RESUMEN
Major uranium (U) deposits worldwide are exploited by acid leaching, known as 'in-situ recovery' (ISR). ISR involves the injection of an acid fluid into ore-bearing aquifers and the pumping of the resulting metal-containing solution through cation exchange columns for the recovery of dissolved U. Rehabilitation of ISR-impacted aquifers could be achieved through natural attenuation, or via biostimulation of autochthonous heterotrophic microorganisms due to the associated acid neutralization and trace metal immobilization. In this study, we analyzed the capacity of pristine aquifer sediments impacted by diluted ISR fluids to buffer pH and immobilize U. The experimental setup consisted of glass columns, filled with sediment from a U ore-bearing aquifer, through which diluted ISR fluids were flowed continuously. The ISR solution was obtained from ISR mining operations at the Muyunkum and Tortkuduk deposits in Kazakhstan. Following this initial phase, columns were biostimulated with a mix of molasses, yeast extract and glycerol to stimulate the growth of autochthonous heterotrophic communities. Experimental results showed that this amendment efficiently promoted the activity of acid-tolerant bacterial guilds, with pH values rising from 4.8 to 6.5-7.0 at the outlet of the stimulated columns. The reduction of sulfate, nitrate, and metals as well as dissimilatory nitrate reduction to ammonia induced the rise in pH values, in agreement with geochemical modelling results. Biostimulation efficiently promoted the complete immobilization of U, with the accumulation of up to 3343 ppm in the first few centimeters of the columns. Synchrotron analysis and SEM-EDS revealed that up to 60% of the injected hexavalent U was immobilized as tetravalent non-crystalline U onto bacterial cell surfaces. 16S rDNA amplicon analysis and qPCR data suggested a predominant role played for members of the Phylum Firmicutes (from the genera Clostridium, Pelosinus and Desulfosporosinus) in biological U reduction and immobilization.
Asunto(s)
Agua Subterránea , Uranio , Contaminantes Radiactivos del Agua , Agua Subterránea/química , Minería , Nitratos/análisis , Uranio/análisis , Contaminantes Radiactivos del Agua/análisisRESUMEN
A large fraction (47%) of the world's uranium is mined by a technique called "In Situ Recovery" (ISR). This mining technique involves the injection of a leaching fluid (acidic or alkaline) into a uranium-bearing aquifer and the pumping of the resulting solution through cation exchange columns for the recovery of dissolved uranium. The present study reports the in-depth alterations brought to autochthonous microbial communities during acidic ISR activities. Water samples were collected from a uranium roll-front deposit that is part of an ISR mine in operation (Tortkuduk, Kazakhstan). Water samples were obtained at a depth of ca 500â¯m below ground level from several zones of the Uyuk aquifer following the natural redox zonation inherited from the roll front deposit, including the native mineralized orebody and both upstream and downstream adjacent locations. Samples were collected equally from both the entrance and the exit of the uranium concentration plant. Next-generation sequencing data showed that the redox gradient shaped the community structures, within the anaerobic, reduced, and oligotrophic habitats of the native aquifer zones. Acid injection induced drastic changes in the structures of these communities, with a large decrease in both cell numbers and diversity. Communities present in the acidified (pH valuesâ¯<â¯2) mining areas exhibited similarities to those present in acid mine drainage, with the dominance of Sulfobacillus sp., Leptospirillum sp. and Acidithiobacillus sp., as well as the archaean Ferroplasma sp. Communities located up- and downstream of the mineralized zone under ISR and affected by acidic fluids were blended with additional facultative anaerobic and acidophilic microorganisms. These mixed biomes may be suitable communities for the natural attenuation of ISR mining-affected subsurface through the reduction of metals and sulfate. Assessing the effect of acidification on the microbial community is critical to evaluating the potential for natural attenuation or active bioremediation strategies.