Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
MMWR Morb Mortal Wkly Rep ; 70(19): 719-724, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33988185

RESUMEN

After a period of rapidly declining U.S. COVID-19 incidence during January-March 2021, increases occurred in several jurisdictions (1,2) despite the rapid rollout of a large-scale vaccination program. This increase coincided with the spread of more transmissible variants of SARS-CoV-2, the virus that causes COVID-19, including B.1.1.7 (1,3) and relaxation of COVID-19 prevention strategies such as those for businesses, large-scale gatherings, and educational activities. To provide long-term projections of potential trends in COVID-19 cases, hospitalizations, and deaths, COVID-19 Scenario Modeling Hub teams used a multiple-model approach comprising six models to assess the potential course of COVID-19 in the United States across four scenarios with different vaccination coverage rates and effectiveness estimates and strength and implementation of nonpharmaceutical interventions (NPIs) (public health policies, such as physical distancing and masking) over a 6-month period (April-September 2021) using data available through March 27, 2021 (4). Among the four scenarios, an accelerated decline in NPI adherence (which encapsulates NPI mandates and population behavior) was shown to undermine vaccination-related gains over the subsequent 2-3 months and, in combination with increased transmissibility of new variants, could lead to surges in cases, hospitalizations, and deaths. A sharp decline in cases was projected by July 2021, with a faster decline in the high-vaccination scenarios. High vaccination rates and compliance with public health prevention measures are essential to control the COVID-19 pandemic and to prevent surges in hospitalizations and deaths in the coming months.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/epidemiología , COVID-19/terapia , Hospitalización/estadística & datos numéricos , Modelos Estadísticos , Política Pública , Vacunación/estadística & datos numéricos , COVID-19/mortalidad , COVID-19/prevención & control , Predicción , Humanos , Máscaras , Distanciamiento Físico , Estados Unidos/epidemiología
2.
J Am Vet Med Assoc ; 261(7): 1045-1053, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36884381

RESUMEN

OBJECTIVE: To provide epidemiological information on the occurrence of animal and human rabies in the US during 2021 and summaries of 2021 rabies surveillance for Canada and Mexico. PROCEDURES: State and territorial public health departments and USDA Wildlife Services provided data on animals submitted for rabies testing in 2021. Data were analyzed temporally and geographically to assess trends in domestic animal and wildlife rabies cases. RESULTS: During 2021, 54 US jurisdictions reported 3,663 rabid animals, representing an 18.2% decrease from the 4,479 cases reported in 2020. Texas (n = 456 [12.4%]), Virginia (297 [8.1%]), Pennsylvania (287 [7.8%]), North Carolina (248 [6.8%]), New York (237 [6.5%]), California (220 [6.0%]), and New Jersey (201 [5.5%]) together accounted for > 50% of all animal rabies cases reported in 2021. Of the total reported rabid animals, 3,352 (91.5%) involved wildlife, with bats (n = 1,241 [33.9%]), raccoons (1,030 [28.1%]), skunks (691 [18.9%]), and foxes (314 [8.6%]) representing the primary hosts confirmed with rabies. Rabid cats (216 [5.9%]), cattle (40 [1.1%]), and dogs (36 [1.0%]) accounted for 94% of rabies cases involving domestic animals in 2021. Five human rabies deaths were reported in 2021. CLINICAL RELEVANCE: The number of animal rabies cases reported in the US decreased significantly during 2021; this is thought to be due to factors related to the COVID-19 pandemic.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Bovinos , Quirópteros , Enfermedades de los Perros , Rabia , Animales , Gatos , Bovinos , Perros , Humanos , Animales Domésticos , Animales Salvajes , Enfermedades de los Gatos/epidemiología , Enfermedades de los Bovinos/epidemiología , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades de los Perros/epidemiología , Zorros , Mephitidae , New York , Pandemias , Vigilancia de la Población , Rabia/epidemiología , Rabia/veterinaria , Mapaches , Estados Unidos/epidemiología
3.
medRxiv ; 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34494030

RESUMEN

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021. WHAT IS ADDED BY THIS REPORT?: Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July-December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.

4.
Health Secur ; 18(1): 1-15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32078419

RESUMEN

When pressed for time, outbreak investigators often use homogeneous mixing models to model infectious diseases in data-poor regions. But recent outbreaks such as the 2014 Ebola outbreak in West Africa have shown the limitations of this approach in an era of increasing urbanization and connectivity. Both outbreak detection and predictive modeling depend on realistic estimates of human and disease mobility, but these data are difficult to acquire in a timely manner. This is especially true when dealing with an emerging outbreak in an under-resourced nation. Weighted travel networks with realistic estimates for population flows are often proprietary, expensive, or nonexistent. Here we propose a method for rapidly generating a mobility model from open-source data. As an example, we use road and river network data, along with population estimates, to construct a realistic model of human movement between health zones in the Democratic Republic of the Congo (DRC). Using these mobility data, we then fit an epidemic model to real-world surveillance data from the recent Ebola outbreak in the Nord Kivu region of the DRC to illustrate a potential use of the generated mobility estimation. In addition to providing a way for rapid risk estimation, this approach brings together novel techniques to merge diverse GIS datasets that can then be used to address issues that pertain to public health and global health security.


Asunto(s)
Brotes de Enfermedades/prevención & control , Sistemas de Información Geográfica , Fiebre Hemorrágica Ebola/epidemiología , Vigilancia de la Población , República Democrática del Congo/epidemiología , Salud Global , Humanos , Salud Pública
5.
J Adv Pract Oncol ; 9(1): 78-83, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564470

RESUMEN

Tamoxifen is a lifesaving treatment for millions of breast cancer patients worldwide. Yet taking tamoxifen may be challenging for some patients due to issues of compliance, drug interactions, and surgical considerations. Educating patients with a one-page teaching sheet, "Precautions for Patients Taking Tamoxifen," may improve tamoxifen's effectiveness and prevent complications. Advanced practitioners are in a position to prescribe tamoxifen, review medication interactions, educate patients, impact patients' quality of life, improve patients' sense of control, and increase patients' partnerships with their oncology providers.

6.
EBioMedicine ; 10: 85-100, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27333051

RESUMEN

The cullin-based CRL4-CDT2 ubiquitin ligase is emerging as a master regulator of cell proliferation. CRL4-CDT2 prevents re-initiation of DNA replication during the same cell cycle "rereplication" through targeted degradation of CDT1, SET8 and p21 during S-phase of the cell cycle. We show that CDT2 is overexpressed in cutaneous melanoma and predicts poor overall and disease-free survival. CDT2 ablation inhibited a panel of melanoma cell lines through the induction of SET8- and p21-dependent DNA rereplication and senescence. Pevonedistat (MLN4924), a specific inhibitor of the NEDD8 activating enzyme (NAE), inhibits the activity of cullin E3 ligases, thereby stabilizing a vast number of cullin substrates and resulting in cancer cell inhibition in vitro and tumor suppression in nude mice. We demonstrate that pevonedistat is effective at inhibiting the proliferation of melanoma cell lines in vitro through the induction of rereplication-dependent permanent growth arrest as well as through a transient, non-rereplication-dependent mechanism. CRISPR/Cas9-mediated heterozygous deletion of CDKN1A (encoding p21) or SET8 in melanoma cells demonstrated that the rereplication-mediated cytotoxicity of pevonedistat is mediated through preventing the degradation of p21 and SET8 and is essential for melanoma suppression in nude mice. By contrast, pevonedistat-induced transient growth suppression was independent of p21 or SET8, and insufficient to inhibit tumor growth in vivo. Pevonedistat additionally synergized with the BRAF kinase inhibitor PLX4720 to inhibit BRAF melanoma, and suppressed PLX4720-resistant melanoma cells. These findings demonstrate that the CRL4-CDT2-SET8/p21 degradation axis is the primary target of inhibition by pevonedistat in melanoma and suggest that a broad patient population may benefit from pevonedistat therapy. RESEARCH IN CONTEXT: The identification of new molecular targets and effective inhibitors is of utmost significance for the clinical management of melanoma. This study identifies CDT2, a substrate receptor for the CRL4 ubiquitin ligase, as a prognostic marker and therapeutic target in melanoma. CDT2 is required for melanoma cell proliferation and inhibition of CRL4(CDT2) by pevonedistat suppresses melanoma in vitro and in vivo through the induction of DNA rereplication and senescence through the stabilization of the CRL4(CDT2) substrates p21 and SET8. Pevonedistat also synergizes with vemurafenib in vivo and suppresses vemurafenib-resistant melanoma cells. These findings show a significant promise for targeting CRL4(CDT2) therapeutically.


Asunto(s)
Antineoplásicos/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclopentanos/farmacología , N-Metiltransferasa de Histona-Lisina/metabolismo , Melanoma/metabolismo , Proteínas Nucleares/metabolismo , Pirimidinas/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Antineoplásicos/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Ciclopentanos/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Silenciador del Gen , Genes ras , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Estimación de Kaplan-Meier , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/mortalidad , Ratones , Mutación , Proteínas Nucleares/genética , Pronóstico , Estabilidad Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/genética , Pirimidinas/uso terapéutico , Interferencia de ARN , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA