Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Inorg Chem ; 58(1): 756-768, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30562002

RESUMEN

Reaction of 2-hydroxy3-methoxybenzaldehyde ( o-vanillin) with 1,1,1-tris(aminomethyl)ethane, Me-C(CH2NH2)3, or with N, N', N''-trimethylphosphorothioic trihydrazide, P(S)[NMe-NH2]3, yields two tripodal LH3 and L1H3 ligands which are able to give cationic heterotrinuclear [LCoGdCoL]+ or [L1CoGdCoL1]+ complexes. The CoII ions are coordinated to these deprotonated ligands in the inner N3O3 site, while the GdIII ion is linked to three deprotonated phenoxo oxygen atoms of two anionic [LCo]- or [L1Co]- units. Air oxidation of these trinuclear complexes does not yield complexes associating CoIII and GdIII ions. With the first ligand, the structurally characterized resulting complex is the neutral mononuclear LCoIII compound, while in the second case, oxidation of the CoII ions turned out to be impossible. The [L1CoLnCoL1]+ complexes behave as single-molecule magnets with effective energy barriers for the reversal of magnetization varying from Ueff = 51.3 K, τo = 2 × 10-6 s for the yttrium complex to Ueff = 29.5, 29.4, 27.4 K and τo = 1.3 × 10-7, 1.47 × 10-7, 1.50 × 10-7 s for the gadolinium ones, depending on the used counteranions. The energy decrease is compensated by the suppression of quantum tunneling of magnetization in absence of applied field, thanks to the introduction of a ferromagnetic Co-Gd interaction. Current work also shows that uncritical use of conventional spin Hamiltonians, based on quenched orbital momenta, can be misleading and that ab initio calculations are indispensable for establishing the picture of real magnetic interaction. Ab initio calculations show that the CoII sites in the investigated compounds possess large unquenched orbital moments due to the first-order spin-orbit coupling resulting in strongly axial magnetic anisotropy. Although the CoII ions are not axial enough for showing slow relaxation of magnetization by themselves, blocking barriers of exchange type are obtained thanks to the exchange interaction with GdIII ions.

2.
Inorg Chem ; 56(8): 4729-4739, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28375619

RESUMEN

We report the syntheses and the magnetic characterization of a new series of lanthanide complexes, in which the Ce, Nd, Gd, Dy, Er, and Yb derivatives show single-molecule magnet behavior. These complexes, named Ln(trenovan), where H3trenovan is tris(((3-methoxysalicylidene)amino)ethyl)amine, exhibit trigonal symmetry and the Ln(III) ion is heptacoordinated. Their molecular structure is then very similar to that of the previously reported Ln(trensal) series, where H3trensal is 2,2',2″-tris(salicylideneimino)triethylamine. This prompted us to use the spectroscopic and magnetic properties of the Ln(trensal) family (Ln = Nd, Tb, Dy, Ho, Er, and Tm) to obtain a set of crystal-field parameters to be used as starting point to determine the electronic structures and magnetic anisotropy of the analogous Ln(trenovan) complexes using the CONDON computational package. The obtained results were then used to discuss the electron paramagnetic resonance (EPR) and ac susceptibility results. As a whole, the obtained results indicate for this type of complexes single-molecule magnet behavior is not related to the presence of an anisotropy barrier, due to a charge distribution of the ligand around the lanthanoid, which results in highly mixed ground states in terms of MJ composition of the states. The crucial parameter in determining the slow relaxation of the magnetization is then rather the number of unpaired electrons (only Kramers ions showing in-field slow relaxation) than the shape of the charge distribution for different Ln(III).

3.
Chemistry ; 22(6): 2171-2180, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26743675

RESUMEN

Several theoretical investigations with CASSCF methods confirm that the magnetic behavior of Cu-Gd complexes can only be reproduced if the 5d Gd orbitals are included in the active space. These orbitals, expected to be unoccupied, do present a low spin density, which is mainly due to a spin polarization effect. This theory is strengthened by the experimental results reported herein. We demonstrate that Cu-Gd complexes characterized by Cu-Gd interactions through single-oxygen and three-atom bridges consisting of oxygen, carbon, and nitrogen atoms, present weak ferromagnetic exchange interactions, whereas complexes with bridges made of two atoms, such as the nitrogen-oxygen oximato bridge, are subject to weak antiferromagnetic exchange interactions. Therefore, a bridge with an odd number of atoms induces a weak ferromagnetic exchange interaction, whereas a bridge with an even number of atoms supports a weak antiferromagnetic exchange interaction, as observed in pure organic compounds and also, as in this case, in metal-organic compounds with an active spin polarization effect.

4.
Chemistry ; 22(16): 5552-62, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26960531

RESUMEN

The magnetic behaviour of a Dy(LH)3 complex (LH(-) is the anion of 2-hydroxy-N'-[(E)-(2-hydroxy-3-methoxyphenyl)methylidene]benzhydrazide) was analysed in depth from both theoretical and experimental points of view. Cantilever torque magnetometry indicated that the complex has Ising-type anisotropy, and provided two possible directions for the easy axis of anisotropy due to the presence of two magnetically non-equivalent molecules in the crystal. Ab initio calculations confirmed the strong Ising-type anisotropy and disentangled the two possible orientations. The computed results obtained by using ab initio calculations were then used to rationalise the composite dynamic behaviour observed for both pure Dy(III) phase and Y(III) diluted phase, which showed two different relaxation channels in zero and non-zero static magnetic fields. In particular, we showed that the relaxation behaviour at the higher temperature range can be correctly reproduced by using a master matrix approach, which suggests that Orbach relaxation is occurring through a second excited doublet.

5.
Inorg Chem ; 55(9): 4428-40, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27078745

RESUMEN

The new dinuclear Zn(II)-Dy(III) and trinuclear Zn(II)-Dy(III)-Zn(II) complexes of formula [(LZnBrDy(ovan) (NO3)(H2O)](H2O)·0.5(MeOH) (1) and [(L(1)ZnBr)2Dy(MeOH)2](ClO4) (3) (L and L(1) are the dideprotonated forms of the N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato and 2-{(E)-[(3-{[(2E,3E)-3-(hydroxyimino)butan-2-ylidene ]amino}-2,2-dimethylpropyl)imino]methyl}-6-methoxyphenol Schiff base compartmental ligands, respectively) have been prepared and magnetostructurally characterized. The X-ray structure of 1 indicates that the Dy(III) ion exhibits a DyO9 coordination sphere, which is made from four O atoms coming from the compartmental ligand (two methoxy terminal groups and two phenoxido bridging groups connecting Zn(II) and Dy(III) ions), other four atoms belonging to the chelating nitrato and ovanillin ligands, and the last one coming to the coordinated water molecule. The structure of 3 shows the central Dy(III) ion surrounded by two L(1)Zn units, so that the Dy(III) and Zn(II) ions are linked by phenoxido/oximato bridging groups. The Dy ion is eight-coordinated by the six O atoms afforded by two L(1) ligands and two O atoms coming from two methanol molecules. Alternating current (AC) dynamic magnetic measurements of 1, 3, and the previously reported dinuclear [LZnClDy(thd)2] (2) complex (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionato ligand) indicate single molecule magnet (SMM) behavior for all these complexes with large thermal energy barriers for the reversal of the magnetization and butterfly-shaped hysteresis loops at 2 K. Ab initio calculations on 1-3 show a pure Ising ground state for all of them, which induces almost completely suppressed quantum tunnelling magnetization (QTM), and thermally assisted quantum tunnelling magnetization (TA-QTM) relaxations via the first excited Kramers doublet, leading to large energy barriers, thus supporting the observation of SMM behavior. The comparison between the experimental and theoretical magnetostructural data for 1-3 has allowed us to draw some conclusions about the influence of ligand substitution around the Dy(III) on the SMM properties. Finally, these SMMs exhibit metal- and ligand-centered dual emissions in the visible region, and, therefore, they can be considered as magnetoluminescent bifunctional molecular materials.

6.
Chemistry ; 21(44): 15785-96, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26361252

RESUMEN

Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7)  s, 146.8(5) K with τ0 =9.2×10(-8)  s, and 146.1(10) K with τ0 =9.9×10(-8)  s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8)  s for 1, Ueff =214.7 K and τ0 =9.8×10(-9)  s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8)  s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination polyhedron from ideal geometries and a smaller Ueff value. Ab initio calculations support the easy-axis anisotropy of the ground Kramers doublet and predict zero-field SMM behavior through Orbach and TA-QTM relaxations via the first excited Kramers doublet, which leads to large energy barriers. In accordance with the experimental results, ab initio calculations have also shown that, compared with water, the peripheral halide ligands coordinated to the Zn(2+) ions increase the barrier height when the distortions of the DyO9 have a negative effect. All the complexes exhibit metal-centered luminescence after excitation into the UV π-π* absorption band of ligand L(2-) at λ=335 nm, which results in the appearance of the characteristic Dy(III) ((4) F9/2 →(6) HJ/2 ; J=15/2, 13/2) emission bands in the visible region.

7.
Inorg Chem ; 54(7): 3090-2, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25756362

RESUMEN

We report here a study about the magnetic anisotropy of the LnTRENSAL complexes (Ln = Tb, Dy, Er) performed by using cantilever torque magnetometry and electron paramagnetic resonance. For all of the compounds, we extracted a set of crystal-field parameters to obtain the energy-level splitting of the ground-state multiplet.

8.
Inorg Chem ; 53(4): 2181-7, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24499105

RESUMEN

The reaction of hydroxybenzohydrazide with o-vanillin yields 2-hydroxy-N'-[(2-hydroxy-3-methoxyphenyl)methylidene]benzohydrazide (LH3), a ligand that is able to give mononuclear and tetranuclear copper complexes but also to associate copper and gadolinium ions in a Cu2-Gd2 heterotetranuclear complex. This synthesis is successful if the Gd ions, which are acidic in protic solvents, are introduced in a basic methanol solution of the mononuclear copper complex. In the absence of piperidine, the addition of Gd ions to a methanol solution of the mononuclear copper complex only yields a tetranuclear cubane-type copper complex. This work reports on the first structural characterization of a copper-gadolinium complex involving a benzohydrazide ligand. The resulting complex consists of two Cu-Gd pairs linked by a dihydroxo Gd-Gd bridge, in which the Cu and Gd ions are bridged by a nonsymmetric phenoxo-hydroxo bridge. The magnetostructural correlation between the ferromagnetic coupling constant and the hinge angle observed in symmetrical double-phenoxo Cu-Gd bridges remains valid for dissymmetric Cu-Gd bridges and confirms the preponderance of the structural factor over the nature of the bridge. This tetranuclear complex corresponds to two S = 4 units linked through a dihydroxo bridge introducing a weak antiferromagnetic Gd-Gd interaction and impeding the existence of a S = 8 ground state.


Asunto(s)
Complejos de Coordinación/síntesis química , Cobre/química , Gadolinio/química , Hidrazinas/química , Fenómenos Magnéticos , Complejos de Coordinación/química , Cristalografía por Rayos X , Ligandos , Espectroscopía de Resonancia Magnética
9.
Inorg Chem ; 52(11): 6328-37, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23692474

RESUMEN

The key characteristic of single-molecule magnets (SMMs) is the anisotropy-induced blocking barrier, which should be as efficient as possible, i.e., to be able to provide long magnetic relaxation times at elevated temperatures. The strategy for the design of efficient SMMs on the basis of transition-metal complexes such as Mn12Ac is well established, which is not the case of complexes involving strongly anisotropic metal ions such as cobalt(II) and lanthanides (Ln). While strong intraionic anisotropy in the latter allows them to block the magnetization already in mononuclear complexes, the presence of several such ions in a complex does not result automatically in more efficient SMMs. Here, the magnetic blocking in the series of isostructural 3d-4f complexes Co(II)-Ln(III)-Co(II), Ln = Gd, Tb, and Dy, is analyzed using an originally developed ab initio based approach for the investigation of blocking barriers. The theoretical analysis allows one to explain the counterintuitive result that the Co-Gd-Co complex is a better SMM than terbium and dysprosium analogues. It turns out that the highly efficient magnetic blockage in the Co-Gd-Co complex results from a concomitant effect of unexpectedly large unquenched orbital momentum on Co(II) ions (ca. 1.7 µB) and the large spin on the gadolinium (S = 7/2), which provides a multilevel blocking barrier, similar to the one of the classical Mn12Ac. We conclude that efficient SMMs could be obtained in complexes combining strongly anisotropic and isotropic metal ions with large angular momentum rather than in polynuclear compounds involving strongly anisotropic ions only.

10.
Chemistry ; 18(13): 4031-40, 2012 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-22354459

RESUMEN

Two novel mononuclear five-coordinate nickel complexes with distorted square-pyramidal geometries are presented. They result from association of a tridentate "half-unit" ligand and 6,6'-dimethyl-2,2'-bipyridine according to a stepwise process that highlights the advantage of coordination chemistry in isolating an unstable tridentate ligand by nickel chelation. Their zero-field splittings (ZFS) were studied by means of magnetic data and state-of-the-art ab initio calculations. Good agreement between the experimental and theoretical axial D parameters confirms that large single-ion nickel anisotropies are accessible. The synthetic process can also yield dinuclear nickel complexes in which the nickel ions are hexacoordinate. This possibility is facilitated by the presence of phenoxo oxygen atoms in the tridentate ligand that can introduce a bridge between the two nickel ions. Two different double bridges are characterized, with the bridging oxygen atoms coming from each nickel ion or from the same nickel ion. This coordination change introduces a difference in the antiferromagnetic interaction parameter J. Although the magnetic data confirm the presence of single-ion anisotropies in these complexes, these terms cannot be determined in a straightforward way from experiment due to the mismatch between the principal axes of the local anisotropies and the presence of intersite anisotropies.

11.
Inorg Chem ; 51(11): 6396-404, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22621347

RESUMEN

Tetranuclear [Co-Gd](2) complexes were prepared by using trianionic ligands possessing amide, imine, and phenol functions. The structural determinations show that the starting cobalt complexes present square planar or square pyramid environments that are preserved in the final tetranuclear [Co-Gd](2) complexes. These geometrical modifications of the cobalt coordination spheres induce changes in the cobalt spin ground states, going from S = 1/2 in the square planar to S = 3/2 for the square pyramid environments. Depending on the ligand, the complexes display antiferromagnetic or ferromagnetic Co(II)-Gd(III) interactions. The temperature dependence of the magnetic susceptibility-temperature products indicate that the Co-Gd interaction is ferromagnetic when high spin Co ions are concerned and antiferromagnetic in the case of low spin Co ions. This different magnetic behavior can be explained if we observe that the singly occupied σ d(x(2)-y(2)) orbital is populated (S = 3/2 Co ions) or unoccupied (S = 1/2 Co ions). Such an observation furnishes invaluable information for the understanding of the more general 3d-4f magnetic interactions.

12.
Inorg Chem ; 51(21): 11279-93, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-22435341

RESUMEN

Four heterodinuclear (H(2)O)(2)NiL-Ln(NO(3))(3) complexes (Ln = Tb, Dy, Er, Yb) with a double phenoxo bridge coming from the dideprotonated Schiff-base ligand are synthesized and characterized by crystal and powder X-ray diffraction studies. This series of compounds devoid of any chiral center, crystallizes in a noncentrosymmetric space group P2(1), as the previously described (H(2)O)(2)NiL-Gd(NO(3))(3) equivalent. All four complexes are ferromagnetically coupled. If this behavior is clearly shown by the χ(M)T increase at low temperature in the case of the Ni-Tb and Ni-Dy complexes, it necessitates the preparation of the Zn-Er and Zn-Yb equivalent entities to be evidenced in the case of the Ni-Er and Ni-Yb complexes. Out-of-phase susceptibility signals are found in the four cases, but the SMM behavior is neither confirmed, nor completely studied because of the presence of fast quantum tunnelling at zero field. Thorough ab initio multiconfiguration calculations are carried out, achieving a realistic account of ligand field effects, exchange coupling and magnetic anisotropy in the discussed systems. The calculations reveal the ferromagnetic intercenter exchange coupling, the interplay with spin-orbit effects leading to a Ising-like scheme of the lowest levels. The ab initio simulation of the magnetic susceptibility is in semiquantitative agreement with experimental data, certifying the reasonableness of the theoretical treatments in obtaining valuable information for the interacting mechanisms. The anisotropy is accounted for by drawing polar diagrams of state-specific magnetization functions, obtained by handling of the data resulting from ab initio calculations including the spin-orbit effects. Supplementary, Density Functional Theory (DFT) calculations are carried out, presenting new methodological clues and assessments. The DFT is not perfectly adequate for lanthanide systems because of orbital pseudodegeneracy issues. However, we show that in particular circumstances the DFT can be partly used, succeeding here in mimicking different orbital configurations of the Ni-Tb system. The DFT seems to offer reasonable estimations of exchange coupling parameters, while it remains problematic in the complete account of Ligand Field splitting. The Paper presents unprecedented methodological advances and correlations with phenomenological and heuristic interpretation of experimental data, taking into focus relevant d-f systems constructed with a prototypical binucleating ligand.

13.
Inorg Chem ; 51(2): 1011-9, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22220559

RESUMEN

The copper template effect allows the preparation of tridentate ligands that chelate copper ions, leaving unoccupied the fourth basal coordination position and at least one axial position of the copper coordination polyhedron. Two such cationic complexes, [LCu](+) and [L(1)Cu](+) (L(-) = 2-{(E)-[(2-aminoethyl)imino]methyl}phenoxo] and L(1-) = 2-{(E)-[(2-aminopropyl)imino]methyl}phenoxo), react with diamagnetic polycyanometalate tectons such as Ni(CN)(4)(2-) or Ag(CN)(2)(-) to yield different neutral 1D complexes. In {[(LCu)(2)Ni(CN)(4)]}(n) (1) the four cyano nitrogen atoms are involved in coordination with copper ions in such a manner that each copper atom is pentacoordinated and linked to two cyano functions that occupy axial and equatorial coordination positions. Two L(1)Cu(+) cationic entities are linked, through their equatorial plane, to two trans cyano groups of the Ni(CN)(4)(2-) tecton in complex [(L(1)Cu)(2)Ni(CN)(4)] (2), the two uncoordinated cyano groups being involved in hydrogen bonds. 2 is a racemate, a S stereoisomer being associated with a R one in each [(L(1)Cu)(2)Ni(CN)(4)] unit. Zigzag Cu-Ag chains are present in [(LCu)Ag(CN)(2)] (3), where the copper centers are pentacoordinated and connected to the cyano groups in an alternate axial-equatorial coordination scheme. A bidimensional structure is developed by interchain argentophilic interactions. In complex 4, {(L(1)CuMeOH)(L(1)Cu)[Ag(CN)(2)](2)}, two L(1)Cu units are connected by a NC-Ag-CN bridge in an equatorial position. These resulting units exhibit argentophilic interactions with [Ag(CN(2))](-) entities that are monocoordinated in the equatorial position to the next unit, ultimately leading to a chain. Weak Cu-Cu magnetic interactions are detected in the four compounds, antiferromagnetic in the case of equatorial-equatorial copper interactions, ferromagnetic for orthogonal interacting copper orbitals (axial-equatorial interactions), while axial-axial bridges are characterized by an absence of interaction. The presence of weak ferromagnetic interactions through large NC-Ni-CN or NC-Ag-CN bridges (Cu···Cu distances larger than 10 Å) furnishes experimental evidence for the existence of next-nearest-neighbor interactions through diamagnetic centers. DFT calculations do confirm the existence of these magnetic transmission pathways through the diamagnetic metal bridge.

14.
Dalton Trans ; 51(7): 2805-2814, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35088784

RESUMEN

A chiral trianionic ligand possessing one amide, one imine, two phenol functions and one asymmetric carbon atom into its diamino chain reacts with CuII ions to yield anionic [LCu]- units that crystallize in a non-centrosymmetric space group as infinite 1D zig-zag chains in which a transmission of chirality to the CuII ion is effective. The distorted square planar environment of the CuII ion is large enough to induce the presence of a stereogenic CuII centre. Further reaction with LnIII ions in presence of ancillary ligands does not preserve such an arrangement but yields a tetranuclear complex made of two [LCu-Ln] units in a head-to-tail position. The tetranuclear [LCu-Ln]2 complexes made with the racemic and chiral LCu units crystallize in different space groups, so that racemization does not occur. The structural determinations confirm that a symmetry centre is present in the two structures, except for the methyl groups linked to the chiral carbon atoms, which appear as disordered in the (S-S) tetranuclear entity. Such an arrangement implies a conformation change of the diamino chain linked to the CuII ion in one [LCu-Ln] unit of the (S-S) entity, and cancels any chirality contribution of the CuII ions, as in the meso compound. Ferromagnetic Cu-Ln interactions, resulting from an alternate distribution of the CuII and LnIII ions, are the only ones to be active. Eventually the micro-Squid studies confirm that the hysteresis loops of the corresponding racemate and chiral tetranuclear [LCu-Dy]2 entities are slightly different.

15.
Inorg Chem ; 50(21): 11075-81, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21972822

RESUMEN

The synthesis of a new Ni(II)-Y(III) binuclear complex with a marked elongation axis in the first coordination sphere of the Ni(II) ion is presented. Its zero-field splitting (ZFS) is studied by means of magnetic data and state-of-the-art ab initio calculations. A good agreement between the experimental and theoretical ZFS parameter values is encountered, validating the whole approach. The magnetic anisotropy axes are extracted from the ab initio calculations, showing that the elongation axis around the Ni(II) ion corresponds to the hard axis of magnetization and that the sign of the axial D parameter is imposed by this axis. The Ni-Y axis is found to be an easy axis of magnetization, which is, however, not significant according to the sign of D. The already reported [(H(2)O)Ni(ovan)(2)(µ-NO(3))Y(ovan)(NO(3))]·H(2)O (ovan = o-vanillin) complex is then revisited. In this case, the elongation axis in the Ni(II) coordination sphere is less marked and the ZFS is dominated by the effect of the Y(III) ion belonging to the second coordination sphere. As a consequence, the D parameter is negative and the low-temperature behavior is dominated by the Ni-Y easy axis of magnetization. A competition between the first coordination sphere of the Ni(II) ion and the electrostatic effect of the Y(III) ion belonging to the second coordination sphere is then evidenced in both complexes, and the positive and negative D parameters are then linked to the relative importance of both effects in each complex.

16.
Inorg Chem ; 50(2): 437-43, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21142111

RESUMEN

The reaction between [NiTp*(µ-OH)]2 (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) and (RO)2P(O)OH (R = Et, Bu, 4-NO2-Ph) affords the dinuclear nickel phosphates [NiTp*(µ-O2P(OR)2)]2 (R = Et (1), Bu (2), 4-NO2-Ph (3)), which have been studied by spectroscopic methods (IR, UV-vis, and (1)H NMR). In chloroform solution, those complexes exhibit isotropically shifted (1)H NMR resonances. Their molecular structures reveal that they all have an eight-membered Ni2O4P2 ring which possesses two nickel centers bridged to each other by two isobidentate phosphate ligands. Magnetic studies on 1-3 and other similar complexes (4 and 5) reveal antiferromagnetic behavior at low temperatures as well as an interesting correlation between calculated D values and the planarity of eight-membered Ni2O4P2 rings.


Asunto(s)
Boratos/química , Ésteres/química , Níquel/química , Fosfatos/química , Pirazoles/química , Algoritmos , Indicadores y Reactivos , Ligandos , Espectroscopía de Resonancia Magnética , Magnetismo , Modelos Moleculares , Conformación Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
17.
Inorg Chem ; 49(20): 9125-35, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20446714

RESUMEN

Trinuclear linear 3d-4f-3d complexes (3d = Mn(II), Fe(II), Co(II), Zn(II) and 4f = La(III), Gd(III), Tb(III), Dy(III)) were prepared by using a tripodal nonadentate Schiff base ligand, N,N',N''-tris(2-hydroxy-3-methoxybenzilidene)-2-(aminomethyl)-2-methyl-1,3-propanediamine. The structural determinations showed that in these complexes two distorted trigonal prismatic transition metal complexes of identical chirality are assembled through 4f cations. The Mn and Fe entities crystallize in the chiral space group P2(1)2(1)2(1) as pure enantiomers; the cobalt complexes exhibit a less straightforward behavior. All Mn, Fe, and Co complexes experience M(II)-Ln(III) ferromagnetic interactions. The Mn-Gd interaction is weak (0.08 cm(-1)) in comparison to the Fe-Gd (0.69 cm(-1)) and Co-Gd (0.52 cm(-1)) ones while the single ion zero field splitting (ZFS) term D is larger for the Fe complexes (5.7 cm(-1)) than for the cobalt ones. The cobalt complexes behave as single-molecules magnets (SMMs) with large magnetization hysteresis loops, as a consequence of the particularly slow magnetic relaxation characterizing these trinuclear molecules. Such large hysteresis loops, which are observed for the first time in Co-Ln complexes, confirm that quantum tunnelling of the magnetization does not operate in the Co-Gd-Co complex.

18.
Inorg Chem ; 48(8): 3342-59, 2009 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-19361237

RESUMEN

Heterometallic 3d-4f complexes are of high interest in molecular magnetism: the lanthanide ions bring large and, in most cases, anisotropic magnetic moments. The combination of 3d and 4f metal ions, which differ through their chemistries and stereochemical preferences, leads to a rich variety of heterometal complexes, ranging from discrete entities to 3-D coordination polymers. This paper reviews recent achievements in this field: (i) oligonuclear complexes for studying the nature of the 3d-4f exchange interaction; (ii) construction of single-molecule magnets; (iii) magnetic properties of 3d-4f coordination polymers.

19.
Inorg Chem ; 48(12): 5555-61, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19397285

RESUMEN

The syntheses, structural determinations, and magnetic studies of two trinuclear Ni-Gd-Ni complexes are described. The structural studies demonstrate that the two complexes present a linear arrangement of the Ni and Gd ions, with Ni ions in slightly distorted square-pyramidal or octahedral environments in complexes 1 and 2, respectively. The Ni and Gd ions are linked by two or three phenoxo bridges, so that complexes 1 and 2 present edge-sharing or face-sharing bridging cores. Ferromagnetic interactions operate in these complexes. While a unique J parameter is able to fit the magnetic data of complex 2, two very different J constants are needed for 1. This result is at first sight surprising, for the structural data of the two Ni-O(2)-Gd cores in complex 1 are quite similar (similar Ni-O and Gd-O bond lengths, similar angles, and dihedral angles), the only difference coming from the angle between the planes defined by the Gd ion and the two bridging phenoxo oxygen atoms of each Ni-O(2)-Gd half core. This latter magnetic behavior can be considered as a signature for the participation of 5d Gd(III) orbitals in the exchange interaction mechanism and can explain why edge-sharing complexes have larger J parameters than face-sharing complexes.

20.
Inorg Chem ; 48(13): 5820-8, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19496587

RESUMEN

Assembling bimetallic {Ni-Ln}(3+) units and {W(CN)(8)}(3-) is shown to be an efficient route toward heteronuclear {3d-4f-5d} compounds. The reaction of either the binuclear [{L(Me2)Ni(H(2)O)(2)}{Ln(NO(3))(3)}] complexes or their mononuclear components [L(Me2)Ni] and Ln(NO(3))(3) with (HNBu(3))(3){W(CN)(8)} in dmf followed by diffusion of tetrahydrofuran yielded the trinuclear [{L(Me2)NiLn}{W(CN)(8)}] compounds 1 (Ln = Y), 2a,b (Gd), 3a,b (Tb), 4 (Dy), 5 (Ho), and 6 (Er) as crystalline materials. All of the derivatives possess the trinuclear core resulting from the linkage of the {W(CN)(8)} to the Ni center of the {Ni-Ln} unit. Differences are found in the solvent molecules acting as ligands and/or in the lattice depending on the crystallization conditions. For all the compounds ferromagnetic {Ni-W} and {Ni-Ln} (Ln = Gd, Tb, Dy, and Er} interactions are operative resulting in high spin ground states. Parameterization of the magnetic behaviors for the Y and Gd derivatives confirmed the strong cyano-mediated {Ni-W} interaction (J(NiW) = 27.1 and 28.5 cm(-1)) compared to the {Ni-Gd} interaction (J(NiGd) = 2.17 cm(-1)). The characteristic features for slow relaxation of the magnetization are observed for two Tb derivatives, but these are modulated by the crystal phase. Analysis of the frequency dependence of the alternating current susceptibility data yielded U(eff)/k(B) = 15.3 K and tau(0) = 4.5 x 10(-7) s for one derivative whereas no maxima of chi(M)'' appear above 2 K for the second one.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA