralateral reference region method. Correlation coefficients were calculated between the uptake ratios for tumor to normal uptake map versus tumor to mirrored reference region. RESULTS: "RatioMap" images depicting voxel-by-voxel ratios of a patient scan to the normal uptake map revealed increased methionine uptake in white matter regions that could not be identified using the standard method. Uptake ratios within the tumor varied slightly with the normalization methods used but correlated closely with the ratio to a single reference value. Nonlinear coregistration with median ratio intensity normalization gave the strongest correlation (r = 0.97, P < 0.001, n = 17). CONCLUSION: Evaluation of methionine PET data with reference to normal uptake data may improve sensitivity to white matter infiltration. The tumor uptake ratios obtained correlated closely with a standard reference value technique, whereas the described method allowed for better standardization of the image analysis.
Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Radioisótopos de Carbono , Procesamiento de Imagen Asistido por Computador/normas , Metionina/farmacocinética , Tomografía de Emisión de Positrones/métodos , Algoritmos , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/normasRESUMEN
OBJECT: Endoscopic third ventriculostomy (ETV) has become a widely used method for CSF diversion when treating obstructive hydrocephalus. There are multiple recommendations on the transcortical ETV entry points, and some are specifically designed to provide a trajectory that avoids displacement to the eloquent periventricular structures. However, the morphology of the ventricular system is highly variable in hydrocephalus, and therefore a single best ETV trajectory may not be applicable to all cases. In the current study, 3 frequently quoted ETV entry points are compared in a cohort of pediatric cases with different degrees of ventriculomegaly. METHODS: The images of 30 consecutive pediatric patients with varying degrees of ventriculomegaly were reviewed. Three-dimensional models were created using radiological analysis of anatomical detail and preoperative MRI scans in order to simulate 3 frequently quoted ETV trajectories for rigid neuroendoscopes. These trajectories were characterized based on the frequency and depth of tissue displacement to structures such as the fornix, caudate nucleus, genu of the internal capsule, and thalamus. The results are stratified based on ventricle size using the frontal horn ratio (FHR). RESULTS: Eloquent areas were displaced in nearly all analyzed entry points (97%-100%). Stratifying the data based on ventricle size revealed that (1) lateral structures were more likely to be displaced in cases of intermediate ventriculomegaly (FHR < 0.4) using all 3 trajectories, whereas (2) the fornix was less likely to be displaced using more posteriorly placed trajectories for severe ventriculomegaly (FHR > 0.4). Allowing for minimal (2.4 mm) tissue displacement, a more posterior entry point was less traumatic for severe ventriculomegaly. CONCLUSIONS: There is no single best ETV trajectory that fully avoids displacement of the eloquent periventricular structures. Larger ventricles require a more posteriorly placed entry point in order to reduce injury to the eloquent structures, and intermediate ventricles would dictate a medial entry point. These results suggest that the optimal entry point should be selected on a case-by-case basis after incorporating ventricle size.