RESUMEN
The microenvironment of proliferative and aggressive tumours, such as the brain tumour glioblastoma multiforme (GBM), is often acidic, hypoxic, and nutrient deficient. Acid-sensing ion channels (ASICs) are proton-sensitive Na+ channels that have been proposed to play a role in pH sensing and in modulation of cancer cell migration. We previously reported that primary glioblastoma stem cells (GSCs), which grow as multicellular tumour spheroids, express functional ASIC1a and ASIC3, whereas ASIC2a is downregulated in GSCs. Using a 2.5D migration assay, here we report that acidic pH dramatically increased migration of GSCs of the pro-neural subtype. Pharmacological blockade as well as CRISPR-Cas9-mediated gene knock-out of ASIC1a or stable overexpression of ASIC2a, however, revealed that neither ASIC1a nor ASIC3, nor downregulation of ASIC2a, mediated the aggressive migration at acidic pH. Therefore, we tested the role of two other proteins previously implicated in cancer cell migration: the Ca2+-activated K+ channel KCa3.1 (KCNN4) and phosphoinositide 3-kinase (PI3K). While pharmacological blockade of KCa3.1 did also not affect migration, blockade of PI3K decreased migration at acidic pH to control levels. In summary, our study reveals a strongly enhanced migration of GSCs at acidic pH in vitro and identifies PI3K as an important mediator of this effect.
Asunto(s)
Glioblastoma , Humanos , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Concentración de Iones de Hidrógeno , Células Madre Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Microambiente Tumoral , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismoRESUMEN
The high variation of the influenza virus hemagglutinin (HA), particularly of its immunodominant head epitopes, makes it necessary to reformulate seasonal influenza virus vaccines every year. Novel influenza virus vaccines that redirect the immune response toward conserved epitopes of the HA stalk domain should afford broad and durable protection. Sequential immunization with chimeric HAs (cHAs) that express the same conserved HA stalk and distinct exotic HA heads has been shown to elicit high levels of broadly cross-reactive Abs. In the current mouse immunization studies, we tested this strategy using inactivated split virion cHA influenza virus vaccines (IIV) without adjuvant or adjuvanted with AS01 or AS03 to measure the impact of adjuvant on the Ab response. The vaccines elicited high levels of cross-reactive Abs that showed activity in an Ab-dependent, cell-mediated cytotoxicity reporter assay and were protective in a mouse viral challenge model after serum transfer. In addition, T cell responses to adjuvanted IIV were compared with responses to a cHA-expressing live attenuated influenza virus vaccine (LAIV). A strong but transient induction of Ag-specific T cells was observed in the spleens of mice vaccinated with LAIV. Interestingly, IIV also induced T cells, which were successfully recalled upon viral challenge. Groups that received AS01-adjuvanted IIV or LAIV 4 wk before the challenge showed the lowest level of viral replication (i.e., the highest level of protection). These studies provide evidence that broadly cross-reactive Abs elicited by cHA vaccination demonstrate Fc-mediated activity. In addition, cHA vaccination induced Ag-specific cellular responses that can contribute to protection upon infection.