Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant Dis ; : PDIS06231225RE, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37840290

RESUMEN

Spinach downy mildew, caused by the obligate oomycete pathogen Peronospora effusa, is a worldwide constraint on spinach production. The role of airborne sporangia in the disease cycle of P. effusa is well established, but the role of the sexual oospores in the epidemiology of P. effusa is less clear and has been a major challenge to examine experimentally. To evaluate seed transmission of spinach downy mildew via oospores in this study, isolated glass chambers were employed in two independent experiments to grow out oospore-infested spinach seed and noninfested seeds mixed with oospore-infested crop debris. Downy mildew diseased spinach plants were observed 37 and 34 days after planting in the two isolator experiments, respectively, in the chambers that contained one of two oospore-infested seed lots or seeds coated with oospore-infested leaves. Spinach plants in isolated glass chambers initiated from seeds without oospores did not show downy mildew symptoms. Similar findings were obtained using the same seed lot samples in a third experiment conducted in a growth chamber. In direct grow out tests to examine oospore infection on seedlings performed in a containment greenhouse with oospore-infested seed of two different cultivars, characteristic Peronospora sporangiophores were observed growing from a seedling of each cultivar. The frequency of seedlings developing symptoms from 82 of these oospore-infested seed indicated that approximately 2.4% of seedlings from infested seed developed symptoms, and 0.55% of seedlings from total seeds assayed developed symptoms. The results provide evidence that oospores can serve as a source of inoculum for downy mildew and provide further evidence of direct seed transmission of the downy mildew pathogen to seedlings in spinach via seedborne oospores.

2.
Phytopathology ; 113(7): 1278-1288, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36802875

RESUMEN

There is a recent unparalleled increase in demand for rice in sub-Saharan Africa, yet its production is affected by blast disease. Characterization of blast resistance in adapted African rice cultivars can provide important information to guide growers and rice breeders. We used molecular markers for known blast resistance genes (Pi genes; n = 21) to group African rice genotypes (n = 240) into similarity clusters. We then used greenhouse-based assays to challenge representative rice genotypes (n = 56) with African isolates (n = 8) of Magnaporthe oryzae which varied in virulence and genetic lineage. The markers grouped rice cultivars into five blast resistance clusters (BRC) which differed in foliar disease severity. Using stepwise regression, we found that the Pi genes associated with reduced blast severity were Pi50 and Pi65, whereas Pik-p, Piz-t, and Pik were associated with increased susceptibility. All rice genotypes in the most resistant cluster, BRC 4, possessed Pi50 and Pi65, the only genes that were significantly associated with reduced foliar blast severity. Cultivar IRAT109, which contains Piz-t, was resistant against seven African M. oryzae isolates, whereas ARICA 17 was susceptible to eight isolates. The popular Basmati 217 and Basmati 370 were among the most susceptible genotypes. These findings indicate that most tested genes were not effective against African blast pathogen collections. Pyramiding genes in the Pi2/9 multifamily blast resistance cluster on chromosome 6 and Pi65 on chromosome 11 could confer broad-spectrum resistance capabilities. To gain further insights into genomic regions associated with blast resistance, gene mapping could be conducted with resident blast pathogen collections. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Magnaporthe , Oryza , Oryza/genética , Magnaporthe/genética , Enfermedades de las Plantas/genética , África del Sur del Sahara , Mapeo Cromosómico , Resistencia a la Enfermedad/genética
3.
Mol Plant Microbe Interact ; 35(6): 450-463, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35226812

RESUMEN

Downy mildew disease of spinach, caused by the oomycete Peronospora effusa, causes major losses to spinach production. In this study, the 17 chromosomes of P. effusa were assembled telomere-to-telomere, using Pacific Biosciences high-fidelity reads. Of these, 16 chromosomes are complete and gapless; chromosome 15 contains one gap bridging the nucleolus organizer region. This is the first telomere-to-telomere genome assembly for an oomycete. Putative centromeric regions were identified on all chromosomes. This new assembly enables a reevaluation of the genomic composition of Peronospora spp.; the assembly was almost double the size and contained more repeat sequences than previously reported for any Peronospora species. Genome fragments consistently underrepresented in six previously reported assemblies of P. effusa typically encoded repeats. Some genes annotated as encoding effectors were organized into multigene clusters on several chromosomes. Putative effectors were annotated on 16 of the 17 chromosomes. The intergenic distances between annotated genes were consistent with compartmentalization of the genome into gene-dense and gene-sparse regions. Genes encoding putative effectors were enriched in gene-sparse regions. The near-gapless assembly revealed apparent horizontal gene transfer from Ascomycete fungi. Gene order was highly conserved between P. effusa and the genetically oriented assembly of the oomycete Bremia lactucae; high levels of synteny were also detected with Phytophthora sojae. Extensive synteny between phylogenetically distant species suggests that many other oomycete species may have similar chromosome organization. Therefore, this assembly provides the foundation for genomic analyses of diverse oomycetes.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Oomicetos , Peronospora , Oomicetos/genética , Peronospora/genética , Enfermedades de las Plantas/microbiología , Spinacia oleracea , Telómero/genética
4.
Plant Dis ; 106(7): 1793-1802, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35253491

RESUMEN

Downy mildew of spinach, caused by Peronospora effusa, is a major economic threat to both organic and conventional spinach production. Symptomatic spinach leaves are unmarketable and spinach with latent infections are problematic because symptoms can develop postharvest. Therefore, early detection methods for P. effusa could help producers identify infection before visible symptoms appear. Recombinase polymerase amplification (RPA) provides sensitive and specific detection of pathogen DNA and is a rapid, field-applicable method that does not require advanced technical knowledge or equipment-heavy DNA extraction. Here, we used comparative genomics to identify a unique region of the P. effusa mitochondrial genome to develop an RPA assay for the early detection of P. effusa in spinach leaves. In tandem, we established a TaqMan quantitative PCR (qPCR) assay and used this assay to validate the P. effusa specificity of the locus across Peronospora spp. and to compare assay performance. Neither the TaqMan qPCR nor the RPA showed cross reactivity with the closely related beet downy mildew pathogen, P. schachtii. TaqMan qPCR and RPA have detection thresholds of 100 and 900 fg of DNA, respectively. Both assays could detect P. effusa in presymptomatic leaves, with RPA-based detection occurring as early as 5 days before the appearance of symptoms and TaqMan qPCR-based detection occurring after 24 h of plant exposure to airborne spores. Implementation of the RPA detection method could provide real-time information for point-of-care management strategies at field sites.


Asunto(s)
Oomicetos , Peronospora , Peronospora/genética , Enfermedades de las Plantas , Recombinasas/genética , Spinacia oleracea/genética
5.
BMC Genomics ; 22(1): 478, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174825

RESUMEN

BACKGROUND: Downy mildew, the most devastating disease of spinach (Spinacia oleracea L.), is caused by the oomycete Peronospora effusa [=P. farinosa f. sp. spinaciae]. The P. effusa shows race specificities to the resistant host and comprises 19 reported races and many novel isolates. Sixteen new P. effusa races were identified during the past three decades, and the new pathogen races are continually overcoming the genetic resistances used in commercial cultivars. A spinach breeding population derived from the cross between cultivars Whale and Lazio was inoculated with P. effusa race 16 in an environment-controlled facility; disease response was recorded and genotyped using genotyping by sequencing (GBS). The main objective of this study was to identify resistance-associated single nucleotide polymorphism (SNP) markers from the cultivar Whale against the P. effusa race 16. RESULTS: Association analysis conducted using GBS markers identified six significant SNPs (S3_658,306, S3_692697, S3_1050601, S3_1227787, S3_1227802, S3_1231197). The downy mildew resistance locus from cultivar Whale was mapped to a 0.57 Mb region on chromosome 3, including four disease resistance candidate genes (Spo12736, Spo12784, Spo12908, and Spo12821) within 2.69-11.28 Kb of the peak SNP. CONCLUSIONS: Genomewide association analysis approach was used to map the P. effusa race 16 resistance loci and identify associated SNP markers and the candidate genes. The results from this study could be valuable in understanding the genetic basis of downy mildew resistance, and the SNP marker will be useful in spinach breeding to select resistant lines.


Asunto(s)
Oomicetos , Peronospora , Resistencia a la Enfermedad , Estudios de Asociación Genética , Peronospora/genética , Fitomejoramiento , Enfermedades de las Plantas , Spinacia oleracea/genética
6.
BMC Genomics ; 22(1): 242, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827423

RESUMEN

BACKGROUND: Plant pathogenic isolates of Rhizoctonia solani anastomosis group 1-intraspecific group IA (AG1-IA) infect a wide range of crops causing diseases such as rice sheath blight (ShB). ShB has become a serious disease in rice production worldwide. Additional genome sequences of the rice-infecting R. solani isolates from different geographical regions will facilitate the identification of important pathogenicity-related genes in the fungus. RESULTS: Rice-infecting R. solani isolates B2 (USA), ADB (India), WGL (India), and YN-7 (China) were selected for whole-genome sequencing. Single-Molecule Real-Time (SMRT) and Illumina sequencing were used for de novo sequencing of the B2 genome. The genomes of the other three isolates were then sequenced with Illumina technology and assembled using the B2 genome as a reference. The four genomes ranged from 38.9 to 45.0 Mbp in size, contained 9715 to 11,505 protein-coding genes, and shared 5812 conserved orthogroups. The proportion of transposable elements (TEs) and average length of TE sequences in the B2 genome was nearly 3 times and 2 times greater, respectively, than those of ADB, WGL and YN-7. Although 818 to 888 putative secreted proteins were identified in the four isolates, only 30% of them were predicted to be small secreted proteins, which is a smaller proportion than what is usually found in the genomes of cereal necrotrophic fungi. Despite a lack of putative secondary metabolite biosynthesis gene clusters, the rice-infecting R. solani genomes were predicted to contain the most carbohydrate-active enzyme (CAZyme) genes among all 27 fungal genomes used in the comparative analysis. Specifically, extensive enrichment of pectin/homogalacturonan modification genes were found in all four rice-infecting R. solani genomes. CONCLUSION: Four R. solani genomes were sequenced, annotated, and compared to other fungal genomes to identify distinctive genomic features that may contribute to the pathogenicity of rice-infecting R. solani. Our analyses provided evidence that genomic conservation of R. solani genomes among neighboring AGs was more diversified than among AG1-IA isolates and the presence of numerous predicted pectin modification genes in the rice-infecting R. solani genomes that may contribute to the wide host range and virulence of this necrotrophic fungal pathogen.


Asunto(s)
Oryza , Rhizoctonia , China , India , Oryza/genética , Pectinas , Enfermedades de las Plantas , Rhizoctonia/genética
7.
Theor Appl Genet ; 134(5): 1319-1328, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33515081

RESUMEN

KEY MESSAGE: The Fs gene, which controls spinach fruit spines, was fine mapped to a 0.27 Mb interval encompassing four genes on chromosome 3. There are two types of fruit of spinach (Spinacia oleracea L.), spiny and spineless, which are visually distinguishable by the spines of fruit coat. In spinach breeding, the fruit characteristic is an important agronomic trait that have impacts on "seed" treatment and mechanized sowing. However, the gene(s) controlling the fruit spiny trait have not been characterized and the genetic mechanism of this trait remained unclear. The objectives of the study were to fine map the gene controlling fruit spines and develop molecular markers for marker-assisted selection purpose. Genetic analysis of the spiny trait in segregating populations indicated that fruit spines were controlled by a single dominant gene, designated as Fs. Using a super-BSA method and recombinants analysis in a BC1 population, Fs was mapped to a 1.9-Mb interval on chromosome 3. The Fs gene was further mapped to a 0.27-Mb interval using a recombinant inbred line (RIL) population with 120 lines. From this 0.27 Mb region, four candidate genes were identified in the reference genome. The structure and expression of the four genes were compared between the spiny and spineless parents. A co-dominant marker YC-15 was found to be co-segregating with the fruit spines trait, which produced a 129-bp fragment specific to spiny trait and a 108-bp fragment for spineless fruit. This marker can predict spiny trait with a 94.8% accuracy rate when tested with 100 diverse germplasm, suggesting that this marker would be valuable for marker-assisted selection in spinach breeding.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Frutas/genética , Marcadores Genéticos , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Spinacia oleracea/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Dominantes , Ligamiento Genético , Fitomejoramiento , Proteínas de Plantas/metabolismo , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo
8.
Phytopathology ; 111(4): 751-760, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32886022

RESUMEN

Leaf curl of celery, caused by Colletotrichum acutatum sensu lato, has been reported in the United States. A multilocus phylogenetic analysis with three genes was conducted with a collection of isolates from celery (n = 23) and noncelery (n = 29) hosts to evaluate their taxonomic position within C. acutatum sensu lato. The three DNA regions used for phylogenetic analysis included the introns of the glutamine synthase GS and glyceraldehyde-3-phosphate dehydrogenase GPDH genes, and the partial sequence of the histone3 his3 gene. Moreover, celery and noncelery isolates were evaluated for vegetative compatibility and pathogenicity on celery. Culture filtrates from celery and noncelery isolates were also evaluated for their ability to reproduce leaf curl symptoms. A total of 23 celery isolates were evaluated based on phylogenetic analysis, which showed that all celery isolates were closely related and belonged to the newly described species C. fioriniae. The celery isolates were grouped into six vegetative compatibility groups, indicating that the population was not clonal. Isolates of C. fioriniae from celery (22 of 23) and other hosts (26 of 29) caused leaf curl symptoms. Isolates of C. acutatum, C. nymphaeae, and C. godetiae were pathogenic but did not cause leaf curl symptoms. Isolates of C. lupini, C. johnstonii, and C. gloeosporioides were not pathogenic on celery. In addition, cell-free fungal culture filtrates caused leaf curl symptoms on celery, indicating that certain isolates produce a metabolite that can cause leaf curl symptoms on celery, possibly indole acetic acid.


Asunto(s)
Apium , Colletotrichum , Colletotrichum/genética , Filogenia , Enfermedades de las Plantas , Virulencia
9.
Plant Dis ; 105(2): 316-323, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32757733

RESUMEN

Leaf spot diseases of spinach, caused by Colletotrichum spinaciae, has become a major production constraint in several production areas, including Texas, in recent years. Leaf spot symptoms were observed in several fields in Texas in 2016 and 2017, with typical anthracnose-like symptoms and leaves with small, circular, and sunken lesions that appeared similar to injury from windblown sand. The lesions were plated on potato dextrose agar, from which fungal cultures were recovered. The fungi were identified based on morphology and sequence analysis of the introns of glutamate synthetase and glyceraldehyde-3-phosphate dehydrogenase (for isolates determined to be Colletotrichum spp.) and the internal transcribed spacer ribosomal DNA (for isolates determined to be Myrothecium spp.). Based on foliar symptoms, fungal colony and spore morphology, pathogenicity tests of fungal isolates on the spinach cultivar 'Viroflay', and DNA sequence analysis of the isolates, the symptoms on spinach leaves for two sets of samples were caused by Colletotrichum coccodes and Colletotrichum truncatum, and leaf spots resembling damage from windblown sand were caused by Myrothecium verrucaria. This is the first report of spinach leaf spot diseases caused by C. coccodes, C. truncatum, and M. verrucaria in the United States. C. coccodes and C. truncatum caused severe symptoms on the spinach cultivar 'Viroflay', whereas M. verrucaria caused symptoms of intermediate severity. Fungicide efficacy tests demonstrated that chlorothalonil, mancozeb, pyraclostrobin, fluxapyroxad + pyraclostrobin, and penthiopyrad were completely effective at preventing leaf spots caused by any of these pathogens when applied 24 h before inoculation of 'Viroflay' plants in greenhouse trials.


Asunto(s)
Fungicidas Industriales , Colletotrichum , Manejo de la Enfermedad , Fungicidas Industriales/farmacología , Hypocreales , Enfermedades de las Plantas , Spinacia oleracea , Texas , Estados Unidos
10.
Plant Dis ; 105(10): 2749-2770, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34253045

RESUMEN

Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.


Asunto(s)
Magnaporthe , Oryza , África del Sur del Sahara , Magnaporthe/genética , Fitomejoramiento , Enfermedades de las Plantas
11.
Plant Dis ; 104(10): 2634-2641, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32787734

RESUMEN

Downy mildew of spinach, caused by the obligate pathogen Peronospora effusa, remains the most important constraint in the major spinach production areas in the United States. This disease can potentially be initiated by asexual sporangiospores via "green bridges", sexually derived oospores from seed or soil, or dormant mycelium. However, the relative importance of the various types of primary inoculum is not well known. The ability of P. effusa sporangiospores to withstand abiotic stress, such as desiccation, and remain viable during short- and long-distance dispersal and the ability of oospores to germinate and infect seedlings remain unclear. Thus, the primary objectives of this research were to evaluate the impact of desiccation on sporangiospore survival and infection efficiency and examine occurrence, production, and germination of oospores. Results indicate that desiccation significantly reduces sporangiospore viability as well as infection potential. Leaf wetness duration of 4 h was needed for disease establishment by spinach downy mildew sporangiospores. Oospores were observed in leaves of numerous commercial spinach cultivars grown in California in 2018 and Arizona in 2019. Frequency of occurrence varied between the two states-years. The presence of opposite mating types in spinach production areas in the United States was demonstrated by pairing isolates in controlled crosses and producing oospores on detached leaves as well as intact plants. Information from the study of variables that affect sporangiospore viability and oospore production will help in improving our understanding of the epidemiology of this important pathogen, which has implications for management of spinach downy mildew.


Asunto(s)
Oomicetos , Peronospora , Arizona , Enfermedades de las Plantas , Spinacia oleracea
12.
Plant Dis ; 104(7): 1994-2004, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32441578

RESUMEN

Leaf spot diseases have become a major concern in spinach production in the United States. Determining the causal agents of leaf spots on spinach, their prevalence and pathogenicity, and fungicide efficacy against these pathogens is vital for effective disease management. Spinach leaves with leaf spots were collected from Texas, California, Arizona, and South Carolina from 2016 to 2018, incubated in a moist chamber, and plated on potato dextrose and tryptic soy agar media. Fungal and bacterial colonies recovered were identified based on morphology and sequence analysis of the internal transcribed spacer rDNA and 16S rRNA, respectively. Two predominant genera were isolated: (i) Colletotrichum spp., which were identified to species based on sequences of both introns of the glutamate synthetase (GS-I) and glyceraldehyde-3-phosphate dehydrogenase (gapdh-I) genes; and (ii) Stemphylium spp., identified to species based on sequences of the gapdh and calmodulin (cmdA) genes. Anthracnose (Colletotrichum spinaciae) and Stemphylium leaf spot (Stemphylium vesicarium and S. beticola) were the predominant diseases. Additional fungi recovered at very limited frequencies that were also pathogenic to spinach included Colletotrichum coccodes, C. truncatum, Cercospora beticola, and Myrothecium verrucaria. All of the bacterial isolates were not pathogenic on spinach. Pathogenicity tests showed that C. spinaciae, S. vesicarium, and S. beticola caused significant leaf damage. The fungicides Bravo WeatherStik (chlorothalonil), Dithane F-45 (mancozeb), Cabrio (pyraclostrobin), and Merivon (fluxapyroxad and pyraclostrobin) were highly effective at reducing leaf spot severity caused by an isolate of each of C. spinaciae and S. vesicarium, when inoculated individually and in combination.


Asunto(s)
Spinacia oleracea , Arizona , ARN Ribosómico 16S , South Carolina , Texas , Estados Unidos
13.
Mol Plant Microbe Interact ; 31(12): 1230-1231, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29944056

RESUMEN

Downy mildew disease, caused by the obligate oomycete pathogen Peronospora effusa, is the most important economic constraint for spinach production. Three races (races 12, 13, and 14) of P. effusa have been sequenced and assembled. The draft genomes of these three races have been deposited to GenBank and provide useful resources for dissecting the interaction between the host and the pathogen and may provide a framework for determining the mechanism by which new races of the pathogen are rapidly emerging.


Asunto(s)
Genoma/genética , Peronospora/genética , Enfermedades de las Plantas/parasitología , Spinacia oleracea/parasitología
14.
Theor Appl Genet ; 131(12): 2529-2541, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30244393

RESUMEN

KEY MESSAGE: A SLAF-BSA approach was used to locate the RPF1 locus. The three most likely candidate genes were identified which provide a basic for cloning the resistance gene at the RPF1 locus. Spinach downy mildew is a globally devastating oomycete disease. The use of downy mildew resistance genes constitutes the most effective approach for disease management. Hence, the objective of the present study was to fine map the first-reported resistance locus RPF1. The resistance allele at this resistance locus was effective against races 1-7, 9, 11, 13, and 15 of Peronospora farinosa f. sp. spinaciae (P. effusa). The approach fine mapped RPF1 using specific-locus amplified fragment sequencing (SLAF-Seq) technology combined with bulked segregant analysis. A 1.72 Mb region localized on chromosome 3 was found to contain RPF1 based on association analysis. After screening recombinants with the SLAF markers within the region, the region was narrowed down to 0.89 Mb. Within this region, 14 R genes were identified based on the annotation information. To identify the genes involved in resistance, resequencing of two resistant inbred lines (12S2 and 12S3) and three susceptible inbred lines (12S1, 12S4, and 10S2) was performed. The three most likely candidate genes were identified via amino acid sequence analysis and conserved domain analysis between resistant and susceptible inbred lines. These included Spo12729, encoding a receptor-like protein, and Spo12784 and Spo12903, encoding a nucleotide-binding site and leucine-rich repeat domains. Additionally, based on the sequence variation in the three genes between the resistant and susceptible lines, molecular markers were developed for marker-assisted selection. The results could be valuable in cloning the RPF1 alleles and improving our understanding of the interaction between the host and pathogen.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Peronospora/patogenicidad , Enfermedades de las Plantas/genética , Spinacia oleracea/genética , Mapeo Cromosómico , Fenotipo , Enfermedades de las Plantas/microbiología , Spinacia oleracea/microbiología
15.
Plant Dis ; 102(3): 608-612, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30673473

RESUMEN

A unique foliar disease of spinach, determined to be caused by Pythium aphanidermatum, was observed on spinach in Yuma County, AZ and Imperial County, CA desert spinach production areas in both 2015 and 2016. The foliar symptoms of the disease included water-soaked foliage, rapid collapse of young plants, and white, aerial, cottony mycelia. The disease was associated with hot (27 to 42°C) and wet conditions associated with overhead irrigation under high-density plantings (>8.0 million seeds/ha). Isolations were performed on symptomatic tissue, and DNA was recovered from pure culture of the isolates recovered and sequenced using the internal transcribed spacer (ITS) ribosomal DNA (rDNA) primers ITS1/ITS4 and gene cytochrome oxidase I (COXI) primers FM55 and FM59. BLAST searches in GenBank indicated that the isolates were P. aphanidermatum based on 99 to 100% homology of ITS rDNA. Moreover, the DNA sequences of the ITS and COXI were identical for the five representative isolates. The objective of this research was to determine whether P. aphanidermatum recovered from symptomatic spinach tissue was able to cause foliar web blight and damping-off of spinach and other crops. In addition to spinach, other hosts evaluated included cotton, soybean, pepper, tomato, cucumber, melon, squash, lettuce, corn, wheat, and rice in greenhouse trials. Inoculations were performed by either foliar inoculations or infesting the soil with plugs of potato dextrose agar colonized by the P. aphanidermatum. Web blight symptoms were severe on spinach and all other dicotyledonous hosts tested, except lettuce. No web blight symptoms were observed on corn or rice, and only minor symptoms were observed on 10-day-old seedlings of wheat. P. aphanidermatum caused severe preemergence damping-off of all dicotyledonous plant species tested but only caused limited seedling size reduction in corn and wheat. Mefenoxam treatment of spinach seed provided complete protection against preemergence damping-off of spinach at both low (0.15 g a.i./kg of seed) and high (0.70 g a.i./kg of seed) rates of application, and the high rate of the application resulted in complete protection against web blight of spinach for 10 to 20 days after planting.


Asunto(s)
Alanina/análogos & derivados , Fungicidas Industriales/farmacología , Especificidad del Huésped , Enfermedades de las Plantas/parasitología , Pythium/aislamiento & purificación , Spinacia oleracea/parasitología , Alanina/farmacología , Arizona , California , Productos Agrícolas , Cartilla de ADN/genética , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/parasitología , Plantones/parasitología , Semillas/parasitología
16.
Plant Dis ; 102(3): 613-618, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30673485

RESUMEN

Downy mildew disease, caused by Peronospora effusa (=P. farinosa f. sp. spinaciae [Pfs]), is the most economically important disease of spinach. Current high-density fresh-market spinach production provides conducive conditions for disease development, and downy mildew frequently forces growers to harvest early owing to disease development, to cull symptomatic leaves prior to harvest, or to abandon the field if the disease is too severe. The use of resistant cultivars to manage downy mildew, particularly on increasing acreages of organic spinach production, applies strong selection pressure on the pathogen, and many new races of Pfs have been identified in recent years in spinach production areas worldwide. To monitor the virulence diversity in the Pfs population, downy mildew samples were collected from spinach production areas and tested for race identification based on the disease reactions of a standard set of international spinach differentials. Two new races (designated races 15 and 16) and eight novel strains were identified between 2013 and 2017. The disease reaction of Pfs 15 was similar to race 4, except race 4 could not overcome the resistance imparted by the RPF9 locus. Several resistance loci (RPF1, 2, 4, and 6) were effective in preventing disease caused by Pfs 15. The race Pfs 16 could overcome several resistance loci (RPF2, 4, 5, 9, and 10) but not others (RPF1, 3, 6, and 7). One novel strain (UA1014) could overcome the resistance of spinach resistant loci RPF1 to RPF7 but only infected the cotyledons and not the true leaves of certain cultivars. A new set of near-isogenic lines has been developed and evaluated for disease reactions to the new races and novel strains as differentials. None of the 360 U.S. Department of Agriculture spinach germplasm accessions tested were resistant to Pfs 16 or UA1014. A survey of isolates over several years highlighted the dynamic nature of the virulence diversity of the Pfs population. Identification of virulence diversity and evaluation of the genetics of resistance to Pfs will continue to allow for a more effective disease management strategy through resistance gene deployment.


Asunto(s)
Peronospora/aislamiento & purificación , Enfermedades de las Plantas/parasitología , Spinacia oleracea/parasitología , Resistencia a la Enfermedad , Peronospora/genética , Peronospora/patogenicidad , Enfermedades de las Plantas/inmunología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/parasitología , Spinacia oleracea/genética , Spinacia oleracea/inmunología , Virulencia
18.
Plant Dis ; 98(1): 145-152, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30708621

RESUMEN

Spinach downy mildew disease, caused by the obligate pathogen Peronospora farinosa f. sp. spinaciae, is the most economically important spinach (Spinacia oleracea) disease. New races of this pathogen have been emerging at a rapid rate over the last 15 years. This is likely due to production changes, particularly in California, such as high-density plantings and year-round spinach production. As of 2004, 10 races of P. farinosa f. sp. spinaciae had been identified, and the spinach resistance locus RPF2 provided resistance to races 1 to 10. Based on disease reactions on a set of spinach differentials containing six hypothesized resistance loci (RPF1-RPF6), races 11, 12, 13, and 14 of P. farinosa f. sp. spinaciae were characterized based on samples collected in the past 5 years as part of this study. Race 11, identified in 2008, could overcome the resistance of spinach cultivars resistant to races 1 to 10. Spinach resistance loci RPF1, RPF3, and RPF6 provided resistance to race 11. Race 12 was identified in 2009 and could overcome the resistances of the RPF1 and RPF2 loci. The RPF3 locus was effective against race 12. Race 13 was identified in 2010 and could overcome the resistance imparted by the RPF2 and RPF3 loci, whereas the RPF1 locus was effective against race 13. Race 14 was similar to race 12 and caused identical disease responses on the standard differentials but could be distinguished from race 12 by its ability to cause disease on a number of newly released cultivars, including 'Pigeon', 'Cello', and 'Celesta'. Five novel strains of P. farinosa f. sp. spinaciae were also identified. For example, isolate UA4711 of the pathogen, collected from Spain in 2011, was able to overcome the resistance imparted by the RPF1 and RPF3 loci, while RPF2 and RPF4 were effective against this strain. A total of 116 spinach cultivars, including 103 commercial lines and 13 differential cultivars, were evaluated for resistance to race 10 and the newly designated races 11, 12, 13, and 14.

19.
Microbiol Resour Announc ; 13(6): e0124823, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38682959

RESUMEN

Four isolates of Neofusicoccum parvum, collected from diseased hemp (Cannabis sativa) plants over a period of 2 years and shown to be pathogenic on C. sativa, were examined in this study. Their genome sizes ranged between 42.8 and 44.4 Mb, with 16,499 ± 72 predicted genes across the four isolates.

20.
Virol J ; 10: 136, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23631705

RESUMEN

BACKGROUND: In recent years, a disease caused by Southern rice black-streaked dwarf virus (SRBSDV) has resulted in significant loss in rice production in Southern China and has spread quickly throughout East and Southeast Asia. This virus is transmitted by an insect vector, white-backed planthopper (WBPH) Sogatella furcifera (Hemiptera: Delphacidae), in a persistent propagative manner. Aside from rice, SRBSDV can also infect numerous Poaceae plants. However, the molecular mechanism of interaction between SRBSDV and its plant or insect vector remains unclear. In order to address this, we investigated the whole viral genome relative mRNA expression level in distinct hosts and monitored their expression level in real-time in rice plants. METHODS: In this study, a reliable, rapid, and sensitive method for detecting viral gene expression transcripts is reported. A SYBR Green I based real-time polymerase chain reaction (PCR) method was adopted for the quantitative detection of SRBSDV gene expression in different hosts and real-time changes in gene expression in rice. RESULTS: Compared to the relative mRNA expression level of the whole genome of SRBSDV, P3, P7-1, and P9-2 were dominantly expressed in rice and WBPH. Similarly, these genes also exhibited high expression levels in corn, suggesting that they have more important functions than other viral genes in the interaction between SRBSDV and hosts, and that they could be used as molecular detection target genes of SRBSDV. In contrast, the levels of P6 and P10 were relative low. Western blotting analysis partially was also verified our qPCR results at the level of protein expression. Analysis of the real-time changes in SRBSDV-infected rice plants revealed four distinct temporal expression patterns of the thirteen genes. Moreover, expression levels of P1 and other genes were significantly down-regulated on days 14 and 20, respectively. CONCLUSION: SRBSDV genes showed similar expression patterns in distinct hosts (rice, corn, and WBPH), indicating that SRBSDV uses the same infection strategy in plant and insect hosts. P3, P7-1, and P9-2 were the dominantly expressed genes in the three tested hosts. Therefore, they are likely to be genes with the most crucial function and could be used as sensitive molecular detection targets for SRBSDV. Furthermore, real-time changes in SRBSDV genes provided a basis for understanding the mechanism of interaction between SRBSDV and its hosts.


Asunto(s)
Hemípteros/virología , Oryza/virología , ARN Mensajero/análisis , ARN Viral/análisis , Reoviridae/fisiología , Replicación Viral , Zea mays/virología , Animales , Western Blotting , Perfilación de la Expresión Génica , ARN Mensajero/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Virales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA