Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Phylogenet Evol ; 94(Pt A): 221-31, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26364971

RESUMEN

The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference.


Asunto(s)
Haemosporida/clasificación , Haemosporida/genética , Parásitos/clasificación , Parásitos/genética , Filogenia , Animales , Teorema de Bayes , Biodiversidad , Evolución Biológica , Aves/parasitología , Cartilla de ADN/genética , Humanos , Funciones de Verosimilitud , Malaria/parasitología , Mamíferos/parasitología , Plasmodium/genética , Reacción en Cadena de la Polimerasa , Reptiles/parasitología
2.
Proc Natl Acad Sci U S A ; 110(40): 16151-6, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043818

RESUMEN

The hepatitis B virus (HBV), family Hepadnaviridae, is one of most relevant human pathogens. HBV origins are enigmatic, and no zoonotic reservoirs are known. Here, we screened 3,080 specimens from 54 bat species representing 11 bat families for hepadnaviral DNA. Ten specimens (0.3%) from Panama and Gabon yielded unique hepadnaviruses in coancestral relation to HBV. Full genome sequencing allowed classification as three putative orthohepadnavirus species based on genome lengths (3,149-3,377 nt), presence of middle HBV surface and X-protein genes, and sequence distance criteria. Hepatic tropism in bats was shown by quantitative PCR and in situ hybridization. Infected livers showed histopathologic changes compatible with hepatitis. Human hepatocytes transfected with all three bat viruses cross-reacted with sera against the HBV core protein, concordant with the phylogenetic relatedness of these hepadnaviruses and HBV. One virus from Uroderma bilobatum, the tent-making bat, cross-reacted with monoclonal antibodies against the HBV antigenicity determining S domain. Up to 18.4% of bat sera contained antibodies against bat hepadnaviruses. Infectious clones were generated to study all three viruses in detail. Hepatitis D virus particles pseudotyped with surface proteins of U. bilobatum HBV, but neither of the other two viruses could infect primary human and Tupaia belangeri hepatocytes. Hepatocyte infection occurred through the human HBV receptor sodium taurocholate cotransporting polypeptide but could not be neutralized by sera from vaccinated humans. Antihepadnaviral treatment using an approved reverse transcriptase inhibitor blocked replication of all bat hepadnaviruses. Our data suggest that bats may have been ancestral sources of primate hepadnaviruses. The observed zoonotic potential might affect concepts aimed at eradicating HBV.


Asunto(s)
Quirópteros/virología , Hepadnaviridae/genética , Hepadnaviridae/patogenicidad , Zoonosis/virología , Animales , Secuencia de Bases , Línea Celular Tumoral , Reacciones Cruzadas/inmunología , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Genoma/genética , Virus de la Hepatitis B/genética , Hepatocitos/virología , Humanos , Immunoblotting , Hibridación in Situ , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie , Tupaiidae
3.
PLoS Pathog ; 9(6): e1003438, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23818848

RESUMEN

Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species). Three highly divergent rodent hepacivirus clades were detected in 27 (1.8%) of 1,465 European bank voles (Myodes glareolus) and 10 (1.9%) of 518 South African four-striped mice (Rhabdomys pumilio). Bats showed anti-HCV immunoblot reactivities but no virus detection, although the genetic relatedness suggested by the serologic results should have enabled RNA detection using the broadly reactive PCR assays developed for this study. 210 horses and 858 cats and dogs were tested, yielding further horse-associated hepaciviruses but none in dogs or cats. The rodent viruses were equidistant to HCV, exceeding by far the diversity of HCV and the canine/equine hepaciviruses taken together. Five full genomes were sequenced, representing all viral lineages. Salient genome features and distance criteria supported classification of all viruses as hepaciviruses. Quantitative RT-PCR, RNA in-situ hybridisation, and histopathology suggested hepatic tropism with liver inflammation resembling hepatitis C. Recombinant serology for two distinct hepacivirus lineages in 97 bank voles identified seroprevalence rates of 8.3 and 12.4%, respectively. Antibodies in bank vole sera neither cross-reacted with HCV, nor the heterologous bank vole hepacivirus. Co-occurrence of RNA and antibodies was found in 3 of 57 PCR-positive bank vole sera (5.3%). Our data enable new hypotheses regarding HCV evolution and encourage efforts to develop rodent surrogate models for HCV.


Asunto(s)
Evolución Molecular , Genoma Viral , Hepacivirus , Anticuerpos contra la Hepatitis C/sangre , Hepatitis C , Hepatitis Animal , ARN Viral , Roedores , Animales , Secuencia de Bases , Gatos , Perros , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C/sangre , Hepatitis C/genética , Hepatitis C/virología , Hepatitis Animal/sangre , Hepatitis Animal/genética , Hepatitis Animal/virología , Caballos , Datos de Secuencia Molecular , ARN Viral/sangre , ARN Viral/genética , Roedores/sangre , Roedores/virología
4.
J Gen Virol ; 94(Pt 9): 1984-1994, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23761408

RESUMEN

Bats host a broad diversity of coronaviruses (CoVs), including close relatives of human pathogens. There is only limited data on neotropical bat CoVs. We analysed faecal, blood and intestine specimens from 1562 bats sampled in Costa Rica, Panama, Ecuador and Brazil for CoVs by broad-range PCR. CoV RNA was detected in 50 bats representing nine different species, both frugivorous and insectivorous. These bat CoVs were unrelated to known human or animal pathogens, indicating an absence of recent zoonotic spill-over events. Based on RNA-dependent RNA polymerase (RdRp)-based grouping units (RGUs) as a surrogate for CoV species identification, the 50 viruses represented five different alphacoronavirus RGUs and two betacoronavirus RGUs. Closely related alphacoronaviruses were detected in Carollia perspicillata and C. brevicauda across a geographical distance exceeding 5600 km. Our study expands the knowledge on CoV diversity in neotropical bats and emphasizes the association of distinct CoVs and bat host genera.


Asunto(s)
Quirópteros/virología , Coronavirus/clasificación , Coronavirus/aislamiento & purificación , Variación Genética , Américas , Animales , Sangre/virología , Análisis por Conglomerados , Coronavirus/genética , Heces/virología , Intestinos/virología , Datos de Secuencia Molecular , Filogeografía , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Análisis de Secuencia de ADN
6.
Sci Rep ; 6: 26637, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27217069

RESUMEN

Crimean Congo hemorrhagic fever virus (CCHFV) is a highly virulent tick-borne pathogen that causes hemorrhagic fever in humans. The geographic range of human CCHF cases largely reflects the presence of ticks. However, highly similar CCHFV lineages occur in geographically distant regions. Tick-infested migratory birds have been suggested, but not confirmed, to contribute to the dispersal. Bats have recently been shown to carry nairoviruses distinct from CCHFV. In order to assess the presence of CCHFV in a wide range of bat species over a wide geographic range, we analyzed 1,135 sera from 16 different bat species collected in Congo, Gabon, Ghana, Germany, and Panama. Using a CCHFV glycoprotein-based indirect immunofluorescence test (IIFT), we identified reactive antibodies in 10.0% (114/1,135) of tested bats, pertaining to 12/16 tested species. Depending on the species, 3.6%-42.9% of cave-dwelling bats and 0.6%-7.1% of foliage-living bats were seropositive (two-tailed t-test, p = 0.0447 cave versus foliage). 11/30 IIFT-reactive sera from 10 different African bat species had neutralizing activity in a virus-like particle assay. Neutralization of full CCHFV was confirmed in 5 of 7 sera. Widespread infection of cave-dwelling bats may indicate a role for bats in the life cycle and geographic dispersal of CCHFV.


Asunto(s)
Quirópteros , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , África Central/epidemiología , Animales , Quirópteros/sangre , Quirópteros/virología , Alemania/epidemiología , Fiebre Hemorrágica de Crimea/sangre , Fiebre Hemorrágica de Crimea/epidemiología , Humanos , Panamá/epidemiología
7.
PLoS One ; 10(5): e0127035, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25965069

RESUMEN

Bats are likely natural hosts for a range of zoonotic viruses such as Marburg, Ebola, Rabies, as well as for various Corona- and Paramyxoviruses. In 2009/10, researchers discovered RNA of two novel influenza virus subtypes--H17N10 and H18N11--in Central and South American fruit bats. The identification of bats as possible additional reservoir for influenza A viruses raises questions about the role of this mammalian taxon in influenza A virus ecology and possible public health relevance. As molecular testing can be limited by a short time window in which the virus is present, serological testing provides information about past infections and virus spread in populations after the virus has been cleared. This study aimed at screening available sera from 100 free-ranging, frugivorous bats (Eidolon helvum) sampled in 2009/10 in Ghana, for the presence of antibodies against the complete panel of influenza A haemagglutinin (HA) types ranging from H1 to H18 by means of a protein microarray platform. This technique enables simultaneous serological testing against multiple recombinant HA-types in 5 µl of serum. Preliminary results indicate serological evidence against avian influenza subtype H9 in about 30% of the animals screened, with low-level cross-reactivity to phylogenetically closely related subtypes H8 and H12. To our knowledge, this is the first report of serological evidence of influenza A viruses other than H17 and H18 in bats. As avian influenza subtype H9 is associated with human infections, the implications of our findings from a public health context remain to be investigated.


Asunto(s)
Anticuerpos Antivirales/sangre , Quirópteros/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/clasificación , Animales , Quirópteros/sangre , Quirópteros/virología , Reservorios de Enfermedades/virología , Femenino , Ghana , Virus de la Influenza A/inmunología , Masculino , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Filogenia
8.
PLoS One ; 9(9): e108603, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25268381

RESUMEN

The Trypanosoma cruzi clade is a group of parasites that comprises T. cruzi sensu lato and its closest relatives. Although several species have been confirmed phylogenetically to belong to this clade, it is uncertain how many more species can be expected to belong into this group. Here, we present the results of a survey of trypanosome parasites of the bat Artibeus jamaicensis from the Panamá Canal Zone, an important seed disperser. Using a genealogical species delimitation approach, the Poisson tree processes (PTP), we tentatively identified five species of trypanosomes - all belonging to the T. cruzi clade. A small monophyletic group of three putative Trypanosoma species places at the base of the clade phylogeny, providing evidence for at least five independent colonization events of these parasites into the New World. Artibeus jamaicensis presents a high diversity of these blood parasites and is the vertebrate with the highest number of putative trypanosome species reported from a single locality. Our results emphasize the need for continued efforts to survey mammalian trypanosomes.


Asunto(s)
Enfermedad de Chagas/veterinaria , Quirópteros/parasitología , Genes Protozoarios , Filogenia , ARN Ribosómico 18S/genética , Trypanosoma cruzi/genética , Animales , Secuencia de Bases , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Variación Genética , Datos de Secuencia Molecular , Panamá , Filogeografía , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/aislamiento & purificación
9.
PLoS One ; 9(1): e84679, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454736

RESUMEN

Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat) and Eidolon helvum (Straw-colored fruit bat), were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells.


Asunto(s)
Quirópteros/virología , Células Epiteliales/virología , Tráquea/patología , Virus/metabolismo , Zoonosis/virología , Animales , Biomarcadores/metabolismo , Línea Celular Transformada , Células Epiteliales/patología , Técnica del Anticuerpo Fluorescente , Geografía , Humanos , Especificidad de la Especie , Virosis/patología , Virosis/veterinaria , Virosis/virología
10.
Infect Genet Evol ; 12(6): 1328-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22543008

RESUMEN

We report TcBat, a recently described genetic lineage of Trypanosoma cruzi, in fruit-eating bats Artibeus from Panama. Infections were common (11.6% prevalence), but no other T. cruzi cruzi genotypes were detected. Phylogenetic analyses show an unambiguous association with Brazilian TcBat, but raise questions about the phylogenetic placement of this genotype using the 18S rRNA gene alone. However, analyses with three concatenated genes (18S rRNA, cytb, and H2B) moderately support TcBat as sister to the discrete typing unit (DTU) TcI. We demonstrate that short fragments (>500 bp) of the 18S rRNA gene are useful for identification of DTUs of T. cruzi, and provide reliable phylogenetic signal as long as they are analyzed within a matrix with reference taxa containing additional informative genes. TcBat forms a very distinctive monophyletic group that may be recognized as an additional DTU within T. cruzi cruzi.


Asunto(s)
Enfermedad de Chagas/veterinaria , Quirópteros/parasitología , ARN Ribosómico 18S/genética , Trypanosoma cruzi/clasificación , Animales , Enfermedad de Chagas/sangre , Enfermedad de Chagas/parasitología , Quirópteros/sangre , Análisis por Conglomerados , ADN Protozoario/sangre , Reservorios de Enfermedades/parasitología , Reservorios de Enfermedades/veterinaria , Marcadores Genéticos , Zona del Canal de Panamá , Filogenia , Trypanosoma cruzi/genética
11.
Nat Commun ; 3: 796, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22531181

RESUMEN

The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data.


Asunto(s)
Quirópteros/virología , Reservorios de Enfermedades/virología , Mamíferos/virología , Infecciones por Paramyxoviridae/virología , Paramyxoviridae/clasificación , Paramyxoviridae/aislamiento & purificación , Animales , Perros , Humanos , Ratones , Datos de Secuencia Molecular , Paramyxoviridae/genética , Filogenia
12.
PLoS One ; 6(12): e29140, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22216187

RESUMEN

Bats, a globally distributed group of mammals with high ecological importance, are increasingly recognized as natural reservoir hosts for viral agents of significance to human and animal health. In the present study, we evaluated pools of blood samples obtained from two phylogenetically distant bat families, in particular from flying foxes (Pteropodidae), Eidolon helvum in West Africa, and from two species of New World leaf-nosed fruit bats (Phyllostomidae), Artibeus jamaicensis and Artibeus lituratus in Central America. A sequence-independent virus discovery technique (VIDISCA) was used in combination with high throughput sequencing to detect two novel parvoviruses: a PARV4-like virus named Eh-BtPV-1 in Eidolon helvum from Ghana and the first member of a putative new genus in Artibeus jamaicensis from Panama (Aj-BtPV-1). Those viruses were circulating in the corresponding bat colony at rates of 7-8%. Aj-BtPV-1 was also found in Artibeus lituratus (5.5%). Both viruses were detected in the blood of infected animals at high concentrations: up to 10E8 and to 10E10 copies/ml for Aj-BtPV-1 and Eh-BtPV-1 respectively. Eh-BtPV-1 was additionally detected in all organs collected from bats (brain, lungs, liver, spleen, kidneys and intestine) and spleen and kidneys were identified as the most likely sites where viral replication takes place. Our study shows that bat parvoviruses share common ancestors with known parvoviruses of humans and livestock. We also provide evidence that a variety of Parvovirinae are able to cause active infection in bats and that they are widely distributed in these animals with different geographic origin, ecologies and climatic ranges.


Asunto(s)
Quirópteros/virología , Parvovirus/aislamiento & purificación , Animales , Secuencia de Bases , Cartilla de ADN , Parvovirus/clasificación , Filogenia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA